MAT334, COMPLEX VARIABLES, SUMMER 2020. PROBLEMS FOR JULY 13 - 17

Due Wednesday, July 22, at 3:30 PM EDT.

1. [20 marks] Evaluate the following integrals:

$$
\int_{-\infty}^{+\infty} \frac{1}{1+x^{4}} d x, \quad \int_{-\infty}^{+\infty} \frac{1}{1-x^{2}+x^{4}} d x
$$

(You may cite the term test solutions on the course website in your solution, if you wish.)
To evaluate the first integral, we proceed as follows. Let $f(z)=1 /\left(1+z^{4}\right)$, let $R>1$, let L_{R} denote the line segment from $-R$ to R along the real axis, and let C_{R} denote the semicircle of radius R centred at 0 in the upper half-plane. Then the only poles of f inside the closed contour $L_{R}+C_{R}$ are at (see the picture)

$$
z_{1}=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}, \quad z_{2}=-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}},
$$

so that we may write, by the residue theorem,

$$
\int_{L_{R}} \frac{1}{1+z^{4}} d z+\int_{C_{R}} \frac{1}{1+z^{4}} d z=2 \pi i\left[\operatorname{Res}_{z_{1}} \frac{1}{1+z^{4}}+\operatorname{Res}_{z_{2}} \frac{1}{1+z^{4}}\right] .
$$

Moreover, if $z=R e^{i t}, t \in[0, \pi]$ is some point in C_{R}, then we have

$$
R|f(z)|=R\left|\frac{1}{1+R^{4} e^{4 i t}}\right| \leq \frac{R}{R^{4}-1}=\frac{R^{-3}}{1-R^{-4}}
$$

which clearly goes to zero as $R \rightarrow \infty$. Thus we have

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{1}{1+z^{4}} d z=0
$$

as well, and therefore our original integral is

$$
\int_{-\infty}^{+\infty} \frac{1}{1+x^{4}} d x=\lim _{R \rightarrow \infty} \int_{L_{R}} \frac{1}{1+z^{4}} d z=2 \pi i\left[\operatorname{Res}_{z_{1}} \frac{1}{1+z^{4}}+\operatorname{Res}_{z_{2}} \frac{1}{1+z^{4}}\right]=\frac{\pi}{\sqrt{2}}
$$

where the final answer follows from question 3(c) on the main sitting of the term test.
To evaluate the second integral, we proceed in an analogous fashion. Let $f(z)=1 /\left(1-z^{2}+z^{4}\right)$, let $R>1$, let L_{R} denote the line segment from $-R$ to R along the real axis, and let C_{R} denote the semicircle of radius R centred at 0 in the upper half-plane. Then the only poles of f inside the closed contour $L_{R}+C_{R}$ are at (see the picture)

$$
z_{1}=\frac{\sqrt{3}}{2}+i \frac{1}{2}, \quad z_{2}=-\frac{\sqrt{3}}{2}+i \frac{1}{2}
$$

so that we may write, by the residue theorem,

$$
\int_{L_{R}} \frac{1}{1-z^{2}+z^{4}} d z+\int_{C_{R}} \frac{1}{1-z^{2}+z^{4}} d z=2 \pi i\left[\operatorname{Res}_{z_{1}} \frac{1}{1-z^{2}+z^{4}}+\operatorname{Res}_{z_{2}} \frac{1}{1-z^{2}+z^{4}}\right]
$$

Moreover, if $z=R e^{i t}, t \in[0, \pi]$ is some point in C_{R}, then we have

$$
R|f(z)|=R\left|\frac{1}{1-R^{2} e^{2 i t}+R^{4} e^{4 i t}}\right| \leq \frac{R}{R^{4}-R^{2}-1}=\frac{R^{-3}}{1-R^{-2}-R^{-4}}
$$

which clearly goes to zero as $R \rightarrow \infty$. Thus we have

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{1}{1-z^{2}+z^{4}} d z=0
$$

as well, and therefore our original integral is

$$
\int_{-\infty}^{+\infty} \frac{1}{1-x^{2}+x^{4}} d x=\lim _{R \rightarrow \infty} \int_{L_{R}} \frac{1}{1-z^{2}+z^{4}} d z=2 \pi i\left[\operatorname{Res}_{z_{1}} \frac{1}{1-z^{2}+z^{4}}+\operatorname{Res}_{z_{2}} \frac{1}{1-z^{2}+z^{4}}\right]=\pi
$$

where the final answer follows from question 3(c) on the makeup sitting of the term test.
[Marking: for each integral, 2 marks for the setup (description or picture of L_{R}, C_{R}, and the poles); 2 marks for the residue theorem (or the Cauchy integral theorem, to relate it to the integral on the term test); 3 marks for showing that the integral over C_{R} goes to zero; 3 marks for deducing the final value.]
2. [30 marks] Evaluate the following integrals:

$$
\begin{array}{cc}
\int_{-\infty}^{+\infty} \frac{\sin m x}{x\left(x^{2}+a^{2}\right)} d x, \quad m, a \text { real, } a \neq 0 \\
\int_{-\infty}^{+\infty} \frac{e^{i k x}}{1+x^{4}} d x, \quad k \text { any real number. [Hint: Apply your work from problem 1.] }
\end{array}
$$

