
MAT334, 2020. I, §31 [July 21 – 23] Zeroes and poles Nathan Carruth

Summary:
• We tie down a few loose ends from previous lectures.
• We prove Jordan’s lemma and give examples of its application to the evaluation of definite integrals.
• We then give additional examples of finding contours in the complex plane for the evaluation of definite
integrals on the real line.

(Goursat, §§41, 44 – 46.)

31. On zeroes and poles. Recall that we have defined poles of a definite order and zeroes of a
definite order, as follows:

Pole of order m at a:

f(z) =

∞
∑

n=0

an(z − a)n +

m
∑

n=1

bn(z − a)−n, bm 6= 0

=
φ(z)

(z − a)m
, φ analytic and nonzero at a

Zero of order m at a:

f(z) =

∞
∑

n=m

an(za)
n, am 6= 0

= (z − a)mφ(z), φ analytic at a.

We now claim that function which is analytic except for isolated singularities can have only finitely many
poles, and that a nonzero analytic function can have only finitely many zeroes, on any finite region. Thus,
let C be a simple closed curve on and within which the function f is analytic, and suppose first that f
has infinitely many zeroes at a1, a2, · · · within the curve C. We shall only give the main idea (the details
will be given later when we talk about analytic continuation). We need the celebrated Bolzano-Weierstrass

Theorem:

Let {a1, a2, · · ·} be an infinite set within a simple closed curve C. Then there must be a point a within
or on C such that every disk around a contains infinitely many points of this set.

This is proved in courses on analysis, but it is also quite reasonable intuitively since if there infinitely many
points in a finite region, surely they cannot all be staying a finite distance away from each other: they must
be ‘clustering’ somewhere.1 By this theorem, there must be a point a within or on C such that every disk
around a contains infinitely many zeroes of f ; thus any disk around a must contain some point at which f
is zero, which means that f(a) must be zero: in other words, a is a zero of f . Let us write out the Taylor
series of f at a:

f(z) =

∞
∑

n=1

αn(z − a)n.

We claim that all of the coefficients must be zero. Suppose that αk 6= 0 for some k. Then we would be able
to write

f(z) = (z − a)kφ(z),

where φ is analytic at a and – crucially – nonzero at a. Now this would imply that there would be a disk
around a on which φ is still nonzero; but since (z−a)k is zero only when z = a, f would not be zero anywhere
on this disk either, contradicting our choice of a. Thus all of the coefficients in the Taylor series of f must
be zero, which means that f must be identically zero on every disk around a at which it is analytic. Note
though that this does not automatically allow us to conclude that it must be identically zero on C. The
idea to complete the proof – which we shall go over more carefully when we talk about analytic continuation
later – is as follows. f must be analytic on some disk around a. Now let us take a point near the boundary
of this disk; then since f is identically zero near that point, its Taylor series around that point must still
be identically zero. Thus f must be identically zero on all disks around this new point on which it is still
analytic. We can then continue extending the region until we show that f must actually be identically zero
on all of C. (Specifically, as we shall see when we talk about analytic continuation, we actually proceed by
extending f along a curve to any other point in C, which allows us to conclude that f must still be zero at
that point, and hence at every point in C.)

1 In other words, there is no way for an infinite group of people to practice social distancing within a
grocery store!
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MAT334, 2020. I, §31 [July 21 – 23] Cauchy principal value Nathan Carruth

Now suppose that the points a1, a2, · · · were in fact poles. Then as before there would be a point a,
any disk around which would contain infinitely many of the poles ai. Then clearly a cannot be an isolated
singularity of f , since any disk around it contains additional singularities of f ; but a cannot be a regular
point either, since f is not analytic on any disk around a. Thus f could not be analytic except for isolated
singularities, completing the proof in this case.

32. Cauchy principal value. Recall that in elementary calculus we give the following definition:

∫ ∞

−∞
f(x) dx = lim

L1→−∞

∫ a

L1

f(x) dx+ lim
L2→∞

∫ L2

a

f(x) dx, (1)

where the integral on the left exists if and only if the two limits on the right-hand side both exist as finite
numbers. Here a is any real number; it is easy to show that the definition does not depend on the choice of
a, so for convenience we shall take a = 0.

