
MAT334, 2020. I, §20 [June 2 – 4] A few points Nathan Carruth

Summary:
• We fill in some holes in the previous exposition.
• We then proceed to give a proof of the Cauchy integral theorem which does not require continuity of

the partial derivatives of the real and imaginary parts of the function.
• We show that analytic functions have antiderivatives, at least on simply-connected regions, which are

also analytic, and discuss a connection with branch cuts.
• Finally, we discuss an extension of the Cauchy integral theorem to regions which are not simply con-

nected.
(Goursat, §§28 – 31)

20. A few points from previous material. Recall that we have shown that, if m is a positive
integer, then the power rule for differentiation on the real line applies also to derivatives in the complex
plane:

d

dz
zm = mzm−1.

The same result holds true for any complex exponent m, as long as we interpret the left- and right-hand
sides appropriately. To see this, recall that if m is any complex number, we define the exponential zm by

zm = emLog z,

where Log z represents the full multivalued complex logarithm of the complex number z. As we discussed
when we first gave this definition, the right-hand side is multivalued since Log is. Suppose now that we take
a particular branch of Log, say by requiring the angle to lie between (θ0, θ0 + 2π) for some θ0 ∈ R.1 For this
particular branch, as in general,

d

dz
Log z =

1

z
,

and by the chain rule we have

d

dz
zm =

d

dz
emLog z = emLog z d

dz
mLog z = memLog z 1

z
= memLog z−Log z = me(m−1)Log z = mzm−1,

where zm−1 is taken using the same branch of Log as zm.2 Thus we do indeed have

d

dz
zm = mzm−1,

as long as the powers on both sides are computed using the same branch of the logarithm.
Since the functions z 7→ zm, where m is any nonzero integer, are all single-valued, the result above

holds without any conditions for (nonzero) integer exponents. It holds for m = 0 if we define z0 to be 1
everywhere, including at 0. (Recall that 00 is not defined.)

We now wish to point out another version of the chain rule involving complex numbers. Recall that, if
f and g are two complex-valued functions of a complex variable, both of which are analytic, then f ◦ g is
also analytic where it is defined, and we have

d

dz
(f ◦ g) = f ′(g(z))g′(z).

Now suppose that f is an analytic function of a complex variable, and that γ : [a, b]→ C is a smooth curve.
Then we have also

d

dt
(f ◦ γ) = f ′(γ(t))γ′(t).

1 It is worth noting here that, although we specify a branch cut for Log and for the root functions by
specifying an interval for the angle θ, a branch cut is a cut of the entire plane, not just the unit circle.

2 Note that it is always valid to write z = eLog z and 1
z = e−Log z, regardless of the branch of Log we

are using (or even if we are not taking a branch at all). The first follows from the definition of Log as the
inverse function of exp, and the second follows from the first by laws of exponents.
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This can be shown in the same way that we showed the original chain rule above; briefly, we may write

f(γ(t+ h)) = f(γ(t) + γ′(t)h+ o(h)) = f(γ(t)) + f ′(γ(t))(γ′(t)h+ o(h)) + o(γ′(t)h+ o(h)),

so if we are willing to accept that o(γ′(t)h+ o(h)) is also o(h), this becomes

f(γ(t+ h)) = f(γ(t)) + f ′(γ(t))γ′(t)h+ o(h),

from which the result follows by computing the difference quotient and taking a limit. (Here, again, by o(h)
we mean any function – of a real variable in this case – which satisfies limh→0 o(h)/h = 0.)

(It is worth noting the difference between these two chain rules. In the first one, both f and g were
functions of a complex variable, while in the second one f is a function of a complex variable but γ is a
function only of a real variable. We have been told many times – and will shortly begin to see for ourselves!
– that the requirement that a function of a complex variable have a derivative is far more restrictive than
the requirement that a function of a real variable have a derivative: note that the difference is between the
domains, and not the ranges. In other words, the difference is between a function defined on the complex
numbers, and a function defined on the real numbers, and not a function taking values in the complex
numbers and a function taking values in the real numbers.)

21. The Cauchy integral theorem, full proof. Recall that in section 19 above we showed that,
if f is an analytic function on a simply-connected region, and C is any simple (non self-intersecting) closed
curve contained in that region, then if f has continuous first-order partial derivatives on the region,∫

C

f(z) dz = 0.

We will now show that this result holds without the assumption of continuous first-order partial derivatives,
which we will actually be able ultimately (next week) to derive as a consequence. Our treatment follows
very closely that given in Goursat, §28.

