
MAT334, 2020. I, §12 [May 19 – 21] Differentiation of Log Nathan Carruth

Summary:
• We discuss the branches of the logarithm function defined previously and show how to differentiate

them.
• We introduce the extension of the trigonometric functions to the complex plane, and relate them to the

ordinary trigonometric and hyperbolic trigonometric functions of a real variable.
• We show how the inverse trigonometric functions can be determined in terms of roots and logarithms,

and calculate their derivatives.
• Finally, we give a slightly more careful description of the kind of region we assume our functions are

defined; then we give an introduction to conformal mappings and show that analytic functions are
conformal.

12. Differentiation of Log. Recall that we have defined the complex logarithm as a multi-valued
function as follows. If z is any nonzero complex number and reiθ is any polar representation of z, then we
define

Log z = log r + i(θ + 2nπ), n ∈ Z,

where here log denotes the ordinary real logarithm of a positive real number. (Note that this definition
allows us to extend the logarithm to negative real numbers but not to zero. Since even over the complex
plane the exponential is never 0, there is no way to extend the logarithm to zero.) As for the root functions
we studied previously, a single-valued, continuous logarithm can only be defined on a cut plane. Let us see
how this works in practice. Suppose that we cut the plane along the ray θ = θ0, i.e., that we define the
logarithm only on complex numbers with polar representation z = reiθ where θ ∈ (θ0, θ0 + 2π), and that we
consider only this polar representation in defining the logarithm. (Note that, while related, these are two
distinct points.) Then we have

Log z = log r + iθ.

We note that this function is continuous on the cut plane; an outline of a proof is given in the appendix.
Some examples related to this are given in the problem set.

Let us now see whether these branches of Log are analytic functions. Specifically, let us take the above
branch, obtained by cutting the plane along θ = θ0. We shall denote this particular branch by Log z in the
following, for convenience. We must determine whether the limit

lim
h→0

Log (z + h)− Log (z)

h

exists. This limit may clearly be written as

lim
z′→z

Log z′ − Log z

z′ − z
.

Now if z = reiθ, where θ ∈ (θ0, θ0 + 2π), then as long as z′ is close enough to z1 we may write z′ = r′eiθ
′

where θ′ ∈ (θ0, θ0 + 2π) and also θ′ is close to θ. Let us now define

w = Log z = log r + iθ, w′ = Log z′ = log r′ + iθ′.

Then
Log z′ − Log z

z′ − z
=

w′ − w
ew′ − ew

.

Now as z′ → z, we have clearly (by continuity of the logarithm) Log z′ → Log z, i.e., w′ → w; and in this
limit the above fraction becomes

lim
w′→w

w′ − w
ew′ − ew

= lim
w′→w

1
ew′−ew
w′−w

=
1

limw′→w
ew′−ew
w′−w

=
1

ew
,

1 Specifically, we need the angle between them to be less than the smaller of θ − θ0 and θ0 + 2π − θ.
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since the exponential function is analytic and is equal to its own derivative. But recall that

ew = eLog z = z,

so that we have shown that
d

dz
Log z =

1

z
.

Note that this final result does not depend on the choice of branch cut; in other words, each branch of Log
has the same derivative. This accords with what we know about derivatives from ordinary calculus, since
the various branches of Log differ only by constants.

To sum up, we have shown that each branch of Log is an analytic function on its domain, and all of
the branches have the same derivative, namely 1/z.

Appendix I. Continuity of Log. Let us show that each branch of the logarithm, as outlined at the
start of the section above, is in fact continuous. We shall give a formal ε-δ argument, but provide intuitive
commentary to hopefully make the ideas clear to those who do not have much background in such things.
Thus let z = reiθ be an element of the cut plane, with θ ∈ (θ0, θ0 + 2π), and let ε > 0. We may assume that
ε < π

4 . Since log is continuous on the positive real line, there must be a δ′ > 0 such that

|log r − log r′| < 1

2
ε if |r − r′| < δ′;

in other words, if r′ is close to r then log r′ is close to log r. Further, it can be shown that the function
z 7→ |z| is continuous; thus there is a δ′′ > 0 such that

||z| − |z′|| < δ′ if |z − z′| < δ′′;

in other words, |z| is close to |z′| if z is close to z′ (clearly a reasonable statement geometrically!). Dealing
with the angular part of z and z′ is slightly messy; intuitively though the result is clear: if z′ is sufficiently
close to z, then we may write z′ = r′eiθ

′
where θ′ ∈ (θ0, θ0 + 2π) and θ′ is close to θ. To prove what we need

carefully, though, let us set

δ′′′ =

{
1
2r sin(θ − θ0), θ ∈ (θ0, θ0 + π/2) ∪ (θ0 + 3π/2, θ0 + 2π),

1
2r, otherwise.