As mentioned in the announcement of July 21, for the first integral all that is required is to set things up and then evaluate the residue, ignoring the singularity at $z=0$. We thus let L_{R} be the line segment from $-R$ to R, and C_{R} the semicircle centred at 0 with radius R in the upper half-plane; then we see that the only singularity the integrand has inside the closed curve $L_{R}+C_{R}$ is at $z=i a$ (where we assume that $a>0$ without loss of generality). (See the picture.) Now by the residue theorem we have

$$
\int_{L_{R}} \frac{\sin m z}{z\left(z^{2}+a^{2}\right)} d z+\int_{C_{R}} \frac{\sin m z}{z\left(z^{2}+a^{2}\right)} d z=2 \pi i \operatorname{Res}_{i a} \frac{\sin m z}{z\left(z^{2}+a^{2}\right)}
$$

We leave the issue of how to deal with the integral over C_{R} for later and simply show how to calculate the residue. Since $z^{2}+a^{2}=(z-i a)(z+i a)$, we see that $z=i a$ is a simple pole of $(\sin m z) /\left[z\left(z^{2}+a^{2}\right)\right]$, and thus the residue may be calculated as follows:

$$
\begin{aligned}
\operatorname{Res}_{i a} \frac{\sin m z}{z\left(z^{2}+a^{2}\right)} & =\lim _{z \rightarrow i a}(z-i a) \frac{\sin m z}{z\left(z^{2}+a^{2}\right)}=\lim _{z \rightarrow i a} \frac{\sin m z}{z(z+i a)} \\
& =-\frac{\sin m i a}{2 a^{2}}=-\frac{i \sinh m a}{2 a^{2}},
\end{aligned}
$$

whence we see that

$$
2 \pi i \operatorname{Res}_{i a} \frac{\sin m z}{z\left(z^{2}+a^{2}\right)}=\frac{\pi \sinh m a}{a^{2}}
$$

[Marking: again, 2 marks for the setup, 2 marks for the residue theorem; then 3 marks for computing the residue.]

Finally, for the last integral we must consider two separate cases depending on whether $k>0$ or $k<0$. (For $k=0$ this is simply the integral from question 1.) Suppose that $k>0$, and let L_{R} denote the line segment from $-R$ to R and C_{R} the semicircle centred at 0 with radius R in the upper half-plane, as usual; then for $R>1$ the only poles will be those at

$$
z_{1}=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}, \quad z_{2}=-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}},
$$

as found in question 1 (see the picture), and by the residue theorem we have as usual

$$
\int_{L_{R}} \frac{e^{i k z}}{1+z^{4}} d z+\int_{C_{R}} \frac{e^{i k z}}{1+z^{4}} d z=2 \pi i\left[\operatorname{Res}_{z_{1}} \frac{e^{i k z}}{1+z^{4}}+\operatorname{Res}_{z_{2}} \frac{e^{i k z}}{1+z^{4}}\right]
$$

Now note that for $R>1$ we have, for any $z=R e^{i t}$ on C_{R},

$$
\left|\frac{1}{1+z^{4}}\right|=\left|\frac{1}{1+R^{4} e^{4 i t}}\right| \leq \frac{1}{R^{4}-1},
$$

which clearly goes to zero as $R \rightarrow \infty$; thus by the Jordan lemma we must have $\int_{C_{R}} \frac{e^{i k z}}{1+z^{4}} d z \rightarrow 0$ as $R \rightarrow \infty$. Thus we are left with computing the residues. Now the poles are all of order 1 , and thus we have

$$
\begin{equation*}
\operatorname{Res}_{z_{i}} \frac{e^{i k z}}{1+z^{4}}=\lim _{z \rightarrow z_{i}}\left(z-z_{i}\right) \frac{e^{i k z}}{1+z^{4}}=e^{i k z_{i}} \lim _{z \rightarrow z_{i}}\left(z-z_{i}\right) \frac{1}{1+z^{4}}, \tag{1}
\end{equation*}
$$

where we have used the product rule for limits and the continuity of the exponential function. Now from the term test we have

$$
\begin{aligned}
& \operatorname{Res}_{z_{1}} \frac{1}{1+z^{4}}=\lim _{z \rightarrow z_{1}}\left(z-z_{1}\right) \frac{1}{1+z^{4}}=\frac{1}{2 \pi i} \cdot \frac{2 \pi i}{2^{3 / 2}(-1+i)}=-\frac{1+i}{2^{5 / 2}} \\
& \operatorname{Res}_{z_{2}} \frac{1}{1+z^{4}}=\lim _{z \rightarrow z_{2}}\left(z-z_{2}\right) \frac{1}{1+z^{4}}=\frac{1}{2 \pi i} \cdot \frac{2 \pi i}{2^{3 / 2}(1+i)}=\frac{1-i}{2^{5 / 2}}
\end{aligned}
$$

