
MAT334, COMPLEX VARIABLES, SUMMER 2020. PROBLEMS FOR JULY 6 – 10

Due Tuesday, July 14, at 3:30 PM EDT.

1. Using the formulas in Goursat, §§35, 37, find the Laurent series for

f(z) =
sin z

z

around z = 0. How does this series compare to the Taylor series for sin z around z = 0? On what set does
it converge? Justify your answer.

Let us write

f(z) =

∞
∑

n=0

an(z − a)n +

∞
∑

n=1

bn(z − a)−n,

and let γ be a circle around z = 0; then we have the formulas

an =
1

2πi

∫

γ

f(z′)

(z′ − 0)n+1
dz′

bn =
1

2πi

∫

γ

f(z′)(z′ − 0)n−1 dz′.

Substituting in f(z) = (sin z)/z, the first of these gives

an =
1

2πi

∫

γ

sin z′

z′n+2
dz′[1 mark]

=
1

2πi
·

2πi

(n+ 1)!

dn+1

dzn+1
sin z

∣

∣

∣

∣

z=0

=
1

(n+ 1)!

dn+1

dzn+1
sin z

∣

∣

∣

∣

z=0

; [2 marks]

thus a0 = 1, a1 = 0, a2 = −1/6, a3 = 0, etc., and in general a2k+1 = 0 while a2k = (−1)k/(2k+ 1)![1 mark].
Now

b1 =
1

2πi

∫

γ

sin z′

z′
dz′[1 mark] =

1

2πi
sin 0 = 0, [1 mark]

while if n > 1

bn =
1

2πi

∫

γ

sin z′(z′ − 0)n−2 dz′ = 0[1 mark]

by the Cauchy integral theorem, since the integrand is analytic everywhere. Thus we have

sin z

z
=

∞
∑

k=0

(−1)k

(2k + 1)!
z2k.[1 mark]

Now recall that the Taylor series for sin z is

sin z =
∞
∑

k=0

(−1)k

(2k + 1)!
z2k+1;

in other words, the Laurent series for (sin z)/z is just the Taylor series for sin z, divided term-by-term by z,
as we might expect[1 mark]. Since the Taylor series for sin z converges everywhere on the complex plane,
the Laurent series above will converge to an analytic function everywhere except possibly at z = 0; but at
z = 0 the series also clearly converges to 1, so the series converges on the entire complex plane.[1 mark]

2. Again using the formulas in Goursat, §§35, 37, find the Laurent series for

f(z) =
ez

(z − 2)2

1



around z = 2. How does this compare to the Taylor series for ez around z = 2? [Hint: recall that ea+b = eaeb;
can you use this to find the Taylor series?] On what set does this Laurent series converge? Again, justify
your answer.

We use the same formulas as in question 1. Thus we have, first of all, letting now γ denote a circle
around z = 2,

an =
1

2πi

∫

γ

f(z′)

(z′ − 2)n+1
dz′

=
1

2πi

∫

γ

ez
′

(z′ − 2)n+3
dz′[1 mark] =

1

(n+ 3)!

dn+2

dzn+2
ez
∣

∣

∣

∣

z=2

[2 marks] =
e2

(n+ 2)!
, [1 mark]

by the Cauchy integral formula for derivatives, while

b1 =
1

2πi

∫

γ

f(z′) dz′[1 mark] =
1

2πi

∫

γ

ez
′

(z′ − 2)2
dz′ = e2, [1 mark]

b2 =
1

2πi

∫

γ

f(z′)(z′ − 2) dz′ =
1

2πi

∫

γ

ez
′

z′ − 2
dz′ = e2, [1 mark]

while for n > 2

bn =
1

2πi

∫

γ

f(z′)(z′ − 2)n−1 dz′ =
1

2πi

∫

γ

ez
′

(z′ − 2)n−3 dz′ = 0[1 mark]

by the Cauchy integral theorem. Thus we have the expansion

f(z) =
e2

(z − 2)2
+

e2

z − 2
+

∞
∑

n=0

e2

(n+ 2)!
(z − 2)n.[2 marks]

Now the Taylor series for ez around z = 2 can be found as follows:

ez = e2ez−2 = e2
∞
∑

n=0

1

n!
(z − 2)n =

∞
∑

n=0

e2

n!
(z − 2)n; [2 marks]

from this we see that the above series is simply this series, divided by (z − 2)2 term-by-term, as we would
expect.[1 mark]

Now the Taylor series for ez around z = 2 converges on the entire complex plane; thus the series above
for f will converge everywhere where it is defined, i.e., on the punctured plane {z ∈ C | z 6= 2}.[2 marks]
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