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Summary:
• We derive the Cauchy integral formula from the Cauchy integral theorem for non-simply connected

regions.
• We then proceed to show how it may be applied to derive Taylor and Laurent series expansions, and

give a simple example.
(Goursat, §§33, 35, 37.)

24. Cauchy integral formula. Suppose that a function f is analytic everywhere inside a simple
closed curve C, and continuous on C. Then from our comment at the end of §21 above it follows that the
Cauchy integral theorem applies and we have ∫

C

f(z) dz = 0.

Now let us fix some point z0 in the interior of the curve C. Then the function

f(z)

z − z0
is clearly analytic everywhere inside C except at the point z0. If we let C ′ be a small circle centred at z0
and contained in the interior of C, say with radius r > 0, oriented counterclockwise, then by the discussion
and result in §23 above we have ∫

C

f(z)

z − z0
dz =

∫
C′

f(z)

z − z0
dz;

in other words, we are able to replace the (fairly arbitrary and possibly very complicated) curve C by the
(presumably much simpler) curve C ′. Now we can make C ′ as small as we like, and the above result will
still hold, since z = z0 is the only point inside C at which the integrand f(z)/(z − z0) is not analytic. Now
f is analytic at z0, so near z0 we can write as we have before

f(z) = f(z0) + f ′(z0)(z − z0) + ε(z − z0)(z − z0),

where ε(z − z0)→ 0 as z → z0. Thus we may write∫
C′

f(z)

z − z0
dz =

∫
C′

f(z)− f(z0)

z − z0
+
f(z0)

z − z0
dz

=

∫
C′
f ′(z0) + ε(z − z0) +

f(z0)

z − z0
dz. (1)

The integral of f ′(z0) over C ′ is clearly zero since f ′(z0) is a constant; we shall show in a moment that the
integral of ε(z − z0) over C ′ must be zero also. Thus we consider the integral∫

C′

f(z0)

z − z0
dz.

Now C ′ is a circle of radius r centred at z0, and can be parameterised as

z(t) = z0 + reit, t ∈ [0, 2π],

whence the integral above becomes1∫ 2π

0

f(z0)

reit
rieit dt =

∫ 2π

0

if(z0) = 2πif(z0).

1 Note that this is not really just a ‘substitution’ as used in elementary calculus; most obviously, substi-
tution in elementary calculus was only shown for integrals of functions of a real variable, and here we are
dealing with functions of a complex variable. More substantively, though, the process by which we reduce a
contour integral to a definite integral in terms of a parameterisation of the curve follows from the definition
of the contour integral as we showed above. The formal similarity is however obvious and worth noting as
an aid to memory, though it should be borne in mind that the two processes are not identical.
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Note that this does not depend on the radius r. Now, finally, consider the integral∫
C′
ε(z − z0) dz.

To evaluate it, note that since ε(z − z0) → 0 as z → z0, by taking r sufficiently small we may assume that
|ε(z − z0)| < 1 on C ′; thus the absolute value of the above integral satisfies∣∣∣∣∫

C′
ε(z − z0) dz

∣∣∣∣ ≤ 2πr;

thus if we take the limit as r → 0 this integral must vanish. Now if we investigate equation (1), we find that∫
C′ ε(z − z0) dz is the only term in the whole equation which could depend on r; thus it can’t depend on r

either, so since its limit as r → 0 must vanish, it must actually be zero for all r (all r sufficiently small that
C ′ lies entirely inside C, anyway!). Putting all this together, we obtain finally∫

C

f(z)

z − z0
dz = 2πif(z0),

or

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz. (2)

This is called the Cauchy integral formula. Thus the Cauchy integral theorem tells us that the integral of
an analytic function around a closed curve is 0, while the Cauchy integral formula gives us a formula for
calculating the value of an analytic function inside some curve in terms of an integral around that curve.

