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Summary:
• We give examples of applications of the residue theorem to the evaluation of definite integrals on the
real axis.

• We then give theorems for showing that integrals over semicircles go to zero, and provide additional
methods for computing residues.

(Goursat, §§44 – 46.)

28. Evaluation of definite integrals. Recall the residue theorem from last time: if f is a function
which is continuous on a simple closed curve γ, and analytic inside γ except potentially at a finite number
of isolated singularities z1, · · ·, zn, at which it has residues β1, · · ·, βn, respectively. Then we have

∫

γ

f(z′) dz′ = 2πi

n
∑

j=1

βj .

Let us see by way of an example – which could also be done by elementary methods – how this result can
be applied to evaluate definite integrals.

EXAMPLE. Consider the integral
∫ +∞

−∞

1

1 + x2
dx.

Since this integral converges, it is equal to the limit

lim
R→+∞

∫ R

−R

1

1 + x2
dx;

since arctanx is an antiderivative of 1/(1+x2), by the fundamental theorem of calculus this integral is equal
to

lim
R→+∞

(arctanR− arctan(−R)) =
π

2
−
(

−
π

2

)

= π.

Now suppose that we consider
∫ R

−R
1

1+x2 dx as a contour integral in the complex plane, with the contour
taken along the real axis; then we get the following picture.

x

y

−R RLR

As it stands this does not seem to have gotten us anywhere. Note though that the integrand here is
analytic on the entire plane except for (simple) poles at ±i. Thus if it were possible to somehow augment

the contour LR in order to obtain a closed curve (we speak of closing the contour), we would be able to
apply either the Cauchy integral theorem – if the closed curve did not contain either of the poles – or the
residue theorem – otherwise – in order to evaluate the integral over the full closed contour. If, additionally,
it were possible somehow to compute the integral over the additional contour, at least in the limit of large
R, we would then be able to compute our original integral.

In general there are multiple ways of closing the contour; i.e., there are multiple different possible choices
for the additional curve to be used to produce a closed contour from the original one. Consider the semicircle
CR in the upper half-plane as in the following picture.

x

y

−R RLR

CR

i
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∫

CR

f(z) dz → 0 Nathan Carruth

Remember that our technique will only be useful if we have a way of computing
∫

CR

1/(1 + z2) dz; we
claim that in fact

lim
R→∞

∫

CR

1

1 + z2
dz = 0.

In class we showed this by parameterising the curve CR and considering the resulting integrand; here we use
a slightly simpler method. Recall that, if f is continuous on a simple closed curve γ, with maximum M on
γ, then

∣

∣

∣

∣

∫

γ

f(z) dz

∣

∣

∣

∣

≤ M |γ|,

where |γ| is the length of the curve γ. Now clearly |CR| = πR (since CR is a semicircle of radius R); further,
if z is any point on CR then we may write z = Reit for some t ∈ [0, π], and thus

∣

∣

∣

∣

1

1 + z2

∣

∣

∣

∣

=

∣

∣

∣

∣

1

1 +R2e2it

∣

∣

∣

∣

=

∣

∣

∣

∣

R−2

e2it +R−2

∣

∣

∣

∣

= R−2
∣

∣e2it +R−2
∣

∣

−1
.

Now by the triangle inequality we may write

∣

∣e2it +R−2
∣

∣ ≥
∣

∣e2it
∣

∣−
∣

∣R−2
∣

∣ = 1−R−2,

so that when we take the limit R → ∞ we have

R−2
∣

∣e2it +R−2
∣

∣

−1
≤ R−2(1−R−2)−1 ≤

1

R2 − 1
,

which goes to zero. Thus

lim
R→∞

∫

CR

1

1 + z2
dz = 0

as claimed.
Now for any R > 1, the closed curve LR + CR will enclose the single pole at i. Let us calculate the

residue of 1/(1 + z2) at z = i. We have

1

1 + z2
=

1

(z − i)(z + i)
=

1/(z + i)

z − i
;

if we think of expanding 1/(z + i) as

1

z + i
=

∞
∑

n=0

cn(z − i)n

(which we can do since 1/(z + i) is analytic near i), then

1

1 + z2
=

c0 + c1(z − i) + c2(z − i)2 + · · ·

z − i
=

c0
z − i

+ c1 + c2(z − i) + · · · ,

and the residue of 1/(1 + z2) is clearly c0. But c0 = 1/(z + i)|z=i = 1/(2i). Thus at the end of the day we
have for all R > 1