Now the careful student may have noted that the integrals we have calculated so far are not in the form
of a sum of two different limits, but rather of a single limit,

lim
L→∞

∫ L

−L

f(x) dx.

This limit is called the Cauchy principal value of the integral, and we denote it by PV
∫∞
−∞ f(x) dx.2 Now it

is easy to see that if the integral
∫∞
−∞ f(x) dx exists as defined above, then the Cauchy principal value also

exists and is equal to it; for in this case

lim
L→∞

∫ L

−L

f(x) dx = lim
L→∞

∫ 0

−L

f(x) dx+

∫ L

0

f(x) dx

= lim
L→∞

∫ 0

−L

f(x) dx+ lim
L→∞

∫ L

0

f(x) dx = lim
L1→−∞

∫ 0

L1

f(x) dx+ lim
L2→∞

∫ L2

0

f(x) dx

=

∫ ∞

−∞
f(x) dx.

The logic, however, does not work in reverse, and for a very simple reason. Note that in going from the first
to the second line above we used the fact that if the limit of two quantities exist, then the limit of their sum
exists and equals the sum of the limits. It is, however, most definitely not true that if the limit of a sum
exists, then the limit of the two terms in the sum both exist! (As a simple example, consider f(x) = 1− 1/x
and g(x) = 1/x as x → 0: clearly, f(x) + g(x) = 1, and the limit of this exists as x → 0, while neither f
nor g has a limit which exists.) Thus the logic cannot be run backwards. To sum up, then: if

∫∞
−∞ f(x) dx

exists, so does PV
∫∞
−∞ f(x) dx, and the two must be equal; but the converse is not necessarily true.

There is one case where the converse is true, though: when f is even. In this case, we see that

lim
L→∞

∫ L

−L

f(x) dx = 2 lim
L→∞

∫ L

0

f(x) dx, lim
L→−∞

∫ ∞

L

f(x) dx = lim
L→∞

∫ L

0

f(x) dx,

so that if the Cauchy principal value exists, then so do both of the limits in (1) above, and hence so does
the integral

∫∞
−∞ f(x) dx. To summarise, then, we have

if the integral

∫ ∞

−∞
f(x) dx exists, then so does PV

∫ ∞

−∞
f(x) dx, and the two are equal;

if PV

∫ ∞

−∞
f(x) dx exists and f is even, then so does

∫ ∞

−∞
f(x) dx and the two are equal.

2 The terminology may be slightly misleading. The Cauchy principal value is something which can be
computed independently of the actual integral as defined above: it requires only evaluating the single limit
just given. In particular, we do not determine the Cauchy principal value by first evaluating the full integral
and then doing something to that number!
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Another way of looking at the difference between (1) and the principal value is to note that in (1)
we have a two-dimensional limit, while the principal value is effectively the directional limit along the line
L1 = −L2. As we learned in multivariable calculus, if the two-dimensional limit of a quantity exists, then
so does the limit along any curve – but if all we know is that the limit along one particular line exists, we
really do not know anything at all about the full two-dimensional limit, in general. Thus knowing that the
Cauchy principal value exists does not, in general, tell us anything about the integral in (1).

It is worth noting that the techniques we have studied so far all amount to calculating the Cauchy
principal value rather than the integral as defined in (1). Hence, if we are asked to compute the integral
∫∞
−∞ f(x) dx, in order to show that it equals the Cauchy principal value we must first show that it exists (as
it will, as just shown, when f is even, for example).

33. Jordan’s lemma. Recall that there are two main steps to computing integrals using contours:
one, finding a way of ‘closing the contour’ in such a way that we can calculate the integral of our function
over the additional part of the contour (for example, using a semicircle the integral over which goes to zero
as its radius goes to infinity); two, evaluating residues. In the previous lecture we saw additional methods
for the second step; now we shall prove a result helping us to deal with the first step. First of all, we note
that for x ∈ [0, π/2) we have 0 ≤ cosx ≤ 1, so

d

dx

sinx

x
=

x cosx− sinx

x2
=

x− tanx

x2
cosx ≤ 0,

since tanx ≥ x for x ∈ [0, π/2). This means that the function sinx/x is decreasing on [0, π/2), so its minimum
value on [0, π/2] is achieved at x = π/2, and is therefore (sinπ/2)/(π/2) = 2/π. Thus for x ∈ [0, π/2] we
have sinx ≥ 2

πx.
With this preliminary, we may now prove Jordan’s lemma:

Let CR denote the semicircle of radius R centred at the origin in the upper half-plane. Let f be a

function which is analytic in the upper half-plane on the exterior of some semicircle of radius R0, and such

that for every R > R0 there is a constant MR such that |f(z)| ≤ MR on CR, and MR → 0 as R → ∞. Then
∫

CR

f(z)eiaz dz → 0 as R → ∞ for any positive number a.