Since 2δ′′′ is simply the distance from z to the cut (draw a picture!), it is clear that |z − z′| < δ′′′ means
that z′ is on the same side of the cut as z, and hence can be written in the above form. Now let δ be the
smaller of δ′, δ′′, δ′′′, and sin(ε/2), and suppose that

|z − z′| < δ.

By the foregoing, then,

||z| − |z′|| < δ′, so |log |z| − log |z′|| < 1

2
ε;

furthermore, writing z′ = r′eiθ
′
, θ′ ∈ (θ0, θ0 + 2π), it is clear geometrically (again, draw a picture!) that the

angle between z and z′ is no greater than arcsin δ, which is bounded by ε/2, so that |θ − θ′| < ε/2. Thus
finally

|Log z − Log z′| = |log r + iθ − log r′ + iθ′| ≤ |log |z| − log |z′||+ |θ − θ′| < ε,

proving continuity of Log , as desired.

13. Trigonometric functions. To extend the trigonometric functions to the complex plane, we shall
proceed in the same way we did with the exponential function. Recall that on the real line we have the
power series expansions

sinx =

∞∑
k=0

1

(2k + 1)!
(−1)kx2k+1, cosx =

∞∑
k=0

1

(2k)!
(−1)kx2k.
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Since the radius of convergence of both of these series is infinite, they must converge on the entire complex
plane as well; thus we may define

sin z =

∞∑
k=0

1

(2k + 1)!
(−1)kz2k+1, cos z =

∞∑
k=0

1

(2k)!
(−1)kz2k,

where now z is any complex number. Moreover, as we mentioned in our discussion of the exponential function
in section 11 above, these power series are the unique way of extending sin and cos to the complex plane as
analytic functions.

The standard identities of trigonometry can be shown to hold over the complex numbers as well; in
particular, we have

cos2 a+ sin2 a = 1,

sin(a± b) = sin a cos b± cos a sin b, cos(a± b) = cos a cos b∓ sin a sin b,

sin 2a = 2 sin a cos a, cos 2a = cos2 a− sin2 a,

and so forth, where now a and b can be any complex numbers. Moreover, sin is odd (sin(−z) = − sin z)
while cos is even (cos(−z) = cos z), as with real numbers. Further, the differentiation formulæ for sin and
cos also hold. This can be shown by differentiating the above series:2

d

dz
sin z =

d

dz

∞∑
k=0

1

(2k + 1)!
(−1)kz2k+1 =

∞∑
k=0

1

(2k)!
(−1)kz2k = cos z,

d

dz
cos z =

d

dz

∞∑
k=0

1

(2k)!
(−1)kz2k =

∞∑
k=1

1

(2k − 1)!
(−1)kz2k−1 = −

∞∑
k=0

1

(2k + 1)!
(−1)kz2k+1 = − sin z,

where we have set the lower index to 1 in the second series on the second line since the constant term in the
series for cos z differentiates to zero, and we have adjusted the index in the last equality.

Now recall that, by substituting in to the power series expression for ez, we found that when y is real

eiy = cos y + i sin y.

Now there is nothing in this derivation which requires y to be a real number; thus with the above definitions
for sin and cos, we find that for all complex numbers z that

eiz = cos z + i sin z.

Using the fact that cos is odd and sin is even, we see that

e−iz = cos(−z) + i sin(−z) = cos z − i sin z;

adding and subtracting these two equations, we obtain the results

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

This allows us to derive expressions for the real and imaginary parts of cos z and sin z. First of all, note that
if y is real (actually for all complex y if we define cosh and sinh in the usual way, but we are only interested
in real y for the moment)

cos iy =
e−y + ey

2
= cosh y, sin iy =

e−y − ey

2i
= i sinh y,

2 As noted previously, convergent power series can be differentiated term-by-term on their discs of
convergence.
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where as usual

cosh y =
ey + e−y

2
, sinh y =

ey + e−y

2
.

Thus if z = x+ iy,

cos z = cos(x+ iy) = cosx cos iy − sinx sin iy = cosx cosh y − i sinx sinh y,

sin z = sin(x+ iy) = sinx cos iy + cosx sin iy = sinx cosh y + i cosx sinh y.

Now since cosh and sinh are unbounded, this means in particular that cos and sin are unbounded along the
imaginary direction. In particular, the inequalities | cosx| ≤ 1, | sinx| ≤ 1, which are true for real x, do not
hold for complex numbers.

Similar results can be derived for the other trigonometric functions (tangent, cotangent, secant, and
cosecant) but we shall not go into that here.

14. Inverse trigonometric functions. Let us see what we can find about the inverse trigonometric
functions, given the foregoing. Let us first consider sin z; or, since we are interested in finding its inverse,
sinw, where w is another complex variable. We have the relation

sinw =
eiw − e−iw

2i
.