Let us expand on this last point for a bit. In equation (2), z0 is any point inside the curve C. Note
though that the right-hand side of the equation depends only on the values of f on the curve C! In other
words, what we have here is a formula which will give us the value of a function at any point inside a curve,
given only its values on that curve. In the one-variable case, this would be equivalent to saying that the
values of a function at the endpoints of an interval determine the function everywhere inside the integral,
a claim so patently false as to be silly. For those of you who have seen some partial differential equations,
this property should be reminiscent of the solution to boundary-value problems, particularly for Laplace’s
equation: there, in fact, if one has a Green’s function, one can actually produce an integral formula quite
reminiscent of (3) for the value of the solution inside a region given only its values on the boundary of the
region.2

Let us rewrite equation (3) as

f(z) =
1

2πi

∫
C

f(z′)

z′ − z
dz′, (3′)

to emphasise that what we have on the left-hand side is actually a full function rather than a single value.
Now it can be shown (see Goursat, §33) that we can differentiate the right-hand side by taking the derivative
under the integral sign. In other words, since the point z in (3’) must lie within C, it cannot lie on C, so
that the quantity z′ in the integrand is never equal to z and we may therefore write for every z′ on C

d

dz

1

z′ − z
=

1

(z′ − z)2
,

by the power rule and chain rule for differentiating functions of a complex variable. (Note that, while in
the integrand we view 1/(z′ − z) as a function of z′, with z fixed, here we view it as a function of z with z′

fixed.) Now assuming that we can differentiate under the integral sign, we may write

f ′(z) =
d

dz

1

2πi

∫
C

f(z′)

z′ − z
dz′ =

1

2πi

∫
C

f(z′)

(z′ − z)2
dz′.

2 Note that there are some connections between these last two sentences. A harmonic function of a single
variable would be an f which satisfied the equation f ′′ = 0; the only solutions to this equation are functions
f(x) = ax + b, where a and b are constants – and a little thought shows that these functions actually do
satisfy the property just stated: in other words, they are determined by their values on the endpoints of any
interval! The class of harmonic functions on the line, though, is too small to be very interesting.
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Assuming that we may again differentiate under the integral sign, we see that the right-hand side also has
a derivative and in fact, since

d

dz

1

(z′ − z)2
=

2

(z′ − z)3
,

this derivative is
d

dz

1

2πi

∫
C

f(z′)

(z′ − z)2
dz′ =

1

2πi

∫
C

2f(z′)

(z′ − z)3
dz′.

Continuing in the same way, then, we may evidently write

dn

dzn
1

2πi

∫
C

f(z′)

z′ − z
dz′ =

1

2πi

∫
C

n!f(z′)

(z′ − z)n+1
dz′.

Since the integral we are differentiating above is equal to f(z), this shows that f(z) has arbitrarily many
derivatives, as we have often claimed and never actually proved until now. Note that the only assumption
we needed to make was that f be analytic on a certain region; we did not need to assume that the derivative
of f was continuous, or that the real and imaginary parts of f had continuous partial derivatives. These
results now follow as a consequence, since the derivative of f must itself have a derivative, and hence must
be analytic, hence continuous, showing that the real and imaginary parts of f do indeed have continuous
partial derivatives.

To sum up, then, we have, for any nonnegative integer n, the Cauchy integral formula

f (n)(z) =
1

2πi

∫
C

n!f(z′)

(z′ − z)n+1
dz′.

Let us give a couple examples.

EXAMPLES. If f(z) = a is some constant, then we have

a = f(z) =
1

2πi

∫
C

a

z′ − z
dz′,

i.e., that if z is any point inside the simple closed curve C, then
∫
C

1
z′−z dz

′ = 2πi; this is a result worth

remembering by itself. Now since f is constant, we must have f ′(z) = 0, and hence f (n)(z) = 0 for all n ≥ 1;
the above formula then gives

0 = f (n)(z) =
1

2πi

∫
C

a

(z′ − z)n+1
dz′,

which gives ∫
C

1

(z′ − z)n+1
dz′ = 0

whenever z′ is inside the simple closed curve C and n ≥ 1. Note that this does not follow from the Cauchy
integral theorem since the integrand here is not analytic within the curve C. Thus we have an extension of
the Cauchy integral theorem in this case. Again, this result is worth remembering all by itself.

25. Taylor series. Now that we know that any analytic function must have arbitrary many derivatives,
we know that we can formally write out its Taylor expansion

∞∑
n=0

1

n!
f (n)(a)(z − a)n, (4)

where a is any point in the region on which f is analytic. The existence of the derivatives of f , though, does
not prove that this series actually converges to f anywhere except at z = a (where it does trivially since
by convention the series above is simply f(a) when z = a). Here we shall derive the Taylor expansion by a
different method, namely as an application of the Cauchy integral formula. Our exposition closely follows
that of Goursat, §35.
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Since the series in (4), if it converges anywhere except at z = a, must converge on a disk centred at a,
let us take our curve C to be a circle of radius R centred at a. Now for any z inside C we have the Cauchy
integral formula for f :

f(z) =
1

2πi

∫
C

f(z′)

z′ − z
dz′.

