MAT334, COMPLEX VARIABLES, SUMMER . 2020. PROBLEMS FOR JULY 13 — 17
Due Wednesday, July 22, at 3:30 PM EDT.

1. [20 marks] Evaluate the following integrals:
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(You may cite the term test solutions on the course website in your solution, if you wish.)

To evaluate the first integral, we proceed as follows. Let f(z) = 1/(1+2%), let R > 1, let Lg denote the
line segment from —R to R along the real axis, and let C'r denote the semicircle of radius R centred at 0 in
the upper half-plane. Then the only poles of f inside the closed contour L + Cg are at (see the picture)
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so that we may write, by the residue theorem,
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Moreover, if z = Re®, t € [0, 7] is some point in Cg, then we have
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which clearly goes to zero as R — oo. Thus we have
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as well, and therefore our original integral is
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where the final answer follows from question 3(c) on the main sitting of the term test.

To evaluate the second integral, we proceed in an analogous fashion. Let f(z) = 1/(1 — 22 + z%), let
R > 1, let L denote the line segment from —R to R along the real axis, and let Cr denote the semicircle of
radius R centred at 0 in the upper half-plane. Then the only poles of f inside the closed contour L 4+ Cg

are at (see the picture)
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so that we may write, by the residue theorem,
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Moreover, if z = Re®, t € [0, 7] is some point in C, then we have
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which clearly goes to zero as R — oo. Thus we have
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as well, and therefore our original integral is
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where the final answer follows from question 3(c) on the makeup sitting of the term test.

[Marking: for each integral, 2 marks for the setup (description or picture of Lr, Cg, and the poles); 2
marks for the residue theorem (or the Cauchy integral theorem, to relate it to the integral on the term test);
3 marks for showing that the integral over Cr goes to zero; 3 marks for deducing the final value.]

2. [30 marks] Evaluate the following integrals:
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/ % dz, k any real number. [Hint: Apply your work from problem 1.]
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As mentioned in the announcement of July 21, for the first integral all that is required is to set things
up and then evaluate the residue, ignoring the singularity at z = 0. We thus let Ly be the line segment
from —R to R, and Cr the semicircle centred at 0 with radius R in the upper half-plane; then we see that
the only singularity the integrand has inside the closed curve L + Cg is at z = ia (where we assume that
a > 0 without loss of generality). (See the picture.) Now by the residue theorem we have
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We leave the issue of how to deal with the integral over Cr for later and simply show how to calculate the
residue. Since z? + a? = (2 — ia)(z + ia), we see that z = ia is a simple pole of (sinmz)/[z(22 + a?)], and
thus the residue may be calculated as follows:
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[Marking: again, 2 marks for the setup, 2 marks for the residue theorem; then 3 marks for computing the
residue.

Finally, for the last integral we must consider two separate cases depending on whether k£ > 0 or k£ < 0.
(For k = 0 this is simply the integral from question 1.) Suppose that k& > 0, and let Ly denote the line
segment from —R to R and Cp the semicircle centred at 0 with radius R in the upper half-plane, as usual;
then for R > 1 the only poles will be those at
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as found in question 1 (see the picture), and by the residue theorem we have as usual
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which clearly goes to zero as R — oo; thus by the Jordan lemma we must have f Cr % dz — 0 as R — oc.

Thus we are left with computing the residues. Now the poles are all of order 1, and thus we have
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where we have used the product rule for limits and the continuity of the exponential function. Now from
the term test we have
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thus we have finally
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The integral for k < 0 is analogous except that now we close using the semicircle C%, in the lower half-plane,
as shown in the figure below; this means that we pick up the poles at
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As before we have by the residue theorem that

z3 =

ezkz eikz ezkz ezkz
—d — dz=—2mi |Res,, ——— + Res,, —— | ,
/LR1+Z4 z—l—/c e ¥4 m esz“"1+z4+ esz41+z4

/
R

where the minus sign is required since the curve Lz +C7, is now oriented clockwise. Now by a straightforward
modification of Jordan’s lemma to the case where k& < 0 and we close in the lower half-plane, since on C%,
we have (2 = Re®)
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as before, we have that fC, % dz — 0 as R — oo. Now formula (1) holds just as well for ¢ = 3,4 as for
R
i = 1,2; since from the term test we have
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we have finally in this case
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We see that we may combine these two expressions into one as follows:

+oo ikx
e T k .|k
——dr = — |k|/ﬁ(cos—+s —>
/,oo 11227 A" V2 A

[Marking: 11 marks for each, plus 1 mark for getting the extra minus sign in the second integral. For each
integral, 1 mark for the setup, 1 mark for the residue theorem, 1 mark for the application of Jordan’s lemma,
2 marks for each residue, and 4 marks for the final computations.]