Thus, let f be an analytic function on some region, and let C be any simple closed curve in that region
such that f is analytic everywhere on the interior of C. Let U denote the region bounded by C, which
is necessarily simply-connected; then by assumption f is analytic on U and on C. Now suppose that we
subdivide U into squares and partial squares by drawing a square grid across it (see Figure 13 in Goursat
for an example of what we mean by this). We let γk denote the boundary curve – oriented counterclockwise
– of the kth full square, and γ′j denote the boundary curve – again oriented counterclockwise – of the jth
partial square. Then we claim that

∑
k

∫
γk

f(z) dz +
∑
j

∫
γ′
j

f(z) dz =

∫
C

f(z) dz.

This is clear after a bit of thought, since the sides of the grid squares appear exactly twice, and in opposite
directions, in the sum of integrals on the left, and hence cancel, meaning that we are left only with the
integral around the boundary curve, i.e., the right-hand side.

We now claim that each of the integrals in the above sums is small. To see this, note that since the
functions z 7→ a and z 7→ a(z − z0) are analytic with continuous partial derivatives, the result from section
19 can be applied to show that around any closed curve they integrate to zero. (Another way of showing
this, without applying Green’s theorem – which we did in section 19 – is outlined in section 28 of Goursat.)
Now consider

∫
γk
f(z) dz, and let z0 be some point either inside or on γk. Then since f is analytic on U , we

can write, for any point z on γk,

f(z) = f(z0) + f ′(z0)(z − z0) + ε(z − z0)(z − z0),

where ε(z − z0) → 0 as z → z − z0. (In o notation, ε(z − z0) = o(z − z0)/(z − z0), but we stick with this
notation here for consistency with the lecture.) Now the functions z 7→ az and z 7→ a(z−z1), where a, z1 ∈ C
are any two constant complex numbers, are both analytic with continuous first-order partials (this is entirely
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trivial!); thus the result from Section 19 shows that both integrate to zero around any simple closed curve.
Hence we may write∫

γk

f(z) dz =

∫
γk

f(z0) + f ′(z0)(z − z0) + ε(z − z0)(z − z0) dz =

∫
γk

ε(z − z0)(z − z0) dz,

and similarly, letting z′0 denote some point within or on γ′j , and ε′(z − z′0) the corresponding function
analogous to ε(z − z0), ∫

γ′
j

f(z) dz =

∫
γ′
j

ε′(z − z′0)(z − z′0) dz.

Now recall that, if we have a curve γ of length ` and an analytic function f which is bounded by M on γ,
then we have the bound ∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ `M.

Let us apply this to the two integrals above. Suppose that ε(z− z0) ≤ η on γk, and that γk is a square with
side lengths `k; then the total length of γk is 4`k, and moreover the function z − z0 on γk is bounded by
`k
√

2 (since this is the length of a diagonal of γk and that is the farthest apart any two points can be on a
square). Thus we may write ∣∣∣∣∫

γk

f(z) dz

∣∣∣∣ ≤ 4`k · η`k
√

2 = 4
√

2`2kη = 4
√

2Akη,

where Ak = `2k is the area enclosed by γk. Similarly, suppose that ε′(z − z′0) is bounded by some number η′

on γ′j . Now γ′j consists of parts of four sides of a square, together with some portion of C; thus, if we let `′j
denote its side length and λj the length of that portion of C, then the length of γ′j is bounded by 4`′j + λj .
(This may be a very bad upper bound, since we may only have a small portion of the square sides, but the
point is that it is an upper bound, and as we shall see later, it is a sufficiently good upper bound.) Now
because we have decomposed the region U along a square grid, the region enclosed by γ′j is a portion of a
square, i.e., it is a region entirely contained in one of these squares; thus as before the function z − z′0 on γ′j
is bounded by `′j

√
2 and we may write∣∣∣∣∣

∫
γ′
j

f(z) dz

∣∣∣∣∣ ≤ (4`′j + λj) · η′`′j
√

2 = (4A′j + `′jλj)
√

2η′.

Now we come to a technical point which is addressed in §29 of Goursat but which we shall just touch on
without giving a formal proof. We know that as z → z0, ε(z − z0) → 0, and similarly that ε′(z − z′0) → 0
as z → z′0. Similar relations will be true in all of the other squares and partial squares into which we have
subdivided U .3 This means that, by taking each individual square small, we can make the quantities η and
η′ small. We claim that by taking the entire grid arbitrarily fine, i.e., to have squares and partial squares
which are arbitrarily small, all of the functions ε(z− z0) and ε′(z− z0), for all indices k and j (respectively),
can simultaneously be made arbitrarily small. This does not automatically follow from the foregoing, but
as it does seem reasonable, and the proof is slightly technical, we shall assume its truth and see how it can
be used to derive the result. (As mentioned, an explanation of this result is given in §29 of Goursat for
those who are interested.) Thus we assume that, for any η0 > 0, by taking the grid sufficiently fine, we may
assume that for all k and j, we may take η, η′ < η0. Now consider such a sufficiently fine grid, and let L be
the side length of the squares in the grid; then we may write∣∣∣∣∣∑

k

∫
γk

f(z) dz

∣∣∣∣∣ ≤∑
k

∣∣∣∣∫
γk

f(z) dz

∣∣∣∣ ≤ 4
√

2η0
∑
k

Ak ≤ 4
√

2η0A,

3 Note that the points z0 and z′0 actually depend on the indices k and j, respectively, but we have chosen
not to indicate this in our notation just for simplicity.
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where A denotes the area of some circle completely containing U , and such that all squares in the grid which
intersect U are completely contained in that circle; similarly, letting λ denote the length of the curve C,∣∣∣∣∣∣