To prove this, parameterise CR by z(t) = R(cos t+ i sin t), t ∈ [0, π]; then

eiaz = eiaR(cos t+i sin t) = eiaR cos te−aR sin t.

Now the first factor has modulus one, while for t ∈ [0, π/2] we have

sin t ≥ 2

π
t, − sin t ≤ − 2

π
t, e−aR sin t ≤ e−

2aR

π
t;

thus

∣

∣

∣

∣

∫

CR

f(z)eiaz dz

∣

∣

∣

∣

≤
∫ π

0

∣

∣f(Reit)
∣

∣ e−aR sin tRdt ≤ RMR

∫ π

0

e−aR sin t dt = 2RMR

∫ π/2

0

e−aR sin t dt

≤ 2RMR

∫ π/2

0

e−
2aR

π t dt = −MRπ

a
e−

2aR

π t

∣

∣

∣

∣

π/2

0

=
MRπ

a

(

1− e−aR
)

,

which goes to zero as R → ∞, since MR does and the quantity in parentheses goes to 1. This completes the
proof.

We note that the same is true if we replace ‘upper’ everywhere by ‘lower’ and require that a be negative:
for now we may parameterise CR by z(t) = −R(cos t + i sin t), in the which case, proceeding as before, the
integral over CR of f(z)eiaz can be bounded by

2RMR

∫ π/2

0

eaR sin t dt.
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But now, as before, aR is negative since a is, and the proof proceeds as before with −aR replaced by aR
everywhere.

We now give some examples.

EXAMPLES. 1. Evaluate
∫∞
0

x sin x
1+x2 dx.

We first note that the integrand is even so that we have

∫ ∞

0

x sinx

1 + x2
dx = 2

∫ ∞

−∞

x sinx

1 + x2
dx,

where this last integral will exist exactly when the principal value exists, as shown above. Thus it suffices
to compute the principal value of this last integral. We wish to apply Jordan’s lemma. Now we have
sinx = 1

2i (e
ix − e−ix); but if we were to use this formula, it would require us to compute two separate

integrals which would need to be closed in different half-planes. That would be possible but would be more
work than is necessary. Instead we write

sinx = Im eix,

and note that this allows us to write

∫ ∞

−∞

x sinx

1 + x2
dx = Im

∫ ∞

−∞

xeix

1 + x2
dx.

x

y

−R RLR

CR

i

This looks like the kind of function to which we should be able to apply Jordan’s lemma. We only need a
bound on x/(1 + x2) on the upper semicircle CR. Now on CR we have

∣

∣

∣

∣

z

1 + z2

∣

∣

∣

∣

=
|z|

|1 + z2| ≥
R

R2 − 1
=

1/R

1−R−2
,

which clearly goes to zero as R → ∞. Thus by Jordan’s lemma

∫

CR

zeiz

1 + z2
dz → 0 as R→∞.

Since the integrand has only one pole in the upper half-plane, at z = i, we may write, by the residue theorem,

∫ ∞

−∞

xeix

1 + x2
dx = lim

R→∞

[

−
∫

CR

zeiz

1 + z2
dz + 2πiRes i

zeiz

z2 + 1

]

= 2πiRes i
zeiz

(z − i)(z + i)
= 2πi

iei
2

2i
=

2πi

e
. (2)

Thus we have finally
∫ ∞

0

x sinx

1 + x2
dx =

1

2
Im

∫ ∞

−∞

xeix

1 + x2
dx =

1

2
Im

2πi

e
=

π

e
.

It is worth noting that the integral in (2) is a pure imaginary number; this can be traced to the fact that
x cosx is odd, which means that the principal value of its integral over the real line is zero.