We shall show how to expand 1
z′−z in a power series. We have

1

z′ − z
=

1

(z′ − a)− (z − a)
=

1

z′ − a
1

1− z−a
z′−a

; (5)

factoring out z′ − a like this is legitimate since here we are only concerned with the expression 1/(z′ − z)
when z′ is a point on the curve C, and the point a is inside the curve. In fact, in this case, since the curve
C is a circle of radius R centred at a, we actually have |z′ − a| = R. Suppose that |z − a| = r; since z also
lies inside C, we must have r < R. Now we would like to expand the second term in (5) above in a series.
We shall augment our treatment in the lecture by providing a careful proof. (Our treatment in the lecture
corresponded to taking N →∞ immediately and dropping the remainder terms, namely those terms coming
from wN+1 below.) Recall the geometric series

N∑
n=0

wn =
1− wN+1

1− w
,

which is valid for any complex number w 6= 1;3 from this we have

1

1− w
=

N∑
n=0

wn +
wN+1

1− w
.

In our case, this gives from (5)

1

z′ − z
=

1

z′ − a

[
N∑
n=0

(
z − a
z′ − a

)n
+

1

1− z−a
z′−a

(
z − a
z′ − a

)N+1
]

=

N∑
n=0

(z − a)n

(z′ − a)n+1
+

1

z′ − z

(
z − a
z′ − a

)N+1

.

Substituting this back in to (4), we see that

f(z) =
1

2πi

∫
C

N∑
n=0

(z − a)n
f(z′)

(z′ − a)n+1
+
f(z′)

z′ − z

(
z − a
z′ − a

)N+1

dz′

=
1

2πi

[
N∑
n=0

(z − a)n
∫
C

f(z′)

(z′ − a)n+1
dz′

]
+

1

2πi

∫
C

f(z′)

z′ − z

(
z − a
z′ − a

)N+1

dz′. (6)

Let us consider the last term above. Since f is continuous on C, it must be bounded on C; let M > 0 be
such that |f(z′)| < M when z′ is on the curve C. Now since |z′ − a| = R and |z − a| = r < R, we see that
|z′ − z| ≥ R− r (this is just the triangle inequality |z′ − a| ≤ |z′ − z|+ |z − a|); thus∣∣∣∣ 1

z′ − z

∣∣∣∣ =
1

|z′ − z|
≤ 1

R− r
.

3 In fact, this formula is valid in any ring as long as 1 − w is invertible in that ring; i.e., it is a purely
algebraic result.
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Further, ∣∣∣∣ z − az′ − a

∣∣∣∣N+1

=
( r
R

)N+1

.

Thus the absolute value of the second term can be bounded as follows:∣∣∣∣∣ 1

2πi

∫
C

f(z′)

z′ − z

(
z − a
z′ − a

)N+1

dz′

∣∣∣∣∣ ≤ 1

2π
· 2πR ·M · 1

R− r
·
( r
R

)N+1

=
MR

1−R

( r
R

)N+1

.

Since r < R, this quantity must go to zero in the limit as N →∞; substituting this into (6) gives

1

2πi

[ ∞∑
n=0

(z − a)n
∫
C

f(z′)

(z′ − a)n+1
dz′

]
= f(z)− lim

N→∞

1

2πi

∫
C

f(z′)

z′ − z

(
z − a
z′ − a

)N+1

dz′ = f(z),

or to write it out more clearly,

f(z) =

∞∑
n=0

(z − a)n
1

2πi

∫
C

f(z′)

(z′ − a)n+1
dz′.

But by the Cauchy integral formula for f (n), the integral here is simply 1
n!f

(n)(a), and we have thus proven
the Taylor series expansion for f ,

f(z) =

∞∑
n=0

1

n!
f (n)(a)(z − a)n,

which will be valid on any disk centred at a on which f is analytic. Note that the above argument shows
quite rigorously both that the above series converges and that it converges to f(z), given only the general
Cauchy integral formula. So if you had never seen a proof that a Taylor series converges to the function it
comes from, now you have!

