
MAT334, COMPLEX VARIABLES, SUMMER 2020. PROBLEMS FOR JULY 13 – 17

Due Wednesday, July 22, at 3:30 PM EDT.

1. [20 marks] Evaluate the following integrals:

∫ +∞

−∞

1

1 + x4
dx,

∫ +∞

−∞

1

1− x2 + x4
dx.

(You may cite the term test solutions on the course website in your solution, if you wish.)
To evaluate the first integral, we proceed as follows. Let f(z) = 1/(1+ z4), let R > 1, let LR denote the

line segment from −R to R along the real axis, and let CR denote the semicircle of radius R centred at 0 in
the upper half-plane. Then the only poles of f inside the closed contour LR + CR are at (see the picture)
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so that we may write, by the residue theorem,

∫

LR

1

1 + z4
dz +

∫

CR

1

1 + z4
dz = 2πi

[

Resz1
1

1 + z4
+Resz2

1

1 + z4

]

.

Moreover, if z = Reit, t ∈ [0, π] is some point in CR, then we have

R|f(z)| = R

∣

∣

∣

∣
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1 +R4e4it
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R4 − 1
=

R−3

1−R−4
,

which clearly goes to zero as R → ∞. Thus we have

lim
R→∞

∫

CR

1

1 + z4
dz = 0

as well, and therefore our original integral is

∫ +∞

−∞

1

1 + x4
dx = lim

R→∞

∫

LR

1

1 + z4
dz = 2πi

[

Resz1
1

1 + z4
+Resz2

1

1 + z4

]

=
π√
2
,

where the final answer follows from question 3(c) on the main sitting of the term test.
To evaluate the second integral, we proceed in an analogous fashion. Let f(z) = 1/(1 − z2 + z4), let

R > 1, let LR denote the line segment from −R to R along the real axis, and let CR denote the semicircle of
radius R centred at 0 in the upper half-plane. Then the only poles of f inside the closed contour LR + CR

are at (see the picture)
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so that we may write, by the residue theorem,

∫

LR

1

1− z2 + z4
dz +

∫

CR

1

1− z2 + z4
dz = 2πi

[

Resz1
1

1− z2 + z4
+Resz2

1

1− z2 + z4

]

.

Moreover, if z = Reit, t ∈ [0, π] is some point in CR, then we have

R|f(z)| = R

∣

∣

∣

∣

1

1−R2e2it +R4e4it

∣
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≤ R

R4 −R2 − 1
=

R−3

1−R−2 −R−4
,

which clearly goes to zero as R → ∞. Thus we have

lim
R→∞

∫

CR

1

1− z2 + z4
dz = 0

as well, and therefore our original integral is

∫ +∞

−∞

1

1− x2 + x4
dx = lim

R→∞

∫

LR

1

1− z2 + z4
dz = 2πi

[

Resz1
1

1− z2 + z4
+Resz2

1

1− z2 + z4

]

= π

where the final answer follows from question 3(c) on the makeup sitting of the term test.
[Marking: for each integral, 2 marks for the setup (description or picture of LR, CR, and the poles); 2

marks for the residue theorem (or the Cauchy integral theorem, to relate it to the integral on the term test);
3 marks for showing that the integral over CR goes to zero; 3 marks for deducing the final value.]

2. [30 marks] Evaluate the following integrals:

∫ +∞

−∞

sinmx

x(x2 + a2)
dx, m, a real, a 6= 0.

∫ +∞

−∞

eikx

1 + x4
dx, k any real number. [Hint: Apply your work from problem 1.]

As mentioned in the announcement of July 21, for the first integral all that is required is to set things
up and then evaluate the residue, ignoring the singularity at z = 0. We thus let LR be the line segment
from −R to R, and CR the semicircle centred at 0 with radius R in the upper half-plane; then we see that
the only singularity the integrand has inside the closed curve LR + CR is at z = ia (where we assume that
a > 0 without loss of generality). (See the picture.) Now by the residue theorem we have

∫

LR

sinmz

z(z2 + a2)
dz +

∫

CR

sinmz

z(z2 + a2)
dz = 2πiResia

sinmz

z(z2 + a2)
.
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We leave the issue of how to deal with the integral over CR for later and simply show how to calculate the
residue. Since z2 + a2 = (z − ia)(z + ia), we see that z = ia is a simple pole of (sinmz)/[z(z2 + a2)], and
thus the residue may be calculated as follows:

Resia
sinmz

z(z2 + a2)
= lim

z→ia
(z − ia)

sinmz

z(z2 + a2)
= lim

z→ia

sinmz

z(z + ia)

= − sinmia

2a2
= − i sinhma

2a2
,

whence we see that

2πiResia
sinmz

z(z2 + a2)
=

π sinhma

a2
.