2. Evaluate
∫ ∞

−∞

sinx

x
dx. (3)
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This integral introduces some additional twists to our standard procedure. First of all, by sinx/x we mean
actually the function

{

sin z
z , x 6= 0
1, x = 0

which by what we have seen on a previous homework assignment is analytic everywhere on the complex
plane, and in fact has the Taylor series expansion

∞
∑

k=0

(−1)k

(2k + 1)!
z2k.

If we now think of closing the integral in (3) in the upper half-plane, it would appear that it evaluates to zero
since there are no singularities and hence no residue. This would be wrong (and looking at a graph of sinx/x
suggests as much), since as we have noticed before the integral over a semicircle in the upper half-plane of
something involving sinx will not, in general, go to zero since sinx includes a term e−ix. Let us look at this
a bit more carefully. Let LR, as usual, denote the line segment from −R to R along the real axis, and CR

denote the upper semicircle of radius R centred at the origin. Then we have by the Cauchy integral theorem

0 =

∫

LR

sinx

x
dx+

∫

CR

sin z

z
dz =

∫

LR

sinx

x
dx +

∫

CR

eiz − e−iz

2iz
dz.

We would like to break this up in such a way that we can close the integral involving e−iz in the lower
half-plane. This suggests splitting sinx up in the first integrand:

∫

LR

sinx

x
dx =

∫

LR

eix − e−ix

2ix
dx.

This is perfectly fine, but unfortunately we cannot break this integral up into two separate pieces as it stands
since the individual pieces would have a singularity at the origin, which lies on the line LR. (Note that we do
need to break this integral up in order to obtain a closed curve with either CR or −CR – the lower semicircle
– and hence to apply the residue theorem.) But by the Cauchy integral theorem, since sin z/z is analytic
everywhere on the plane, we may replace LR with any other curve passing from −R to R; let us use a contour
which goes along the real axis from −R to −ǫ and ǫ to R, and joins −ǫ to ǫ by a small semicircle of radius ǫ
centred at the origin, in the upper half-plane. Denote this contour by L′

R. Then we have

∫

LR

sinx

x
dx =

∫

L′

R

sin z

z
dz =

∫

L′

R

eiz

2iz
dz −

∫

L′

R

e−iz

2iz
dz.

x

y

−R RLR

CR

C ′

R

0

We may now evaluate these integrals by closing in the upper and lower half-planes, respectively. Let us look
at the first integral. By the residue theorem,

∫

L′

R

eiz

2iz
dz +

∫

CR

eiz

2iz
dz = 0.
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But now on CR we clearly have
∣

∣

∣

∣

1

2iz

∣

∣

∣

∣

=
1

2
R−1 → 0 as R → ∞,

so by Jordan’s lemma we have

lim
R→∞

∫

CR

eiz

2iz
dz = 0.

Thus

lim
R→∞

∫

L′

R

eiz

2iz
dz = 0.

The second integral is more interesting. We have by the residue theorem

∫

L′

R

e−iz

2iz
dz +

∫

−CR

e−iz

2iz
dz = 2πiRes 0

e−iz

2iz
= π,

while |1/(2iz)| = 1/(2R) → 0 as R → ∞ shows that the second integral vanishes as R → ∞, by Jordan’s
lemma. Thus we have

∫ ∞

−∞

sinx

x
dx = PV

∫ ∞

−∞

sinx

x
dx = lim

R→∞

∫

LR

sinx

x
dx = π.

It is worth noting that the method we used in the previous example – of replacing sinx by eix and then
taking an imaginary part – does not work directly in this case since the curve L′

R we integrate over does
not lie along the real axis, so we cannot simply recover the integral over it of sinx/x from that of eix/x by
taking an imaginary part.

34. Another way of closing the contour. Let us consider, by way of example, another method for
closing the contour.

EXAMPLE. Evaluate the integrals

∫ ∞

0

sinx2 dx,

∫ ∞

0

cosx2 dx.

We do this by considering the integral
∫ ∞

0

eiz
2

dz.

Let LR in this case denote the line segment from 0 to R along the real axis. We shall close the contour
in two different ways. First, though, it is probably worthwhile to consider why the methods we have been
using so far do not work in this case. Clearly, if the above integral exists then it will equal half the Cauchy
principal value of

∫ ∞

−∞
eiz

2

dz.