26. Laurent series. It turns out that for many applications it is important to be able to treat
functions which have varies kinds of singularities, i.e., which fail to be analytic at various points or regions
of the plane. While such functions will still clearly have Taylor series expansions on any disk not containing
any of these singularities, it turns out to be useful to consider a more general type of expansion which will
represent the function on a region surrounding the singularities. These are called Laurent series.

Thus suppose that we have a function f which is analytic on an annulus; specifically, suppose that C
and C ′ are two circles, centred at a point a, with radii R and R′ respectively, where R > R′ (so that C ′ is
the inner circle), and both oriented counterclockwise, and that f is analytic on the region between C and
C ′. We shall extract a series expansion for f from the general Cauchy integral theorem in the same way we
found the Cauchy integral formula and then used it to extract the Taylor expansion for f in the previous
two sections. Our first step is thus to produce a generalisation of the Cauchy integral formula to the present
case. The generalisation is not at all hard. Let z be any point in the annulus between C and C ′, and let
γ be a small circle centred at z and with radius r, oriented counterclockwise and entirely contained in the
region between C and C ′. Then by the general Cauchy integral theorem in §23, we have∫

C

f(z′)

z′ − z
dz′ =

∫
C′

f(z′)

z′ − z
dz′ +

∫
γ

f(z′)

z′ − z
dz′.

Now since γ is entirely contained in the region between C and C ′, f must be analytic everywhere on and
inside γ, which means that by the usual Cauchy integral formula the second integral above is just∫

γ

f(z′)

z′ − z
dz′ = 2πif(z),

and the above formula gives

f(z) =
1

2πi

∫
C

f(z′)

z′ − z
dz′ − 1

2πi

∫
C′

f(z′)

z′ − z
dz′;
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in other words, we can generalise the Cauchy integral formula to the case of a function analytic between
two curves if we integrate over both of them with the correct orientation (equivalently, including the correct
minus sign). Evidently we could also extend the formula to a situation where a function was analytic on a
region with multiple holes, but we do not need that here.

Now the first integral above can be treated exactly as before, giving ultimately

∞∑
n=0

(z − a)n
1

2πi

∫
C

f(z′)

(z′ − a)n+1
dz′,

but note that in this case we cannot replace the integral with f (n)(a)/n!, since f is not known to be analytic
at a (f might not even be defined at a, for that matter!). The second integral can be treated by slightly
adapting this method. Since in the second integral the point z′ lies on C ′, letting |z − a| = r we have
|z′ − a| = R′ < r; thus we may write

− 1

z′ − z
=

1

z − z′
=

1

(z − a)− (z′ − a)
=

1

z − a
1

1− z′−a
z−a

;

thus we have an analogue to formula (6) but with z′ and z interchanged except inside f :

− 1

2πi

∫
C′

f(z′)

z′ − z
dz =

1

2πi

[
N∑
n=0

(z′ − a)n
∫
C′

f(z′)

(z − a)n+1
dz

]
+

1

2πi

∫
C′

f(z′)

z − z′

(
z′ − a
z − a

)N+1

dz

=
1

2πi

[
N∑
n=0

1

(z − a)n+1

∫
C′
f(z′)(z′ − a)n dz′

]
+

1

2πi

∫
C′

f(z′)

z − z′

(
z′ − a
z − a

)N+1

dz′.

Since we now have, as just noted, |z′ − a| = R′ < r = |z − a|, the argument given above shows that the
second integral vanishes in the limit as N →∞, and we obtain the series expansion

− 1

2πi

∫
C′

f(z′)

z′ − z
dz =

∞∑
n=0

1

(z − a)n+1

∫
C′

(z′ − a)nf(z′) dz′.

Thus, finally, we find that f(z) can be expressed as the sum of two series:

f(z) =

∞∑
n=0

(z − a)n
1

2πi

∫
C′

f(z′)

(z′ − a)n+1
dz′ +

∞∑
n=0

1

(z − a)n+1

∫
C′

(z′ − a)nf(z′) dz′.