∫

LR

1

1 + z2
dz +

∫

CR

1

1 + z2
dz = 2πi ·

1

2i
= π;

and in the limit R → ∞, the integral over LR goes to
∫ +∞

−∞
1/(1 + x2) dx while the integral over CR goes to

zero. Thus at the end of the day
∫ +∞

−∞

1

1 + x2
dx = π,

exactly as we found above.
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∫

CR

f(z) dz → 0 Nathan Carruth

There are two key points in the above procedure: (i) we have to find a curve CR (which need not be a
semicircle, in general, or any segment of a circular path) which will close the contour LR, and over which
we can integrate f ; (ii) we have to evaluate the residues of f at its singularities inside the closed contour
LR +CR. We shall now give methods for addressing these two points: first, by providing general conditions
under which integrals along circular arcs like CR go to zero as R → ∞; second, by providing additional
methods for calculating residues.

29. When
∫

CR

f(z) dz → 0. First we have the following fairly straightforward generalisation of the
example from the previous section. Suppose that f is a function analytic on the exterior of a circle of radius
R for a suitably large R (in other words, if f has any singularities they are not too far from the origin).
Suppose that for suitably large R there is a number MR such that for all z ∈ CR we have |f(z)| < MR, and
that limR→∞ RMR = 0. Then

lim
R→∞

∫

CR

f(z) dz = 0.

To see this, note that the length of CR is πR; thus

∣

∣

∣

∣

∫

CR

f(z) dz

∣

∣

∣

∣

≤ πRMR,

and as this latter quantity goes to zero by assumption, the integral must also, by the squeeze theorem.
We may apply this to the example in the previous section as follows. Suppose that z ∈ CR. Then we

have

|f(z)| =

∣

∣

∣

∣

1

1 + z2

∣

∣

∣

∣

≥
1

|z2| − 1
=

1

R2 − 1
,

where we have used the triangle inequality as before; since R/(R2 − 1) → 0 as R → ∞, the above result
shows that limR→∞

∫

CR

f(z) dz = 0 as well.
We note in passing that it is actually sufficient to show that if z → ∞ along circles CR, then we must

have limz→∞ zf(z) = 0. More precisely, what this means is that zf(z) can be made arbitrarily small by
taking z ∈ CR with |z| = R arbitrarily large. In cases like the foregoing this is easier to apply, since we have

lim
z→∞

z

1 + z2
= lim

z→∞

z−1

1 + z−2
,

and since the numerator goes to 0 while the denominator goes to 1, the fraction must go to zero. To be
fully rigorous, though, we would have to explain how this kind of a limit – restricting z to lie on a particular
family of curves – relates to usual limits, but we shall not do that here. This method can also be used to
show easily what we saw in class: suppose that

f(z) =
P (z)

Q(z)
,

where P and Q are polynomials, and degQ ≥ degP + 2. Then we can write

lim
z→∞

zf(z) = lim
z→∞

z(a0 + · · ·+ anz
n)

b0 + · · ·+ bn+2zn+2
,

where bn+2 6= 0 but we may have an = 0. By dividing numerator and denominator by zn+2, this becomes

lim
z→∞

anz
−1 + an−1z

−2 + · · ·+ a0z
−n−1

bn+2 + bn+1z−1 + · · ·+ b0z−n−2
= 0,

since the numerator goes to 0 while the denominator goes to bn+2 6= 0.
Let us do an example.

EXAMPLE. Compute
∫ +∞

−∞

cosx

1 + x2
dx.
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∫

CR
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We note first that the integrand has poles in the complex plane at ±i, just like the example above. Let us
now consider what kind of contour we can use to close the line LR. Now we have

cos z =
1

2

(

eiz + e−iz
)

.

