
MAT334, COMPLEX VARIABLES, SUMMER 2020. PROBLEMS FOR JULY 20 – 31

Due Saturday, August 1, at 10:00 PM EDT.

1. Consider the integral from question 2 of the previous homework assignment:

∫ +∞

−∞

sinmx

x(x2 + a2)
dx,

and assume that both m and a are positive real numbers. By using an indented contour, evaluate this
integral fully. [You are allowed to resubmit material submitted as part of the previous assignment if you
wish.]

By (sinmx)/x in the integrand is meant the function

{

sinmx
x , x 6= 0
m, x = 0,

which is just mf(mx) if we set

f(x) =

{

sin x
x , x 6= 0
1, x = 0,

which as we have seen already extends to an analytic function on the entire complex plane. By the Cauchy
integral theorem, then, we can replace the integral over the real axis with an integral over an indented
contour, as in the figure. We denote this by LR, the upper semicircle by CR, and the lower semicircle by
C′

R, as shown in the figure. Now since the contour LR does not pass through the origin, we may write

∫ R

−R

sinmx

x(x2 + a2)
dx =

∫

LR

sinmz

z(z2 + a2)
dz

=

∫

LR

eimz − e−imz

2iz(z2 + a2)
dz =

∫

LR

eimz

2iz(z2 + a2)
dz −

∫

LR

e−imz

2iz(z2 +m2)
dz,

x

y

−R RLR

CR

C ′

R

0

and we may evaluate these integrals by closing in the upper and lower half-planes, respectively, and applying
Jordan’s lemma. Specifically, since m > 0 and on CR and C′

R we have

lim
R→∞

∣

∣

∣

∣

1

2iz(z2 + a2)

∣

∣

∣

∣

≤ lim
R→∞

1

2R(R2 − a2)
= 0,

Jordan’s lemma gives

lim
R→∞

∫

CR

eimz

2iz(z2 + a2)
dz = 0
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and so, since ia is the only pole of the integrand in the contour LR + CR,

lim
R→∞

∫

LR

eimz

2iz(z2 + a2)
dz = 2πiResia

eimz

2iz(z2 + a2)

= 2πi lim
z→ia

(z − ia)
eimz

2iz(z − ia)(z + ia)

= 2πi
e−ma

−2π(2ia)
= −e−ma

2a2
π.

Similarly, since m > 0, on the lower half-circle we have also by the modified form of Jordan’s lemma we used
once before

lim
R→∞

∫

C′
R

e−imz

2iz(z2 + a2)
dz = 0

and so, since the curve LR + C′
R is oriented clockwise and contains the two poles ia and 0,

lim
R→∞

∫

LR

e−imz

2iz(z2 + a2)
dz = −2πi

[

Res−ia
e−imz

2iz(z2 + a2)
+ Res0

e−imz

2iz(z2 + a2)

]

= −2πi

[

lim
z→−ia

(z + ia)
e−imz

2iz(z − ia)(z + ia)
+ lim

z→0
z

e−imz

2iz(z2 + a2)

]

= −2πi

[

e−ma

2a(−2ia)
+

1

2ia2

]

= π
e−ma

2a2
− π

a2
,

from which we obtain finally

∫ ∞

−∞

sinmx

x(x2 + a2)
= −e−ma

2a2
π −

[

π
e−ma

2a2
− π

a2

]

=
π

a2
(

1− e−ma
)

.

[Marking: 1 mark for using an indented contour; 1 mark for closing in both half-planes; in each half-plane, 1
mark for applying Jordan’s lemma and 1 mark for the corresponding limit; in each half-plane, 1 mark for the
application of the residue theorem; 2 marks for each of three residue calculations; 1 mark for the calculations
giving the final answer. 15 marks total.]

2. Evaluate the following integral:
∫ 2π

0

dt

(c− cos 2t)2
, (1)

where c is a real number with absolute value greater than 1.
This integral becomes far simpler if we first make the substitution x = 2t [1 mark]; the integral then

becomes
∫ 4π

0

1
2dx

(c− cosx)2
=

∫ 2π

0

dx

(c− cosx)2
,

where the second equality follows since cos is periodic with period 2π. Now we use the usual procedure of
viewing this integral as the integral over the unit circle of some function to be determined. We have

cos t =
1

2

(

eit + e−it
)

,

which will equal
1

2

(

z + z−1
)

[2 marks]

if z = eit. Now given this z, we have dz = ieitdt = izdt; since z is never zero, we may rewrite this as
dt = dz/(iz), and rewrite the original integral (1) as (letting C denote the unit circle)

∫

C

dz/(iz)
(

c− 1
2 (z + z−1)

)2 =
1

i

∫

C

4z dz

(z2 − 2cz + 1)2
.[2 marks]

2



Note that the integrand has two poles, both of second order;[1 mark]they are at the zeroes of z2 − 2cz + 1.
These may be found by using the quadratic formula; noting that the discriminant is 4c2 − 4 = 4(c2− 1) > 0,
we may write these as

z = c±
√

c2 − 1.[2 marks]

