MAT334, COMPLEX VARIABLES, SUMMER 2020. PROBLEMS FOR AUGUST 3 - 7

Due Monday, August 10, at 11:59 PM EDT.

1. [15 marks] Evaluate whichever of the integrals from problem 3 of the last assignment you did not do last week.
[See the previous set of solutions! - also for marking scheme!]
2. [20 marks] Evaluate the following integral:

$$
\int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{2}} d x
$$

where $\log x$ denotes the usual real-valued logarithm of the positive real number x.
Our first inclination (well, Nathan's first inclination, anyway!) may be to use a keyhole contour like that used for the second integral in 1. However, this won't work, as the portions of the integrals on the line segments across the branch containing $\log x /\left(1+x^{2}\right)^{2}$ will cancel. Thus we instead use the following contour, [2 marks] which is almost the same as the one we used when evaluating integrals involving $\sin x / x$ except that we break it up into more pieces. As in the second integral in 1, in order to integrate over contours in the complex plane we must choose a particular branch of the logarithm. [1 mark]In this case it turns out to be convenient to take a branch cut which is far away from the contour; thus we shall take a branch cut along the negative imaginary axis, and require our angle to lie in the interval $(-\pi / 2,3 \pi / 2)$. [A branch cut along any line in the lower half-plane would work equally well, and in fact the calculations below would be unchanged. While one could also use a branch cut along part of the real axis, it would in this case only lead to additional complications.]

Now if z is any point on C_{R}, then we may write $z=R e^{i \theta}$, where $\theta \in[0, \pi]$; thus $\log z=\log R+i \theta$, so $|\log z| \leq|\log R|+\pi$ and we may write

$$
R\left|\frac{\log z}{\left(1+z^{2}\right)^{2}}\right| \leq R \frac{|\log R|+\pi}{\left(R^{2}-1\right)^{2}},[1 \text { mark }]
$$

which clearly goes to zero as $R \rightarrow \infty$ (remember that $\log R<R$ for all R), so

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{\log z}{\left(1+z^{2}\right)^{2}} d z=0 .[1 \mathrm{mark}]
$$

Similarly, if z is any point in C_{ϵ}^{\prime}, then we may write $z=\epsilon e^{i \theta}$, where again $\theta \in[0, \pi]$, so as before we have $|\log z| \leq|\log \epsilon|+\pi$ and

$$
\epsilon\left|\frac{\log z}{\left(1+z^{2}\right)^{2}}\right| \leq \epsilon \frac{|\log \epsilon|+\pi}{\left(1-\epsilon^{2}\right)^{2}} .[1 \mathrm{mark}]
$$

Now clearly

$$
\lim _{\epsilon \rightarrow 0^{+}} \epsilon \frac{\pi}{\left(1-\epsilon^{2}\right)^{2}}=0 ;[1 \mathrm{mark}]
$$

also, by L'Hôpital's rule (for real functions!),

$$
\lim _{\epsilon \rightarrow 0^{+}} \epsilon \log \epsilon=\lim _{\epsilon \rightarrow 0^{+}} \frac{\log \epsilon}{1 / \epsilon}=\lim _{\epsilon \rightarrow 0^{+}} \frac{1 / \epsilon}{-1 / \epsilon^{2}}=\lim _{\epsilon \rightarrow 0^{+}}-\epsilon=0,[1 \mathrm{mark}]
$$

from which we see that

$$
\lim _{\epsilon \rightarrow 0^{+}} \int_{C_{\epsilon}^{\prime}} \frac{\log z}{\left(1+z^{2}\right)^{2}} d z=0
$$

Thus, in the limits $\epsilon \rightarrow 0^{+}$and $R \rightarrow \infty$, we have, since the only singularity of the integrand inside the contour is a pole at $z=i$,

$$
\lim _{\epsilon \rightarrow 0^{+}} \lim _{R \rightarrow \infty} \int_{L_{1}} \frac{\log z}{\left(1+z^{2}\right)^{2}} d z+\int_{L_{2}} \frac{\log z}{\left(1+z^{2}\right)^{2}} d z=2 \pi i \operatorname{Res}_{i} \frac{\log z}{\left(1+z^{2}\right)^{2}} \cdot[1 \text { mark }]
$$

Before computing the residue, we note that $-L_{1}$ may be parameterised as $t e^{i \pi}, t \in[0, R]$, so that

$$
\int_{L_{1}} \frac{\log z}{\left(1+z^{2}\right)^{2}} d z=\int_{0}^{R} \frac{\log t+i \pi}{\left(1+t^{2}\right)^{2}} d t=\int_{L_{2}} \frac{\log z}{\left(1+z^{2}\right)^{2}} d z+i \pi \int_{0}^{R} \frac{1}{\left(1+t^{2}\right)^{2}} d t .[2 \text { marks }]
$$

Thus we have also to evaluate the integral

$$
\int_{0}^{\infty} \frac{1}{\left(1+t^{2}\right)^{2}} d t=\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{\left(1+t^{2}\right)^{2}} d t
$$

this latter integral may be evaluated by closing the contour in the upper half-plane, [1 mark]noting that the integral over the extra semicircle will go to zero as its radius goes to infinity since

$$
R\left|\frac{1}{\left(1+R^{2} e^{2 i t}\right)^{2}}\right| \leq R \frac{1}{\left(R^{2}-1\right)^{2}} \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty,[1 \text { mark }]
$$

and thus obtaining

$$
\int_{-\infty}^{\infty} \frac{1}{\left(1+t^{2}\right)^{2}} d t=2 \pi i \operatorname{Res}_{i} \frac{1}{\left(1+z^{2}\right)^{2}}[1 \mathrm{mark}]=\left.2 \pi i \frac{d}{d z} \frac{1}{(z+i)^{2}}\right|_{z=i}=2 \pi i\left(-\frac{2}{(2 i)^{3}}\right)=\frac{\pi}{2},[2 \text { marks }]
$$

so finally

$$
\int_{0}^{\infty} \frac{1}{\left(1+t^{2}\right)^{2}} d t=\frac{\pi}{4}
$$

and

$$
\int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{2}} d x=\frac{1}{2}\left[2 \pi i \operatorname{Res}_{i} \frac{\log z}{\left(1+z^{2}\right)^{2}}-i \frac{\pi^{2}}{4}\right] .
$$

Thus we need only compute this residue. We have

$$
\operatorname{Res}_{i} \frac{\log z}{\left(1+z^{2}\right)^{2}}=\left.\frac{d}{d z} \frac{\log z}{(z+i)^{2}}\right|_{z=i}=\frac{\frac{1}{i}(2 i)^{2}-2(2 i) \log i}{(2 i)^{4}}=\frac{-\frac{4}{i}-4 i \frac{i \pi}{2}}{16}=\frac{i}{4}+\frac{\pi}{8},[3 \text { marks }]
$$

whence finally

$$
\int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{2}} d x=\frac{1}{2}\left[-\frac{\pi}{2}+i \frac{\pi^{2}}{4}-i \frac{\pi^{2}}{4}\right]=-\frac{\pi}{4} \cdot[1 \mathrm{mark}]
$$

We note that it is reasonable to obtain a negative number since $\log x \rightarrow-\infty$ as $x \rightarrow 0^{+}$.
[Marking: as above.]