Now suppose that z = a+ ib; then

cos z =
1

2

(

eia−b + e−ia+b
)

,

and we see that the first term goes to zero on the upper half-plane (b > 0) while the second term goes to
infinity exponentially there, and vice versa on the lower half-plane. (We ignore for the moment what happens
on the real axis when b = 0.) Thus it does not seem that there is any way of closing the contour so as to
have

∫

CR

f(z) dz = 0 as regardless of whether CR is in the upper or lower half-plane the integrand will have
one term going to infinity.

There are two ways of dealing with this. The more general one is to split the original integral up into
two pieces,

∫ +∞

−∞

eix

2(1 + x2)
dx,

∫ +∞

−∞

e−ix

2(1 + x2)
dx,

and then closing these two integrals in the upper and lower half-plane, respectively; for example, using in
turn the curves CR and C′

R in the following figure. We shall see similar cases to this in the future. For now
we use a simpler method. Note that we have also

cos z = Re eiz ,

x

y

−R RLR

CR

C ′

R

i
−i

so since we are integrating along the real axis, we may write

∫ +∞

−∞

cosx

1 + x2
dx =

∫ +∞

−∞

Re eix

1 + x2
dx = Re

∫ +∞

−∞

eix

1 + x2
dx.

We try closing this integral in the upper half-plane as described above; thus let CR denote a semicircle from
R to −R in the upper half-plane, as indicated in the above figure. If z = a+ ib ∈ CR, then b ≥ 0, so we have

∣

∣eiz
∣

∣ =
∣

∣eiae−b
∣

∣ = e−b ≤ 1,

and
∣

∣

∣

∣

eiz

1 + z2

∣

∣

∣

∣

≤
1

|1 + z2|
≤

1

R2 − 1

as before, and since limR→∞ R/(R2 − 1) = 0 we have

lim
R→∞

∫

CR

eiz

1 + z2
dz = 0.
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Thus we need only calculate the residues of eiz/(1+z2) in the upper half-plane. Now in the upper half-plane
this function is singular only at z = i; if we proceed in the same way we did in the previous example (we
shall give a general method for this right after this example), we see that the residue is

ei·i

2i
=

1

2ei
,

and finally by the residue theorem and the fact that
∫

CR

eiz

1+z2 dz → 0 as R → ∞, that our original integral
is

∫ +∞

−∞

eiz

1 + z2
dz = 2πi ·

1

2ei
=

π

e
.

This is already real, so that we have
∫ +∞

−∞

cosx

1 + x2
dx =

π

e
.

30. Methods for computing residues. In the previous two examples we have tacitly applied the
following result:

Suppose that f(z) has a simple pole at z = a. Then

Resaf(z) = lim
z→a

(z − a)f(z).

This is quite simple to see. Since f has a simple pole, there must be a function φ(z) which is analytic and
nonzero at a such that

f(z) =
φ(z)

z − a
.

Then, proceeding as in the two examples above, it is easy to see that Resaf(z) = φ(a); alternatively, we may
use the Cauchy integral formula (here γ is a small circle around a such that f is analytic on and within γ):

Resaf(z) =
1

2πi

∫

γ

f(z) dz =
1

2πi

∫

γ

φ(z)

z − a
dz = φ(a).

But

φ(a) = lim
z→a

φ(z) = lim
z→a

(z − a)f(z),

which establishes our result.
We may extend the above result to poles of higher order. Suppose that f has instead a pole of order m

at z = a. Then we may write

f(z) =
φ(z)

(z − a)m
,

where as before φ is analytic and nonzero at a; thus (letting as before γ denote a small circle around a within
and on which f is analytic)

Resaf(z) =
1

2πi

∫

γ

φ(z)

(z − a)m
dz =

1

(m− 1)!

dm−1

dzm−1
φ(z)

∣

∣

∣

∣

z=a

=
1

(m− 1)!
lim
z→a

dm−1

dzm−1
(z − a)mf(z).

