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Summary:
• We continue to discuss conformal mappings and expand on a couple examples from Goursat.

16. Examples of conformal maps. (a) (See Goursat, §19, Example 2.) Consider the map on the
punctured plane R2\{(0, 0)} which is given in complex notation by

f(z) =
1

z
.

Since this function is analytic on the punctured plane, it must be conformal at every point other than the
origin. Let us consider how it behaves with respect to the unit circle. We have the following properties:
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This means that the map f takes the unit circle to itself, while it takes the region outside the unit circle to
the region inside the unit circle, and vice versa. See Fig. 1. It is worth noting that on the unit circle
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FIG. 1

f(z) =
1

z
= z.

Note though that z is not an analytic function in general! It does turn out to be (almost) conformal though
(it preserves magnitudes of angles but reverses their sense); and it can be shown (see §21 of Goursat, noting
that replacing Q by −Q is equivalent to taking the complex conjugate of f) that every sufficiently smooth
conformal map is either an analytic function or the conjugate of an analytic function (which is the same
thing as an analytic function of z, as is apparent if one thinks of a Taylor expansion: but that is a bit beyond
what we have technically covered so far).

(b) (See Goursat, §22, Example 2.) Let us now consider the function on the entire plane given in
complex notation by

f(x+ iy) = cos(x+ iy) = cosx cosh y − i sinx sinh y.

This function is analytic everywhere, and will be conformal everywhere that its derivative is nonzero. (We
pause for a moment to clarify a point which the author fumbled during lecture. The derivative of cos z is
− sin z, which means that cos z will be conformal at every point where sin z is nonzero. Now

sin(x + iy) = sinx cosh y + i cosx sinh y;

and for this to be zero, we see first of all that we must have sinx = 0 (since cosh y ≥ 1 for all real y), and
since this means that cosx 6= 0, we must have sinh y = 0, or y = 0. Thus the zeros of sin z over the complex
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plane are the same as those of sinx over the real line, i.e., nπ, n ∈ Z.) Thus f will be conformal at every
point inside the strip {x+ iy|0 < x < π, y > 0}. Let us consider how f maps straight lines within this strip.
Let us consider first a horizontal line, say y = y0 > 0. On such a line, f is equal to

f(x+ iy0) = cosx cosh y0 − i sinx sinh y0,

where x ∈ (0, π). Now this is just another way of writing the parametric curve

t 7→ (cosh y0 cos t,− sinh y0 sin t), t ∈ (0, π).

If we denote this curve by (x(t), y(t)) (where unfortunately here x(t) and y(t) are completely distinct from
the real and imaginary parts of z), then we have
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= 1,

i.e., the curve must lie on an ellipse with major axis cosh y0 along the horizontal axis and minor axis sinh y0
along the vertical axis, and centred at the origin. Now since y0 > 0, sinh y0 > 0, so − sinh y0 < 0 and
y(t) < 0 for all t ∈ (0, π), while x(t) takes on all values from cosh y0 to − coshy0. Thus we obtain the lower
half of this ellipse.

Now let us consider a vertical line, say x = x0 ∈ (0, π). Working as before, we see that on this line

f(x0 + iy) = cosx0 cosh y − i sinx0 sinh y.

If x0 = π/2 then cosx0 = 0 and this is simply a parametrisation of the negative imaginary axis. Otherwise,
we again write

(x(t), y(t)) = (cosx0 cosh t,−i sinx0 sinh t), t ∈ (0, π)

and note that (this follows from the basic identity cosh2 x− sinh2 x = 1)
(
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which means that the curve lies on a hyperbola opening along the real axis with intercept ± cosx0 and with
asymptotes having slope ± tanx0. Now we note that y(t) < 0 for all t, while x(t) > 0 for t ∈ (0, π/2) and
x(t) < 0 for t ∈ (π/2, π); thus in the first case we have the lower right-hand portion of the hyperbola, while
in the second case we have the lower left-hand portion. See Fig. 2. Note especially how the blue and red

O x

y

π

4

π

2
3π

4

π

0.5

1

1.5

f
−−−−−→

O x

y

1
√

2
−

1
√

2 cosh 1

2 cosh 1 cosh 3

2

sinh 1

2

sinh 1

sinh 3

2

FIG. 2

curves on the right intersect at right angles, exactly like those on the left.
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