MAT334, COMPLEX VARIABLES, SUMMER 2020. PROBLEMS FOR JULY 20 - 31

Due Saturday, August 1, at 10:00 PM EDT.

1. Consider the integral from question 2 of the previous homework assignment:

$$
\int_{-\infty}^{+\infty} \frac{\sin m x}{x\left(x^{2}+a^{2}\right)} d x
$$

and assume that both m and a are positive real numbers. By using an indented contour, evaluate this integral fully. [You are allowed to resubmit material submitted as part of the previous assignment if you wish.]
2. Evaluate the following integral:

$$
\int_{0}^{2 \pi} \frac{d t}{(c-\cos 2 t)^{2}}
$$

where c is a real number with absolute value greater than 1 .
3. Choose one of the following integrals, and evaluate it:

$$
\int_{0}^{\infty} \frac{\cos x^{2}-\sin x^{2}}{x^{8}+1} d x, \quad \int_{0}^{\infty} \frac{x^{1 / 2}}{x^{2}+1}
$$

You are strongly encouraged to also do the other integral for practice! [Hint for the first integral: try evaluating $\int_{0}^{\infty} \frac{e^{i x^{2}}}{x^{8}+1} d x$.]