Now if c > 1, then clearly c +
√
c2 − 1 > 1, so only c −

√
c2 − 1 lies inside the unit circle; while if c < −1,

then clearly c−
√
c2 − 1 < −1, so only c+

√
c2 − 1 lies inside the unit circle[2 marks]. Thus we consider these

two cases separately. If c > 1, we have[4 marks, 1 for the residue theorem, 3 for the residue computation]

1

i

∫

C

4z dz

(z2 − 2cz + 1)2
= 8πResc−

√
c2−1

z

(z2 − 2z + 1)2

= 8π
d

dz

z

(z − c−
√
c2 − 1)2

∣

∣

∣

∣

c−
√
c2−1

= 8π

[

1

c2 − 1
+

2(c−
√
c2 − 1)

(c2 − 1)3/2

]

= 8π
2c−

√
c2 − 1

(c2 − 1)3/2
,

while if c < 1, we have[4 marks, 1 for the residue theorem, 3 for the residue computation]

1

i

∫

C

4z dz

(z2 − 2cz + 1)2
= 8πResc+

√
c2−1

z

(z2 − 2cz + 1)2

= 8π
d

dz

z

(z − c+
√
c2 − 1)2

∣

∣

∣

∣

c+
√
c2−1

= 8π

[

1

c2 − 1
− 2(c+

√
c2 − 1)

(c2 − 1)3/2

]

= 8π · −2c−
√
c2 − 1

(c2 − 1)3/2
,

and we see finally that
∫ 2π

0

dt

(c− cos 2t)2
=

16π|c|
(c2 − 1)3/2

− 8π

c2 − 1
.[2 marks]

[Marking: as indicated.]

3. Choose one of the following integrals, and evaluate it:

∫ ∞

0

cosx2 − sinx2

x8 + 1
dx,

∫ ∞

0

x1/2

x2 + 1
.

You are strongly encouraged to also do the other integral for practice! [Hint for the first integral: try

evaluating
∫∞
0

eix
2

x8+1 dx.]

For the first integral, we close using the quarter-circle contour shown in the figure. Note that, parame-
terising the circular arc as Reit, t ∈ [0, π/2], we have

∣

∣

∣

∣

∣

∫

CR

eiz
2

z8 + 1
dz

∣

∣

∣

∣

∣

≤
∫ π/2

0

R

∣

∣

∣

∣

∣

eiR
2 cos 2te−R2 sin 2t

z8 + 1

∣

∣

∣

∣

∣

dt

≤ R

R8 − 1

1

2

∫ π

0

e−R2 sin x dx =
R

R8 − 1

∫ π/2

0

e−R2 sin x dx

=
R

R8 − 1

π

2R2

(

1− 1

e2

)

,

3



x

y

0 R

L′

R

LR

CR

where we have used the substitution x = 2t, the fact that sin is symmetric about π/2, and the Jordan
inequality. Now clearly this last expression goes to zero as R → ∞, so

lim
R→∞

∫

CR

eiz
2

z8 + 1
dz = 0.

Since the only singularities of the integrand inside the curve LR + CR + L′
R are simple poles at z = eiπ/8

and z = e3iπ/8, we have

∫

LR

eiz
2

z8 + 1
dz +

∫

L′
R

eiz
2

z8 + 1
dz +

∫

CR

eiz
2

z8 + 1
dz = 2πi

[

Reseiπ/8

eiz
2

z8 + 1
+ Rese3iπ/8

eiz
2

z8 + 1

]

. (2)

These residues may be calculated as follows. If z0 denotes either of the poles, then

Resz0
eiz

2

z8 + 1
= lim

z→z0
(z − z0)

eiz
2

z8 + 1
= lim

z→z0
eiz

2 z − z0
(z8 + 1)− (z80 + 1)

= eiz
2
0

1
d
dzz

8 + 1
∣

∣

z=z0

=
eiz

2
0

8z70
,

so the residues in (2) above are

eie
iπ/4

8e7πi/8
=

e
− 1√

2
+ i√

2

8e7πi/8
=

e
− 1√

2
+ i√

2

8
(−i)e−3πi/8,

eie
3πi/4

8e21πi/8
= −e

− 1√
2
− i√

2

8
e3πi/8;

if we let ω = a+ ib denote the second of these, then the sum of residues becomes

ω + iω = a+ ib+ i(a− ib) = a(1 + i) + ib(1− i),

so the sum of integrals in (2) will become

2πi(a(1 + i) + ib(1− i)) = 2π[−a(1− i)− b(1− i)] = −2π(a+ b)(1− i)

=
2π

8
(1− i)e

− 1√
2

[

cos

(

3π

8
− 1√

2

)

+ sin

(

3π

8
− 1√

2

)]

. (3)

We must now determine how to evaluate the integral over L′
R. If we parameterise −L′

R as it, t ∈ [0, R], then
we may write

∫

L′
R

eiz
2

z8 + 1
dz = −i

∫ R

0

e−it2

t8 + 1
dt,
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whence we see that

∫

LR

eiz
2

z8 + 1
dz +

∫

L′
R

eiz
2

z8 + 1
dz =

∫ R

0

eit
2 − ie−it2

t8 + 1
dt

=

∫ R

0

cos t2 − sin t2 − i(cos t2 − sin t2)

t8 + 1
dt = (1− i)

∫ R

0

cos t2 − sin t2

t8 + 1
dt,

and we have finally from (3)

∫ ∞

−∞

cos t2 − sin t2

t8 + 1
dt =

2π

8
e
− 1√

2

[

cos

(

3π

8
− 1√

2

)

+ sin

(

3π

8
− 1√

2

)]

.

