MAT334, COMPLEX VARIABLES, SUMMER . 2020. PROBLEMS FOR AUGUST 3 -7
Due Monday, August 10, at 11:59 PM EDT.

1. [15 marks] Evaluate whichever of the integrals from problem 3 of the last assignment you did not do
last week.
[See the previous set of solutions! — also for marking schemel]

2. [20 marks] Evaluate the following integral:

> logx
————dx,
/0 (1 +22)?
where log z denotes the usual real-valued logarithm of the positive real number z.

Our first inclination (well, Nathan’s first inclination, anyway!) may be to use a keyhole contour like
that used for the second integral in 1. However, this won’t work, as the portions of the integrals on the
line segments across the branch containing logz/(1 + 2%)? will cancel. Thus we instead use the following
contour,[2 marks] which is almost the same as the one we used when evaluating integrals involving sin x/x
except that we break it up into more pieces. As in the second integral in 1, in order to integrate over contours
in the complex plane we must choose a particular branch of the logarithm.[1 mark|In this case it turns out
to be convenient to take a branch cut which is far away from the contour; thus we shall take a branch cut
along the negative imaginary axis, and require our angle to lie in the interval (—m/2,37/2). [A branch cut
along any line in the lower half-plane would work equally well, and in fact the calculations below would be
unchanged. While one could also use a branch cut along part of the real axis, it would in this case only lead
to additional complications.]
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Now if z is any point on Cg, then we may write z = Re®, where 6 € [0, 7]; thus Logz = log R + i, so
|Log z| < |log R| + 7 and we may write

Log z

|log R| + 7
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which clearly goes to zero as R — oo (remember that log R < R for all R), so

L
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Similarly, if z is any point in C’, then we may write z = ee’’, where again 6 € [0, 7], so as before we have
|Log z| < |loge| + 7 and
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Now clearly
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also, by L'Hopital’s rule (for real functions!),
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from which we see that
. Log z
lim dz = 0.
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Thus, in the limits ¢ — 0T and R — oo, we have, since the only singularity of the integrand inside the
contour is a pole at z = 1,
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Before computing the residue, we note that —L; may be parameterised as te’™, t € [0, R], so that
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Thus we have also to evaluate the integral
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this latter integral may be evaluated by closing the contour in the upper half-plane,[1 mark|noting that the
integral over the extra semicircle will go to zero as its radius goes to infinity since
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and thus obtaining
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so finally
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Thus we need only compute this residue. We have

and
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whence finally
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We note that it is reasonable to obtain a negative number since logz — —oo as z — 0.
[Marking: as above.]