Now let us set z = sinw and see whether we can solve for w. We have

eiw − e−iw

2i
= z

eiw − e−iw = 2iz

e2iw − 1 = 2izeiw

e2iw − 2izeiw − 1 = 0

eiw =
1

2

(
2iz +

(
4(iz)2 + 4

)1/2)
= iz +

(
1− z2

)1/2
,

where we have dispensed with the ± usually present in the quadratic formula since
(
1− z2

)1/2
is defined to

mean both square roots. Thus we may write

w =
1

i
Log

[
iz +

(
1− z2

)1/2]
.

In other words, whenever w is any of the (infinitely many) complex numbers indicated by the right-hand
side of this equation, we must have sinw = z. We thus define

arcsin z =
1

i
Log

[
iz +

(
1− z2

)1/2]
.

Note that there are, in general, two distinct sources of multi-valuedness in the above expression, one from
the square root (when z 6= ±1) and the other from the log. This is in good accord with our understanding
of the graph of sinx on the real line: as long as y0 6= ±1, the graph of y = sinx will intersect the line y = y0
twice per interval of length 2π.

Similar expressions can be derived for arccos and arctan but we pass over them for the moment.
The above expression may be differentiated, assuming that we are using appropriate branches:

d

dz

1

i
Log

[
iz +

(
1− z2

)1/2]
=

1

i

1

iz + (1− z2)
1/2

(
i− z

(1− z2)
1/2

)

=
1

iz + (1− z2)
1/2

(
1− z2

)1/2
+ iz

(1− z2)
1/2

=
1

(1− z2)
1/2

,
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in accord with what we know from real-variable calculus (except recall that here the square root means both
square roots, i.e., it has a sign ambiguity).

15. Regions; conformal mappings. We have mentioned that we are principally interested in
functions which are analytic in some region, rather than at a single point. We have however not defined
what kind of region we are interested in. We are interested in the first place in functions which are analytic
everywhere inside a so-called simple closed curve, i.e., a closed curve which does not intersect itself; such a
region is simply-connected in the sense in which that word is typically used in discussions of Green’s theorem,
namely, it does not have any holes.3 Later we shall also consider functions which are analytic on a set which
has a finite number of holes, i.e., whose boundary is a finite number of simple closed curves, which moreover
do not intersect each other. Whenever we speak of an analytic function, we are assuming that the function
is analytic throughout a region of this form.

We shall now introduce so-called conformal mappings. It will turn out that all analytic functions on
the complex plane are conformal mappings whenever they have nonzero derivative, but the definition of a
conformal mapping does not require any use of complex numbers. A map

f : R2 → R2

is said to be conformal at a point p when it preserves angles at that point; in other words, it γ1(t) and γ2(t)
are any two curves which intersect at p, which for convenience and without loss of generality we may take
to be t = 0 for both curves, then the angle between γ1(t) and γ2(t) at t = 0 is equal to the angle between
f(γ1(t)) and f(γ2(t)) at t = 0, in both magnitude and sign (i.e., we measure it in the same direction, either
clockwise or counterclockwise).4 (See figures 9a and 9b in Goursat for an illustration.) Note that, in general,
a map must be at least differentiable (in the sense of real functions on the plane!) for the angle of the image
curves to make sense. Some examples immediately come to mind.

EXAMPLES. 1. Since translations and rotations of the plane preserve distances, they also preserve angles,
and hence give conformal transformations.

2. So-called isotropic scalings of the plane, i.e., maps

(x, y) 7→ (ax, ay),

where a = 0, are also conformal maps. This will follow from our general result below.

The main application we shall make of conformal mappings is to find solutions of Laplace’s equation,
which we shall take up probably in the second half of the course. The main example of conformal maps for
us is given by the following result:

If f is analytic and f ′(z0) 6= 0, then f is conformal at z0.

This may be shown as follows. (Here we first give the derivation given in the lecture, and supplement
it to fill in a hole; we follow this with a slightly more concise demonstration.) For convenience we treat
complex numbers as though they were their corresponding points in the plane. Let γ1(t) and γ2(t) be two
smooth curves which satisfy γ1(0) = γ2(0) = z0. Then they have tangent vectors there

T1 = γ′1(0), T2 = γ′2(0),

and hence make an angle θ which satisfies

cos θ =
T1 •T2

|T1||T2|
,

3 For those who have seen something of general topology, the main point is that we are interested in
functions which are analytic on some connected, simply-connected open set.