∑
j

∫
γ′
j

f(z) dz

∣∣∣∣∣∣ ≤
∑
j

∣∣∣∣∣
∫
γ′
j

f(z) dz

∣∣∣∣∣ ≤ √2

4
∑
j

A′j + L
∑
j

λj

 η0
≤
√

2(4A+ Lλ)η0.

Thus, finally, we have∣∣∣∣∫
C

f(z) dz

∣∣∣∣ ≤ (4
√

2A+ 4
√

2A+
√

2Lλ)η0 = (8
√

2A+ L
√

2λ)η0,

where η0 is an arbitrary positive number. Now if we take any grid finer than the one we just considered,
clearly L will decrease, while we can use the same A as before; in other words, if η′0 < η0 and we consider
any grid fine enough to have η, η′ < η′0, we may still write∣∣∣∣∫

C

f(z) dz

∣∣∣∣ ≤ (8
√

2A+ L
√

2λ)η′0,

where A and L have the same values as they did before. By taking η′0 arbitrarily small, we see that the
left-hand side must be arbitrarily small; since it does not depend on the grid, or η′0, it must actually be zero.
This proves that ∫

C

f(z) dz = 0,

as claimed.
In the above we have assumed that the function f was defined and analytic on a larger region completely

containing the curve C and its interior. It turns out that one only need assume f to be analytic on the
interior of C and continuous up to the boundary; a brief discussion of this is given in the footnote in Goursat,
pp. 48 – 49 (of the typescript; p. 71 of the original).

22. Antiderivatives and branch cuts. Recall that in multivariable calculus we learned that a
vector field F which is conservative, in the sense that its integral around any closed curve is zero, has a
potential function, i.e., that there is a function f such that F = ∇f . Moreover, f can be constructed as

f(x, y) =

∫ (x,y)

(x0,y0)

F · dr,

where (x0, y0) is any fixed point, and the line integral does not depend on the choice of curve from (x0, y0)
to (x, y) since F is conservative. We now show a similar result in the case of analytic functions of a complex
variable, though as usual the import is quite a bit deeper.

Thus suppose that f is a function analytic on a simply-connected region, pick some point z0 in that
region, and define a function

F (z) =

∫ z

z0

f(z′) dz′.

Let us see in what sense this formula defines a function. Recall that a function consists of three things: a
domain, a range, and a rule giving an element of the range for any element of the domain. Here the domain
can clearly be taken to be the simply-connected region on which f is analytic, and as usual we don’t really
worry about the range (F will certainly be in C, at any rate). Thus we only need to consider in what sense
the function above defines a rule which gives a complex number given any complex number in its domain.
In order to evaluate the integral, we need to choose a particular path γ from z0 to z. Suppose that γ1 and
γ2 are two distinct paths from z0 to z. If γ1 and γ2 have no intersection points other than their endpoints z0
and z, then by running γ1 forwards and γ2 backwards we obtain a simple closed curve; if we call it γ, then
we have ∫

γ

f(z) dz =

∫
γ1

f(z) dz −
∫
γ2

f(z) dz;
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but by the Cauchy integral theorem, the left-hand side is zero, so that
∫
γ1
f(z) dz =

∫
γ2
f(z) dz and the

integral evidently does not depend on the choice of curve in this case. It can be shown that this holds true
even if the two curves have other intersection points; thus in the situation we are considering here, F (z)
depends only on the endpoints z and z0, and not on the curve chosen from z0 to z. It therefore does indeed
give a single-valued function on the region.

Let us see whether we can compute its derivative. Thus we consider the quotient [F (z + h)− F (z)]/h.
Now by choosing the curve used to calculate F (z + h) so that it passes through z, we may write

F (z + h)− F (z)

h
=

1

h

∫ z+h

z

f(z′) dz′.

Now we note that
∫ z+h
z

dz′ = h, just as in elementary calculus on the real line (this can be shown by
parameterising the line from z to z + h, for example); thus this last expression is equal to

1

h

∫ z+h

z

f(z′)− f(z) dz′.

