
MAT334, COMPLEX VARIABLES, SUMMER 2020. PROBLEMS FOR AUGUST 10 – 14

Due Friday, August 14, at 11:59 PM EDT.

1. [15 marks; modified version of Question 3 from last week’s assignment.] Suppose that f is a nonzero
function which is analytic on the entire complex plane. (‘Nonzero’ here means that there is some point in
the complex plane at which f is not zero. It does not mean that f has no zeros in the plane.) Let CR denote
the (full) circle of radius R centred at the origin. Is it possible to have

lim
R→∞

∫

CR

|f(z)| ds = 0?

(The integral here is an arclength integral from multivariable calculus.) If not, prove it; otherwise, give an
example. [Hint: check the proof of Liouville’s Theorem (the one in the lecture notes)!]

We may proceed as in the proof of Liouville’s Theorem in the lecture notes. Let z0 ∈ C[1 mark], and
let R > |z0|+1[2 marks]. By the Cauchy integral formula, we have, letting CR denote the circle of radius R
centred at the origin[1 mark],

|f(z0)| =

∣

∣

∣

∣

1

2πi

∫

CR

f(z)

z − z0
dz

∣

∣

∣

∣

[1 mark] ≤
1

2π

∫

CR

∣

∣

∣

∣

f(z)

z − z0

∣

∣

∣

∣

ds[2 marks] ≤
1

2π

∫

CR

|f(z)| ds[1 mark],

since if z is on CR then |z − z0| ≥ 1[2 marks]. But if we now take R to infinity, this last integral must
vanish[1 mark], giving |f(z0)| = 0[1 mark], or f(z0) = 0[1 mark]. But z0 ∈ C was arbitrary[1 mark], so f
must be identically zero[1 mark].
[Marking: as above. Another method would be to show that all of the coefficients of the Taylor series of
f vanish at the origin – this would be much closer to the proof of Liouville’s Theorem in Goursat. On the
other hand, the vanishing of the integral does not imply directly that the modulus of f must be bounded –
if you said that you may have gotten very few marks.]

2. [10 marks] (a) Show that for all z = x+ iy ∈ C,

| sin z| ≤ e|y|.

Let z = x+ iy; then

| sin z| =

∣

∣

∣

∣

eiz − e−iz

2i

∣

∣

∣

∣

[1 mark] ≤
1

2

(∣

∣eix+y
∣

∣+
∣

∣e−ix+y
∣

∣

)

[1 mark] ≤
1

2

(

e−y + ey
)

[1 mark] ≤ e|y|[1 mark].

(b) Using part (a) and Rouché’s Theorem, determine how many zeros the function

3z8 + sin z

has in the unit disk. [It is worth spending some time thinking about whether the same procedure can be
applied on arbitrarily large disks. But you do not need to say anything about that in your solution.]

If z = x+ iy is any point on the unit circle[1 mark], we ahve |y| ≤ 1[1 mark], so

∣

∣3z8
∣

∣ = 3 ≥ e ≥ e|y| ≥ | sin z|, [1 mark]

and by Roché’s Theorem the function 3z8 + sin z must have as many zeroes as 3z8[1 mark] (counting
multiplicities[1 mark]), i.e., 8.[1 mark]
[Marking: as above.]

3. [10 marks] (a) Find a polynomial solution to the following problem on the unit disk D = {z | |z| < 1}:

∆u = 0, u|∂D = cos θ,

where θ is the usual polar coordinate on the plane.
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We look for a linear solution of the form u = a+ bx+ cy[1 mark]. On the unit circle, we have x = cos θ,
y = sin θ[1 mark]; thus we require

a+ b cos θ + c sin θ = cos θ, [1 mark]

from which we see that a = c = 0, b = 1[1 mark]. Thus u = x will solve the given problem.[1 mark]
(b) Use your solution to (a) and a conformal transformation to solve the following problem on the

exterior of the unit disk, i.e., the set E = {z | |z| > 1}:

∆u = 0, u|∂E = cos θ, u → 0 as |z| → ∞.

(Note that ∂E = ∂D, both being just the unit circle.)
The function z 7→ 1/z will take the interior of the unit circle (without the origin) to the exterior[1 mark];

thus the function (setting z = x+ iy)

v(x, y) = u(1/z) = u

(

x− iy

x2 + y2

)

=
x

x2 + y2
[1 mark]

will be harmonic on the exterior of the unit disk[1 mark]. Since on the unit disk it satisfies

v =
cos θ

cos2 θ + sin2 θ
= cos θ, [1 mark]

and if z = R(cos θ + i sin θ), R > 0, it is

v =
R cos θ

R2
=

1

R
cos θ[1 mark]

which goes to zero as |R| = z → ∞, this v must be the solution to our problem.
[Marking: as above.]

4. [15 marks] Solve the following problem on the lower half-plane H = {x+ iy | y < 0}:

∆u = 0, u|∂H =







π, x < −1
cos−1 x, x ∈ (−1, 1)

0, x > 1

(Note that ∂H , the boundary of H , is just the real axis.)
We transform this problem using the map z 7→ cos z[1 mark] from the rectangle R = {x + iy |x ∈

(0, π), y > 0}[1 mark] to the lower half-plane. We must determine the new boundary data. The line
x = 0, y > 0 is mapped to the interval (1,+∞), on which u is 0; thus the transformed data will also be 0
there[1 mark]. Similarly, the line x = π, y > 0 is mapped to the segment (−∞,−1), on which u is π; thus
the transformed ata must be 1 there[1 mark]. Finally, on the segment y = 0, x ∈ (0, π), we have

cos z = cosx,

i.e., the point (x, 0) is mapped to (cosx, 0)[1 mark], so

u(cos z) = u(cosx, 0) = arccos cosx = x[1 mark]

since we are using the branch of arccos which takes [−1, 1] into [0, π], and x ∈ (0, π). Thus the transformed
problem is

∆v = 0 on R, v|∂R =







0, x = 0
x, y = 0
π, x = π

.[1 mark]
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We seek a linear solution to this problem; thus we write v = a+ bx + cy[1 mark], and try to solve for a, b,
and c, using the boundary conditions. These give

a+ cy = 0

a+ bx = x

a+ bπ + cy = π;

[2 marks]

ince these must hold for all x and y, we have a = c = 0, b = 1[2 marks], so v = x[1 mark]. More carefully,
we have v(x, y) = x, or v(x + iy) = x, so v(z) = Re z. Thus u(z) = (v ◦ arccos)(z) = Re arccos z[1 mark].
We may express this in terms of Re arcsin z as follows[1 mark]. We have the formula

sin(w + π/2) = cosw;

thus if w = arccos z we have
z = cosw = sin(w + π/2),

so w = arcsin z − π/2, at least if we take the right branch of arcsin. Now the branch of arccos we use maps
into [0, π], while the branch of arcsin used in the notes maps into [−π/2, π/2]; thus we must replace arcsin
by π − arcsin, meaning that we have finally the solution

u(z) =
π

2
− Re arcsin z.

[Marking: as above. This exercise is quite close to the example on pp. 3 – 6 of the August 13 lecture notes
on the course website.]
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