Now if we consider the integral from −R to R of eiz
2

and then close it with the semicircle CR of radius R
centred at the origin in the upper half-plane, then it would appear initially – as in the previous example –
that we would get zero. However, as before, the integral along CR of eiz

2

does not vanish as R → ∞. While
not a proof, we may see that this is reasonable by the following computation:

∫

CR

eiz
2

dz =

∫ π

0

eiR
2e2it iReit dt =

∫ π

0

eiR
2 cos 2te−R2 sin 2tiReit dt;

but sin 2t < 0 when t ∈ (π/2, π), so that the exponential above goes to infinity with R on that range of t.
Thus evidently we need to do something else.
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This calculation actually suggests something worth noting: if we were able to restrict t ∈ (0, π/2), then
the exponential above would go to zero as R → ∞, and it is possible that the whole integral will also go to
zero. Thus let us consider closing the contour with a piece C′

R of the full semicircle CR together with a line
segment back to the origin, i.e., with a pie-wedge shaped contour as in the following figure. The problem
now will be how to calculate the integral over the additional line segment L′

R. Now the line segment L′
R may

be parameterised as ω(R− t), t ∈ [0, R] (the R− t is because the line starts on CR and ends at the origin),
where ω is some complex number of unit modulus. This allows us to write the integral over L′

R as

∫ R

0

eiω
2(R−t)2 ω(−dt) = −ω

∫ R

0

eiω
2t2 dt.

Now if ω2 = i, then the integrand would become e−t2 , and we can compute the integral of e−t2 over the
positive real axis by other methods, so it appears that we might be able to use the line L′

R in that case.
We shall do this in detail below. Alternatively, if ω2 = −1, then the integral over L′

R will be −ω times the
conjugate of that over LR, so we may be able to find the integral over LR in this case also by isolating and
solving. We shall not use this method here, but it is very useful for this week’s homework assignment. (Hint,
hint!)

We shall thus take ω to satisfy ω2 = i. This means that we have two choices: ω = 1√
2
+ i 1√

2
and

ω = − 1√
2
− i 1√

2
. We take the first because to close to the second would require us to use a circle along which

we do not have good bounds for eiz
2

. Thus we let L′
R be the line parameterised by (R − t)

(

1√
2
+ i 1√

2

)

,

t ∈ [0, R], and let C′
R denote the segment of the semicircle of radius R centred at the origin from R to

R
(

1√
2
+ i 1√

2

)

. Then by the Cauchy integral theorem we have

∫

LR

eiz
2

dz +

∫

C′

R

eiz
2

dz +

∫

L′

R

eiz
2

dz = 0.

x

y

0 R

L′

R

LR

CR

We deal with the integral over C′
R first. We have

∣

∣

∣

∣

∣

∫

C′

R

eiz
2

dz

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ π/4

0

eiR
2e2itRieit dt

∣

∣

∣

∣

∣

≤ R

∫ π/4

0

e−R2 sin 2t dt;

since t ∈ [0, π/4], we have 2t ∈ [0, π/2], so sin 2t ≥ 2
π (2t) =

4
π t and the above integral is bounded by

R

∫ π/4

0

e−
4R

2

π
t dt = − π

4R
e−

4R
2

π
t
∣

∣

∣

π/4

0
=

π

4R

(

1− e−R2
)

,

which goes to zero as R → ∞. Thus the integral over C′
R does not contribute anything to the final integral.

Now the integral over L′
R is equal to

∫ R

0

e−(R−t)2
[

−
(

1√
2
+ i

1√
2

)]

dt = −eiπ/4
∫ R

0

e−t2 dt,
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which in the limit as R → ∞ becomes

−eiπ/4
1

2

√
π = −1

2

√

π

2
− i

1

2

√

π

2
.

Thus we have finally
∫ ∞

0

eiz
2

dz = − lim
R→∞

∫

L′

R

eiz
2

dz =
1

2

√

π

2
+ i

1

2

√

π

2
,

so we see that
∫ ∞

0

sinx2 dx =

∫ ∞

0

cosx2 dx =
1

2

√

π

2
.
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