4 For those of you who know something of modern differential geometry, the curves γ1(t) and γ2(t) here
are being used as proxies for tangent vectors.
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where • denotes the dot product. Now since f is analytic, it is in particular differentiable (in the real-variable
sense) as a map from R2 to R2, and thus the curves f ◦ γ1 and f ◦ γ2 are also smooth; moreover they have
tangent vectors

S1 = f ′(z0) · γ′1(0), S2 = f ′(z0) · γ′2(0),

where we treat γ1 and γ2 as though they were complex-valued, and · denotes multiplication of complex
numbers. (The foregoing is a simple extension of the chain rule.) Thus the angle between these image
curves, say θ′, satisfies

cos θ′ =
S1 • S2

|S1||S2|
.

Now recall (see the first example in §2, notes of May 5, above) that if z and w are any two complex numbers,
then the dot product of the vectors corresponding to z and w is equal to Re zw. Thus we may compute as
follows:

S1 • S2 = Re f ′(z0)T1f
′(z0)T2 = Re f ′(z0)f ′(z0)T1T2

= |f ′(z0)|2 Re T1T2 = |f ′(z0)|2 T1 ·T2.

Since |S1| can be computed in terms of a dot product, we see that

cos θ′ =
S1 • S2

|S1||S2|
=

|f ′(z0)|2 T1 ·T2

|f ′(z0)| |T1| |f ′(z0)| |T2|

=
T1 ·T2

|T1||T2|
= cos θ.

This shows that θ and θ′ have the same cosine. However this of course does not mean that they are equal.
(This point was not mentioned in the lecture.) To show that they are actually equal, we recall also that
if z and w are any two complex numbers, the cross product (more carefully, the k component of the cross
product) of z and w is equal to Im zw. Now recall from vector calculus that the cross product in this case is
also given by |z||w| sinφ, where φ is the angle between the vectors corresponding to z and w. The foregoing
calculation shows, replacing Re by Im everywhere, that we must have sin θ = sin θ′. Since two angles which
have the same sine and cosine must be equal up to some integer multiple of 2π, and this means for our
purposes that they are the same angle, this shows that f must be conformal at z0, as claimed.

A slightly more concise demonstration may be given as follows. (Those of you who are familiar with
derivatives considered as linear maps can skip straight to the appendix where an even more concise proof is
given.) Let t > 0 be small. Then the tangent vectors to γ1 and γ2 at t = 0, i.e., at z0, can be approximated
by

γ1(t)− z0
t

,
γ2(t)− z0

t
.

Similarly, the tangent vectors to f(γ1(t)) and f(γ2(t)) can be approximated by

f(γ1(t))− f(z0)

t
,

f(γ2(t))− f(z0)

t
.

Now for z near z0 we may write

f(z) = f(z0) + f ′(z0)(z − z0) + o(z − z0),

where o(z − z0) denotes a quantity which vanishes faster than z − z0 as the latter goes to zero; i.e.,

lim
z→z0

o(z − z0)

z − z0
= 0.

Thus we have
f(γk(t)) = f(z0) + f ′(z0)(γk(t)− z0) + o(γk(t)− z0),

so
f(γk(t))− f(z0)

t
= f ′(z0)

γk(t)− z0
t

+
o(γk(t)− z0)

t
.
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Now in the limit t → 0 we have similarly γk(t) = γk(0) + γ′k(0)t + o(t) = z0 + γ′k(0)t + o(t), so that in this
limit the last quantity on the right-hand side above vanishes and we find that the tangent vector to the
curves γk(t) are given by

f ′(z0)γ′k(0),

where as before the multiplication is to be considered as multiplication of complex numbers. Now suppose
that we have

γ′k(0) = rke
iθk ,

and that
f ′(z0) = reiθ;

then the tangent vectors to the image curves are given by

f ′(z0)γ′k(0) = rrke
i(θk+θ);

in other words, the effect of an analytic map f on tangent vectors to smooth curves is to scale and rotate,
which clearly preserves angles. This shows that f is conformal at z0, as claimed.

Appendix I. Abstract derivation. Let us consider f as a map of the real plane. Then its derivative
f ′(z0) is a linear map from the plane to itself which satisfies

f(z) = f(z0) + f ′(z0)(z − z0) + o(|z − z0|),

where here f ′(z0) is considered as a linear map and z − z0 as a vector, and the ‘product’ above is the
application of this linear map to this vector. Evidently, f ′(z0) may be considered to be multiplication by the
complex derivative also denoted f ′(z0). Now abstractly the derivative as a linear map takes tangent vectors
to tangent vectors; in other words, two tangent vectors T1 and T2 (say) at the point z0 are taken by the
map f to the vectors f ′(z0)T1 and f ′(z0)T2. By the discussion in the last few lines of the section above,
the angle between these vectors must be that between T1 and T2.

(I admit that this is a little bit hand-wavy. The reason for this is that the definition of ‘conformal’ given
above is somewhat informal. The argument just given can be made entirely rigorous if we define ‘preserves
angles at a point’ to mean that its derivative preserves angles as a map of tangent vectors, which is more or
less equivalent to the definition in terms of curves given above.)
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