
MAT334, COMPLEX VARIABLES, SUMMER 2020. PROBLEMS FOR AUGUST 3 – 7

Due Monday, August 10, at 11:59 PM EDT.

1. [15 marks] Evaluate whichever of the integrals from problem 3 of the last assignment you did not do
last week.

[See the previous set of solutions! – also for marking scheme!]

2. [20 marks] Evaluate the following integral:
∫

∞

0

log x

(1 + x2)2
dx,

where log x denotes the usual real-valued logarithm of the positive real number x.
Our first inclination (well, Nathan’s first inclination, anyway!) may be to use a keyhole contour like

that used for the second integral in 1. However, this won’t work, as the portions of the integrals on the
line segments across the branch containing log x/(1 + x2)2 will cancel. Thus we instead use the following
contour,[2 marks] which is almost the same as the one we used when evaluating integrals involving sinx/x
except that we break it up into more pieces. As in the second integral in 1, in order to integrate over contours
in the complex plane we must choose a particular branch of the logarithm.[1 mark]In this case it turns out
to be convenient to take a branch cut which is far away from the contour; thus we shall take a branch cut
along the negative imaginary axis, and require our angle to lie in the interval (−π/2, 3π/2). [A branch cut
along any line in the lower half-plane would work equally well, and in fact the calculations below would be
unchanged. While one could also use a branch cut along part of the real axis, it would in this case only lead
to additional complications.]
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Now if z is any point on CR, then we may write z = Reiθ, where θ ∈ [0, π]; thus Log z = logR + iθ, so
|Log z| ≤ | logR|+ π and we may write

R

∣

∣

∣

∣

Log z

(1 + z2)2

∣

∣

∣

∣

≤ R
| logR|+ π

(R2 − 1)2
, [1 mark]

which clearly goes to zero as R → ∞ (remember that logR < R for all R), so

lim
R→∞

∫

CR

Log z

(1 + z2)2
dz = 0.[1 mark]

Similarly, if z is any point in C′

ǫ, then we may write z = ǫeiθ, where again θ ∈ [0, π], so as before we have
|Log z| ≤ | log ǫ|+ π and

ǫ

∣

∣

∣

∣

Log z

(1 + z2)2

∣

∣

∣

∣

≤ ǫ
| log ǫ|+ π

(1− ǫ2)2
.[1 mark]

Now clearly

lim
ǫ→0+

ǫ
π

(1− ǫ2)2
= 0; [1 mark]
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also, by L’Hôpital’s rule (for real functions!),

lim
ǫ→0+

ǫ log ǫ = lim
ǫ→0+

log ǫ

1/ǫ
= lim

ǫ→0+

1/ǫ

−1/ǫ2
= lim

ǫ→0+
−ǫ = 0, [1 mark]

from which we see that

lim
ǫ→0+

∫

C′

ǫ

Log z

(1 + z2)2
dz = 0.

Thus, in the limits ǫ → 0+ and R → ∞, we have, since the only singularity of the integrand inside the
contour is a pole at z = i,

lim
ǫ→0+

lim
R→∞

∫

L1

Log z

(1 + z2)2
dz +

∫

L2

Log z

(1 + z2)2
dz = 2πiResi

Log z

(1 + z2)2
.[1 mark]

Before computing the residue, we note that −L1 may be parameterised as teiπ, t ∈ [0, R], so that

∫

L1

Log z

(1 + z2)2
dz =

∫ R

0

log t+ iπ

(1 + t2)2
dt =

∫

L2

Log z

(1 + z2)2
dz + iπ

∫ R

0

1

(1 + t2)2
dt.[2 marks]

Thus we have also to evaluate the integral

∫

∞

0

1

(1 + t2)2
dt =

1

2

∫

∞

−∞

1

(1 + t2)2
dt;

this latter integral may be evaluated by closing the contour in the upper half-plane,[1 mark]noting that the
integral over the extra semicircle will go to zero as its radius goes to infinity since

R

∣

∣

∣

∣

1

(1 +R2e2it)2

∣

∣

∣

∣

≤ R
1

(R2 − 1)2
→ 0 as R → ∞, [1 mark]

and thus obtaining

∫

∞

−∞

1

(1 + t2)2
dt = 2πiResi

1

(1 + z2)2
[1 mark] = 2πi

d

dz

1

(z + i)2

∣

∣

∣

∣

z=i

= 2πi

(

−
2

(2i)3

)

=
π

2
, [2 marks]

so finally
∫

∞

0

1

(1 + t2)2
dt =

π

4

and
∫

∞

0

log x

(1 + x2)2
dx =

1

2

[

2πiResi
Log z

(1 + z2)2
− i

π2

4

]

.

Thus we need only compute this residue. We have

Resi
Log z

(1 + z2)2
=

d

dz

Log z

(z + i)2

∣

∣

∣

∣

z=i

=
1

i
(2i)2 − 2(2i)Log i

(2i)4
=

− 4

i
− 4i iπ

2

16
=

i

4
+

π

8
, [3 marks]

whence finally
∫

∞

0

log x

(1 + x2)2
dx =

1

2

[

−
π

2
+ i

π2

4
− i

π2

4

]

= −
π

4
.[1 mark]

We note that it is reasonable to obtain a negative number since log x → −∞ as x → 0+.
[Marking: as above.]
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