To simplify this a bit, let us make the definitions

an =
1

2πi

∫
C

f(z′)

(z′ − a)n+1
dz′ (n ≥ 0), bn =

1

2πi

∫
C′

(z′ − a)n−1f(z′) dz′, (n ≥ 1)

where in b1 we have (z′ − a)0 = 1 since z′ 6= a, as z′ is on C ′ and a is inside C ′. Then we can write

f(z) =

∞∑
n=0

an(z − a)n +

∞∑
n=1

bn
1

(z − a)n
;

in other words, whereas in the previous section, when f was analytic everywhere inside the circle C and we
could write it as a sum of powers of z− a, in the case when f is analytic only on an annular region, we must
write f as an infinite series of powers of z − a and 1/(z − a). This is reasonable since 1/(z − a) will not be
analytic at z = a; but note that f may be singular at other points inside C ′ than just a.
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Before ending with an example, it is probably worthwhile to step back a bit and consider what be
the importance of the results we have derived in the last three sections. As a concise summary, and for
comparison, these are

f(z) =
1

2πi

∫
C

f(z′)

z′ − z
dz′,

f(z) =

∞∑
n=0

(z − a)n
1

2πi

∫
C

f(z′)

(z′ − a)n+1
dz′,

f(z) =

∞∑
n=0

(z − a)n
1

2πi

∫
C′

f(z′)

(z′ − a)n+1
dz′ +

∞∑
n=0

1

(z − a)n+1

∫
C′

(z′ − a)nf(z′) dz′,

where f is assumed to be analytic within the arbitrary simple closed curve C in the first line, within the
circle C in the second, and between the circles C ′ and C in the third. All three of these are representation
formulæ; i.e., they give f(z) as a special type of expression (an integral in the first case, series in the latter
two). One of the uses of formulæof this sort is that they give us concrete ways of writing out f , which allow
us to perform certain manipulations which would be much harder without them. Another, slightly more
abstract, perspective is that these formulægive us a way of breaking f down into other data, which may
encode the information we need for a specific problem in a more convenient way than the map z 7→ f(z)
all by itself. For example, if we are only interested in knowing f(1), then the simpler the formula for f the
better; but if we are interested in knowing

∫
C′ f(z) dz, then the simpler the expression for b1 the better.

On the other hand, these formulæare so general that it will require a fair bit more work before we get
to the concrete applications in which they are so powerful. Thus unfortunately we shall have to stop at the
vague indications in the previous paragraph for the time being, with a promise to say more about it later.

Let us do an example.

EXAMPLE. Let p be a positive integer, let a ∈ C, and define the function f on C\{a} by

f(z) =
1

(z − a)p
.

Then f is analytic everywhere on the plane except at z = a. (This kind of singularity, incidentally, is called
a pole of order p; we shall study these systematically later.) Thus we expect to be able to expand f as a
Laurent series. Actually it is quite obvious that f(z) as given is a (single-term) Laurent series, so actually
we already know this without any calculation; but let us work out the integrals anyway to see what happens.
In this case we may take C and C ′ to be any circles centred at a, say with radii R and R′, where the only
condition on these radii is that R > R′. We have first of all

an =
1

2πi

∫
C

f(z′)

(z′ − a)n+1
dz′ =

1

2πi

∫
C

1

(z′ − a)n+p+1
;

now n ≥ 0, while p ≥ 1, so n + p ≥ 1 and by the example we did at the end of §24 above we must have
an = 0. Similarly,

bn =
1

2πi

∫
C′

(z′ − a)n−1f(z′) dz′ =
1

2πi

∫
C′

(z′ − a)n−1−p dz′;

if 1 ≤ n < p (note that if p = 1 there will not be any such n, but that doesn’t matter) then we must have
n−1−p < −1, so this integral is zero for the same reason. Now if instead we have n > p, then n−1−p ≥ 0,
so the integrand is actually analytic, and by the Cauchy integral theorem we have again bn = 0. The only
case left is n = p; in this case we have

bp =
1

2πi

∫
C′

1

z′ − a
dz′ = 1,

by the first example at the end of §24 above. Thus we can write

f(z) =

∞∑
n=0

an(z − a)n +

∞∑
n=1

bn(z − a)−n,
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where an = 0 for all n and bn = 0 except for n = p, where bp = 1. The series on the left thus trivially give
1

(z′−a)p , as they should.

For those of you who have seen orthogonal bases in vector spaces with an inner product, it is worth
noting the formal similarity between the above procedure and that of determining components along the
basis vectors in an orthonormal basis. We are not going to make this formal similarity precise, but it is
worth noting anyway.
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