[Marking: 2 marks for the choice of curves; 1 mark for applying the residue theorem; 3 marks for showing
the integral over CR goes to 0 as R → ∞; 4 marks for the residue calculations; 2 marks for the calculation
of the sum of the residues; 3 marks for evaluating L′

R and obtaining the final result.]
The second integral is rather easier. Since we wish as usual to evaluate the integral by using a contour in

the complex plane, we must pick a particular branch of the square root function appearing in the numerator
and choose a contour which avoids the corresponding branch cut. As in the example in the notes, we shall
take a branch cut along the positive real axis, and require the angle for the square root function to lie in the
interval (0, 2π). Having done this, we shall use the keyhole contour shown in the figure. Now for R large,
we may write on CR, noting that |z1/2| =

√

|z| no matter which branch of the square root function we use,

R

∣

∣

∣

∣

z1/2

1 + z2

∣

∣

∣

∣

≤ R
R1/2

R2 − 1
, (4)

x

y

−R Rǫ

LR

L
′

R

CR

C
′

ǫ

which clearly goes to zero as R → ∞; thus we must have

lim
R→∞

∫

CR

z1/2

1 + z2
dz = 0.

Similarly, for ǫ very small we have a result exactly analogous to (4):

ǫ

∣

∣

∣

∣

z1/2

1 + z2

∣

∣

∣

∣

≤ ǫ
e1/2

1− ǫ2
,

where we have |1 + z2| ≥ 1 − ǫ2 since we are interested in ǫ small and may assume ǫ < 1. This goes to zero
as ǫ → 0, which implies that

lim
ǫ→0+

∫

C′
ǫ

z1/2

1 + z2
dz = 0.
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Thus in the limits R → ∞, ǫ → 0, we have, since the only poles of the integrand inside the contour are at
±i, and the integrand has no other singularities inside the contour,

∫

L1

z1/2

1 + z2
dz +

∫

L2

z1/2

1 + z2
dz = 2πi

[

Resi
z1/2

1 + z2
+Res−i

z1/2

1 + z2

]

. (5)

Now

Resi
z1/2

1 + z2
= lim

z→i
(z − i)

z1/2

(z − i)(z + i)

= lim
z→i

z1/2

z + i
=

eiπ/4

2i
=

1

2
√
2
− i

1

2
√
2
,

Res−i
z1/2

1 + z2
= lim

z→−i
(z + i)

z1/2

(z − i)(z + i)

= lim
z→−i

z1/2

z − i
=

e3iπ/4

−2i
= − 1

2
√
2
− i

1

2
√
2
,

so the sum of residues in (5) is simply −i/(2
√
2) and the sum of integrals in (5) is π/

√
2. Now we may

parameterise the lines L1 and −L2 by t+ iǫ and t− iǫ, respectively, where t ∈ [0, R] in both cases. Now in
polar form

t+ iǫ =
√

t2 + ǫ2ei arctan
ǫ
t ,

t− iǫ =
√

t2 + ǫ2ei(2π−arctan ǫ
t ),

where the range of arctan is (−π/2, π/2) and the angle in the second line is chosen so as to lie in the interval
(0, 2π) corersponding to our chosen branch of z1/2. Thus

∫

L1

z1/2

1 + z2
dz =

∫ R

0

(

t2 + ǫ2
)1/4

e
1
2
i arctan ǫ

t

1 + (t+ iǫ)2
dt,

−
∫

L2

z1/2

1 + z2
dz =

∫ R

0

(

t2 + ǫ2
)1/4

e
1
2
i(2π−arctan ǫ

t )

1 + (t− iǫ)2
dt;

taking the limit as ǫ → 0+ gives

lim
ǫ→0+

∫

L1

z1/2

1 + z2
dz =

∫ R

0

√
t

1 + t2
dt,

− lim
ǫ→0+

∫

L2

z1/2

1 + z2
dz =

∫ R

0

−
√
t

1 + t2
dt,

so substituting in to equation (5) and taking the limit as R → ∞ gives

∫ ∞

0

x1/2

1 + x2
dx =

1

2
· π√

2
=

π

2
√
2
.

[Marking: 1 mark for the contour; 2 marks each for showing the integrals over CR and C′
ǫ vanish in the

appropriate limits; 1 mark for applying the residue theorem; 2 marks for calculating the residues; 2 marks
each for working out the LR and L′

R integrals; 1 mark for adding up and solving.]
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