[Marking: again, 2 marks for the setup, 2 marks for the residue theorem; then 3 marks for computing the
residue.]

Finally, for the last integral we must consider two separate cases depending on whether k > 0 or k < 0.
(For k = 0 this is simply the integral from question 1.) Suppose that k > 0, and let LR denote the line
segment from −R to R and CR the semicircle centred at 0 with radius R in the upper half-plane, as usual;
then for R > 1 the only poles will be those at

z1 =
1√
2
+ i

1√
2
, z2 = − 1√

2
+ i

1√
2
,

as found in question 1 (see the picture), and by the residue theorem we have as usual
∫

LR

eikz

1 + z4
dz +

∫

CR

eikz

1 + z4
dz = 2πi

[

Resz1
eikz

1 + z4
+Resz2

eikz

1 + z4

]

.
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Now note that for R > 1 we have, for any z = Reit on CR,
∣

∣
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∣

∣

∣

∣

=

∣
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∣
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∣
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which clearly goes to zero as R → ∞; thus by the Jordan lemma we must have
∫

CR

eikz

1+z4 dz → 0 as R → ∞.
Thus we are left with computing the residues. Now the poles are all of order 1, and thus we have

Reszi
eikz

1 + z4
= lim

z→zi
(z − zi)

eikz

1 + z4
= eikzi lim

z→zi
(z − zi)

1

1 + z4
, (1)

where we have used the product rule for limits and the continuity of the exponential function. Now from
the term test we have

Resz1
1

1 + z4
= lim

z→z1
(z − z1)

1

1 + z4
=

1

2πi
· 2πi

23/2(−1 + i)
= −1 + i

25/2
,

Resz2
1

1 + z4
= lim

z→z2
(z − z2)

1

1 + z4
=

1

2πi
· 2πi

23/2(1 + i)
=

1− i

25/2
;

thus we have finally

∫ +∞

−∞

eikx

1 + x4
dx = 2πi

[

Resz1
eikz

1 + z4
+Resz2

eikz

1 + z4

]

= 2πi

[

−e
k
(

− 1√
2
+i 1√

2

)

1 + i

25/2
+ e

k
(

− 1√
2
−i 1√

2

)

1− i

25/2

]

= −4πIm e
− k√

2
−i k√

2

1− i

25/2
=

π√
2
e−k/

√
2

(

cos
k√
2
+ sin

k√
2

)

.

The integral for k < 0 is analogous except that now we close using the semicircle C′
R in the lower half-plane,

as shown in the figure below; this means that we pick up the poles at

z3 = − 1√
2
− i

1√
2
, z4 =

1√
2
− i

1√
2
.

As before we have by the residue theorem that

∫

LR

eikz

1 + z4
dz +

∫

C′
R

eikz

1 + z4
dz = −2πi

[

Resz3
eikz

1 + z4
+Resz4

eikz

1 + z4

]

,

−R R

LR

C ′

R

z4z3

where the minus sign is required since the curve LR+C′
R is now oriented clockwise. Now by a straightforward

modification of Jordan’s lemma to the case where k < 0 and we close in the lower half-plane, since on C′
R

we have (z = Reit)
∣
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∣
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1 + z4
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as before, we have that
∫

C′
R

eikz

1+z4 dz → 0 as R → ∞. Now formula (1) holds just as well for i = 3, 4 as for

i = 1, 2; since from the term test we have

Resz3
1

1 + z4
= lim

z→z3
(z − z3)

1

1 + z4
=

1

2πi
· 2πi

23/2(1− i)
=

1 + i

25/2
,

Resz4
1

1 + z4
= lim

z→z4
(z − z4)

1

1 + z4
=

1

2πi
· 2πi

23/2(−1− i)
=

−1 + i

25/2
,

we have finally in this case

∫ +∞

−∞

eikx

1 + x4
dx = −2πi

[

Resz3
eikz

1 + z4
+Resz4

eikz

1 + z4

]

= −2πi

[

e
k
(

1√
2
−i 1√

2

)

1 + i

25/2
− e

k
(

1√
2
+i 1√

2

)

1− i

25/2

]

= 4πIm e
k√
2
−i k√

2

1 + i

25/2
=

π√
2
ek/

√
2

(

cos
k√
2
− sin

k√
2

)

.

We see that we may combine these two expressions into one as follows:

∫ +∞

−∞

eikx

1 + x4
dx =

π√
2
e−|k|/

√
2

(

cos
k√
2
+ sin

|k|√
2

)

.

[Marking: 11 marks for each, plus 1 mark for getting the extra minus sign in the second integral. For each
integral, 1 mark for the setup, 1 mark for the residue theorem, 1 mark for the application of Jordan’s lemma,
2 marks for each residue, and 4 marks for the final computations.]
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