thus we have finally

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \frac{e^{i k x}}{1+x^{4}} d x & =2 \pi i\left[\operatorname{Res}_{z_{1}} \frac{e^{i k z}}{1+z^{4}}+\operatorname{Res}_{z_{2}} \frac{e^{i k z}}{1+z^{4}}\right] \\
& \left.\left.=2 \pi i\left[-e^{k\left(-\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right.}\right) \frac{1+i}{2^{5 / 2}}+e^{k\left(-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right.}\right) \frac{1-i}{2^{5 / 2}}\right] \\
& =-4 \pi \operatorname{Im} e^{-\frac{k}{\sqrt{2}}-i \frac{k}{\sqrt{2}}} \frac{1-i}{2^{5 / 2}}=\frac{\pi}{\sqrt{2}} e^{-k / \sqrt{2}}\left(\cos \frac{k}{\sqrt{2}}+\sin \frac{k}{\sqrt{2}}\right)
\end{aligned}
$$

The integral for $k<0$ is analogous except that now we close using the semicircle C_{R}^{\prime} in the lower half-plane, as shown in the figure below; this means that we pick up the poles at

$$
z_{3}=-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}, \quad z_{4}=\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}
$$

As before we have by the residue theorem that

$$
\int_{L_{R}} \frac{e^{i k z}}{1+z^{4}} d z+\int_{C_{R}^{\prime}} \frac{e^{i k z}}{1+z^{4}} d z=-2 \pi i\left[\operatorname{Res}_{z_{3}} \frac{e^{i k z}}{1+z^{4}}+\operatorname{Res}_{z_{4}} \frac{e^{i k z}}{1+z^{4}}\right]
$$

where the minus sign is required since the curve $L_{R}+C_{R}^{\prime}$ is now oriented clockwise. Now by a straightforward modification of Jordan's lemma to the case where $k<0$ and we close in the lower half-plane, since on C_{R}^{\prime} we have $\left(z=R e^{i t}\right)$

$$
\left|\frac{1}{1+z^{4}}\right|=\left|\frac{1}{1+R^{4} e^{4 i t}}\right| \leq \frac{1}{R^{4}-1}
$$

as before, we have that $\int_{C_{R}^{\prime}} \frac{e^{i k z}}{1+z^{4}} d z \rightarrow 0$ as $R \rightarrow \infty$. Now formula (1) holds just as well for $i=3,4$ as for $i=1,2$; since from the term test we have

$$
\begin{aligned}
& \operatorname{Res}_{z_{3}} \frac{1}{1+z^{4}}=\lim _{z \rightarrow z_{3}}\left(z-z_{3}\right) \frac{1}{1+z^{4}}=\frac{1}{2 \pi i} \cdot \frac{2 \pi i}{2^{3 / 2}(1-i)}=\frac{1+i}{2^{5 / 2}} \\
& \operatorname{Res}_{z_{4}} \frac{1}{1+z^{4}}=\lim _{z \rightarrow z_{4}}\left(z-z_{4}\right) \frac{1}{1+z^{4}}=\frac{1}{2 \pi i} \cdot \frac{2 \pi i}{2^{3 / 2}(-1-i)}=\frac{-1+i}{2^{5 / 2}}
\end{aligned}
$$

we have finally in this case

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \frac{e^{i k x}}{1+x^{4}} d x & =-2 \pi i\left[\operatorname{Res}_{z_{3}} \frac{e^{i k z}}{1+z^{4}}+\operatorname{Res}_{z_{4}} \frac{e^{i k z}}{1+z^{4}}\right] \\
& =-2 \pi i\left[e^{k\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)} \frac{1+i}{2^{5 / 2}}-e^{k\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)} \frac{1-i}{2^{5 / 2}}\right] \\
& =4 \pi \operatorname{Im} e^{\frac{k}{\sqrt{2}}-i \frac{k}{\sqrt{2}}} \frac{1+i}{2^{5 / 2}}=\frac{\pi}{\sqrt{2}} e^{k / \sqrt{2}}\left(\cos \frac{k}{\sqrt{2}}-\sin \frac{k}{\sqrt{2}}\right) .
\end{aligned}
$$

We see that we may combine these two expressions into one as follows:

$$
\int_{-\infty}^{+\infty} \frac{e^{i k x}}{1+x^{4}} d x=\frac{\pi}{\sqrt{2}} e^{-|k| / \sqrt{2}}\left(\cos \frac{k}{\sqrt{2}}+\sin \frac{|k|}{\sqrt{2}}\right) .
$$

[Marking: 11 marks for each, plus 1 mark for getting the extra minus sign in the second integral. For each integral, 1 mark for the setup, 1 mark for the residue theorem, 1 mark for the application of Jordan's lemma, 2 marks for each residue, and 4 marks for the final computations.]