In other words, to calculate the residue of a function f at a pole of order m, we first multiply f by (z− a)m,
differentiate m− 1 times, evaluate at a, and divide by (m − 1)!. (Note that m ≥ 1, so that m − 1 ≥ 0 and
the foregoing makes sense.) Note that this formula reduces to the previous one in the case m = 1. Note also
that to apply it we must first determine the order of the pole a.

5



MAT334, 2020. I, §30 [July 14 – 16] Computing residues Nathan Carruth

In the case that f(z) = P (z)/Q(z), as before, where P and Q have no common factors and Q has no
repeated roots, we see that every pole of f will be simple, and the residue at a pole z0 will be

lim
z→z0

(z − z0)f(z) = lim
z→z0

P (z)

Q(z)/(z − z0)
=

P (z0)

Q′(z0)
,

since Q(z0) = 0 (as z0 is a pole of f and therefore must be a zero of Q) and this allows us to write

lim
z→z0

Q(z)

z − z0
= lim

z→0

Q(z)−Q(z0)

z − z0
= Q′(z0).

Q′(z0) 6= 0 since by assumption the roots of Q are not repeated.
Let us give an example.

EXAMPLES. 1. Evaluate the integral

∫ +∞

−∞

1

(1 + x2)2
dx.

We note that the integrand, extended to the complex plane, has poles at ±i, each of order 2. We expect
that we can close the contour using a half-circle CR from R to −R in the upper half-plane, as we have done
in the other examples above (see the picture). To see that we can in fact do this, we apply the result from
the previous section: for z ∈ CR, we have

|1 + z2| ≥ R2 − 1, |1 + z2|2 ≥ (R2 − 1)2,

∣

∣

∣

∣

1

(1 + z2)2

∣

∣

∣

∣

≤
1

(R2 − 1)2
,

x

y

−R RLR

CR

i

and since R/(R2 − 1)2 clearly goes to zero as R → ∞, we have

lim
R→∞

∫

CR

1

(1 + z2)2
dz = 0.

Thus we need only calculate the residue of 1/(1 + z2)2 at i. Since i is a pole of order 2 of 1/(1 + z2)2, this
will be, since (1 + z2)2 = (z − i)2(z + i)2,

1

(2− 1)!
lim
z→i

d2−1

dz2−1
(z − i)2 ·

1

(1 + z2)2
=

d

dz

1

(z + i)2

∣

∣

∣

∣

z=i

= −
2

(z + i)3

∣

∣

∣

∣

z=i

= −
2

−8i
= −

1

4
i,

and the integral will be
∫ +∞

−∞

1

(1 + x2)2
dx = 2πi ·

(

−
1

4
i

)

=
π

2
.

(It is worth pointing out here that it is always a good idea to make sure that our final answer makes sense:
for example, here we are integrating a real-valued function, so we expect to get a real number as the result;
and it is in fact a positive real-valued function, so we expect to get a positive real number as the result, as
we have. Had we gotten a negative real number, or a complex number with a nonzero imaginary part, it
would mean we had made a mistake somewhere earlier which we would need to go back and fix.)

2. Let us evaluate the integral
∫ +∞

−∞

eikx

(1 + x2)2
dx.
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Here we clearly have the same kind of issue that we had in our example in section 29 above; namely,
whether we close the contour in the upper or the lower half-plane will depend on the sign of k. Let us first
suppose that k ≥ 0. Then if z = a+ ib is in the upper half-plane, so that b ≥ 0, then as in the example just
cited we have

eikz = e−kbeika,

which is bounded in absolute value by e−kb ≤ 1; in other words, the integrand here on the semicircle CR in
the next figure will be bounded by the same quantity as we had for 1/(1+ z2)2 in the previous example, and
the integral over CR will go to zero as R → ∞ as there. More carefully, recall that we just showed that on
CR

∣

∣

∣

∣

1

(1 + z2)2

∣

∣

∣

∣

≤
1

(R2 − 1)2
;

x

y

−R RLR

CR

C ′

R

i
−i

thus when k ≥ 0 and z ∈ CR (so that z is in the upper half-plane)