But now if h is very small, f(z′)− f(z) will be very small for all points on the straight line from z to z + h,
which means that also |f(z′)− f(z)| will also be very small there; if η is any upper bound on this quantity,
then we may write ∣∣∣∣∣ 1h

∫ z+h

z

f(z′)− f(z) dz′

∣∣∣∣∣ ≤ 1

|h|
|h|η = η,

which means that by taking h sufficiently small, the above quantity must be less than η. But if we unravel
everything, this means that the limit

lim
h→0

F (z + h)− F (z)

h
− f(z)

must be zero, which means that F is analytic and F ′(z) = f(z), as we might have expected.
It is worth noting that, if z1 and z2 are any two complex numbers in the region above, then by taking

the curve from z0 to z2 to pass through z1, we may write∫ z2

z1

f(z′) dz′ =

∫ z2

z0

f(z′) dz′ −
∫ z1

z0

f(z′) dz′ = F (z2)− F (z1),

which shows that the fundamental theorem of calculus is true in this case as well.
Let us now consider what could have gone wrong if the region on which f was known to be analytic

had not been simply connected. For the kinds of regions we are interested in here (essentially, open sets in
the plane), the notion of ‘simply connected’ is a global notion, in the sense that it is in general a property of
the entire region, not just some portion of the region. Alternatively, any region is locally simply connected,
since if we consider any point in the region, there is certainly a small disk around that point contained in
the region, and that disk will be simply connected. On such a disk, the above logic goes through, and thus
we see that, at least near any given point, we can still construct an antiderivative of f in exactly the same
fashion as above. What goes wrong is when we try to push this construction further away from the point.
Thus suppose for example that f is analytic everywhere except at some point ζ0, and let z0 6= ζ0; then near
z0 the function

F (z) =

∫ z

z0

f(z′) dz′

will be well-defined and independent of the curve connecting z0 and z, and will give an antiderivative of f .
But now consider trying to determine this function everywhere on some circle starting at z0 which encloses
the point ζ0. At z0 we have F (z0) = 0 by definition. But when we traverse this circle around ζ0, as we
come back close to z0, F (z) may not be small, since there is no guarantee that the integral around the entire
curve will vanish. This means that the limit of F (z) may not equal 0 as z → z0 along this direction, and
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hence that it may not be possible to find a single-valued continuous antiderivative of f everywhere on the
region. This is, in fact, a generalisation of what we have seen goes wrong when we consider the logarithm:
since d

dzLog z = 1
z , Log z is an antiderivative of 1

z , and as we try to take its value along some closed curve
containing the origin, we know that we run into problems of discontinuity or multivaluedness exactly like
those just discussed. One solution to this problem in the general case is to use the solution we used for the
logarithm, and take a branch cut starting at ζ0 and going to infinity; the resulting region will be simply
connected, and thus on it we may define a single-valued, continuous antiderivative using the above formula.

The notions above of starting out with an analytic function only defined on a small disk and attempting
to extend it further are related to notions of analytic continuation which we shall discuss later on in the
course.

23. An extension of Cauchy’s integral theorem to non-simply connected regions. It turns
out that there is a way of extending Cauchy’s integral theorem to non-simply connected regions, in quite
the same way one extends Green’s theorem to such regions, which will be important to our derivation of the
Cauchy integral formula and is also noteworthy in its own right. Suppose for definiteness that a function f
is analytic everywhere on a region except at two holes (these could be two isolated points, or larger holes),
and consider

∫
C
f(z) dz, where C is some simple closed curve in this region. As long as C does not enclose

either of the holes, this integral will still vanish by the Cauchy integral theorem. Now if C contains just one
of the holes, we may shrink it down to either the boundary curve of the hole (if the hole is itself a region)
or to an arbitrarily small circle around the hole (if the hole is a point), and the integral of f over this new
curve, call it C ′, will be equal to that of f over C: to see this, think of taking a point on C and joining it
to some point on C ′ by a straight line; if we break this straight line open slightly, and pull the two edges
apart, we will get a simple closed curve which does not enclose any singularities of f , and the integral over
this curve will therefore vanish; but in the limit as the two lines come together, the integral over this curve
is just ∫

C

f(z′) dz′ −
∫
C′
f(z′) dz′,

assuming that we orient both C and C ′ counterclockwise. Thus these two integrals must be equal, as claimed.
In the case that C is a curve enclosing both holes, we may do something similar except that we will find∫

C

f(z′) dz′ =

∫
C′

1

f(z′) dz′ +

∫
C′

2

f(z′) dz′,

where C ′1 and C ′2 are curves enclosing the two holes, as described above. Here we are still assuming that all
three curves are oriented counterclockwise. If we instead orient C ′1 and C ′2 clockwise, and call the resulting
curves C1 and C2, then the above result becomes∫

C

f(z′) dz′ +

∫
C1

f(z′) dz′ +

∫
C2

f(z′) dz′ = 0,

i.e., the integral of f is still zero as long as we include curves around the singularities of f as well.
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