∣

∣

∣

∣

eikz

(1 + z2)2

∣

∣

∣

∣

≤
1

(R2 − 1)2

as well, and since R/(R2 − 1)2 → 0 as R → ∞, we have

lim
R→∞

∫

CR

eikz

(1 + z2)2
dz = 0

by our general results above. Thus it suffices to calculate the residue of eikz/(1 + z2)2 at the pole i, and
since this is still a pole of order 2, its residue is

1

(2− 1)!
lim
z→i

d2−1

dz2−1
(z − i)2 ·

eikz

(1 + z2)2
=

d

dz

eikz

(z + i)2

∣

∣

∣

∣

z=i

=
ikeikz

(z + i)2

∣

∣

∣

∣

z=i

− 2
eikz

(z + i)3

∣

∣

∣

∣

z=i

=
ike−k

−4
− 2

e−k

−8i
= −ie−k

(

1

4
+

1

4
k

)

,

so that the integral for k ≥ 0 is

∫ +∞

−∞

eikx

(1 + x2)2
dx = 2πi · (−i)e−k

(

1

4
+

1

4
k

)

=
π

2
e−k (k + 1) .

Now suppose that k ≤ 0, and consider the curve C′
R in the above figure. If z = a+ bi ∈ C′

R, then b ≤ 0, so

eikz = e−kbeika

will still be bounded by 1 in absolute value since k ≤ 0 and b ≤ 0 implies that kb ≥ 0, i.e., −kb ≤ 0. The
exact same logic used above now shows that

lim
R→∞

∫

C′

R

eikz

(1 + z2)2
dz = 0,
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and we are left with calculating the residue at −i. This is very similar to calculating the residue at i; it is
equal to

d

dz

eikz

(z − i)2

∣

∣

∣

∣

z=−i

=
ikeikz

(z − i)2

∣

∣

∣

∣

z=−i

− 2
eikz

(z − i)3

∣

∣

∣

∣

z=−i

=
ikek

−4
− 2

ek

8i
= iek

(

1

4
−

1

4
k

)

.

Before we can determine the value of the integral, though, there is one additional wrinkle we have not yet
mentioned: note that the curve LR +CR was oriented counterclockwise, as required by the Cauchy integral
formula; but LR + C′

R is oriented clockwise, which means that we must put in an extra minus sign when
applying the Cauchy integral formula. More carefully, we have

∫

LR

eikz

(1 + z2)2
dz +

∫

C′

R

eikz

(1 + z2)2
dz = −2πiRes−i

eikz

(1 + z2)2
;

thus, finally, our integral is

∫ +∞

−∞

eikx

(1 + x2)2
dx = −2πi ·

[

iek
(

1

4
−

1

4
k

)]

=
π

2
ek (1− k) .

Pulling all of this together, then, we have finally that

∫ +∞

−∞

eikx

(1 + x2)2
dx =

π

2
e−|k|(1 + |k|),

since |k| = k when k ≥ 0 and |k| = −k when k ≤ 0.
For those who know something about Fourier transforms, it is interesting to note the following about the

differentiability of this function. If we expand the exponential out in a Taylor series, we see that (dropping
the π/2 coefficient for convenience)

e−|k|(1 + |k|) =

(

1− |k|+
1

2
|k|2 −

1

6
|k|3 + · · ·

)

(1 + |k|)

= 1− |k|2 +
1

2
|k|2 +

1

2
|k|3 −

1

6
|k|3 + · · · .

Now a little thought should convince you that |k|n has n derivatives everywhere and n + 1 derivatives
everywhere except 0, where the n + 1th derivative is discontinuous. This shows that e−|k|(1 + |k|) has 3
continuous derivatives, which agrees nicely with the fact that the function 1/(1 + x2)2 has 3 moments in L2

(i.e., that the integral of the square of xn/(1 + x2)2 over all of R1 will be finite for n ≤ 3).
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