MAT334, COMPLEX VARIABLES, SUMMER 2020. PROBLEMS FOR JULY 6-10
 Due Tuesday, July 14, at 3:30 PM EDT.

1. Using the formulas in Goursat, $\S \S 35,37$, find the Laurent series for

$$
f(z)=\frac{\sin z}{z}
$$

around $z=0$. How does this series compare to the Taylor series for $\sin z$ around $z=0$? On what set does it converge? Justify your answer.

Let us write

$$
f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\sum_{n=1}^{\infty} b_{n}(z-a)^{-n}
$$

and let γ be a circle around $z=0$; then we have the formulas

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-0\right)^{n+1}} d z^{\prime} \\
& b_{n}=\frac{1}{2 \pi i} \int_{\gamma} f\left(z^{\prime}\right)\left(z^{\prime}-0\right)^{n-1} d z^{\prime}
\end{aligned}
$$

Substituting in $f(z)=(\sin z) / z$, the first of these gives

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \int_{\gamma} \frac{\sin z^{\prime}}{z^{\prime n+2}} d z^{\prime}[1 \mathrm{mark}] \\
& =\left.\frac{1}{2 \pi i} \cdot \frac{2 \pi i}{(n+1)!} \frac{d^{n+1}}{d z^{n+1}} \sin z\right|_{z=0}=\left.\frac{1}{(n+1)!} \frac{d^{n+1}}{d z^{n+1}} \sin z\right|_{z=0} ;[2 \text { marks }]
\end{aligned}
$$

thus $a_{0}=1, a_{1}=0, a_{2}=-1 / 6, a_{3}=0$, etc., and in general $a_{2 k+1}=0$ while $a_{2 k}=(-1)^{k} /(2 k+1)![1$ mark $]$. Now

$$
b_{1}=\frac{1}{2 \pi i} \int_{\gamma} \frac{\sin z^{\prime}}{z^{\prime}} d z^{\prime}[1 \text { mark }]=\frac{1}{2 \pi i} \sin 0=0,[1 \text { mark }]
$$

while if $n>1$

$$
b_{n}=\frac{1}{2 \pi i} \int_{\gamma} \sin z^{\prime}\left(z^{\prime}-0\right)^{n-2} d z^{\prime}=0[1 \text { mark }]
$$

by the Cauchy integral theorem, since the integrand is analytic everywhere. Thus we have

$$
\frac{\sin z}{z}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k} \cdot[1 \text { mark }]
$$

Now recall that the Taylor series for $\sin z$ is

$$
\sin z=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k+1}
$$

in other words, the Laurent series for $(\sin z) / z$ is just the Taylor series for $\sin z$, divided term-by-term by z, as we might expect[1 mark]. Since the Taylor series for $\sin z$ converges everywhere on the complex plane, the Laurent series above will converge to an analytic function everywhere except possibly at $z=0$; but at $z=0$ the series also clearly converges to 1 , so the series converges on the entire complex plane.[1 mark]
2. Again using the formulas in Goursat, $\S \S 35,37$, find the Laurent series for

$$
f(z)=\frac{e^{z}}{(z-2)^{2}}
$$

around $z=2$. How does this compare to the Taylor series for e^{z} around $z=2$? [Hint: recall that $e^{a+b}=e^{a} e^{b}$; can you use this to find the Taylor series?] On what set does this Laurent series converge? Again, justify your answer.

We use the same formulas as in question 1. Thus we have, first of all, letting now γ denote a circle around $z=2$,

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \int_{\gamma} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-2\right)^{n+1}} d z^{\prime} \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{e^{z^{\prime}}}{\left(z^{\prime}-2\right)^{n+3}} d z^{\prime}[1 \mathrm{mark}]=\left.\frac{1}{(n+3)!} \frac{d^{n+2}}{d z^{n+2}} e^{z}\right|_{z=2}[2 \mathrm{marks}]=\frac{e^{2}}{(n+2)!},[1 \mathrm{mark}]
\end{aligned}
$$

by the Cauchy integral formula for derivatives, while

$$
\begin{aligned}
& b_{1}=\frac{1}{2 \pi i} \int_{\gamma} f\left(z^{\prime}\right) d z^{\prime}[1 \text { mark }]=\frac{1}{2 \pi i} \int_{\gamma} \frac{e^{z^{\prime}}}{\left(z^{\prime}-2\right)^{2}} d z^{\prime}=e^{2},[1 \text { mark }] \\
& b_{2}=\frac{1}{2 \pi i} \int_{\gamma} f\left(z^{\prime}\right)\left(z^{\prime}-2\right) d z^{\prime}=\frac{1}{2 \pi i} \int_{\gamma} \frac{e^{z^{\prime}}}{z^{\prime}-2} d z^{\prime}=e^{2},[1 \text { mark }]
\end{aligned}
$$

while for $n>2$

$$
b_{n}=\frac{1}{2 \pi i} \int_{\gamma} f\left(z^{\prime}\right)\left(z^{\prime}-2\right)^{n-1} d z^{\prime}=\frac{1}{2 \pi i} \int_{\gamma} e^{z^{\prime}}\left(z^{\prime}-2\right)^{n-3} d z^{\prime}=0[1 \text { mark }]
$$

by the Cauchy integral theorem. Thus we have the expansion

$$
f(z)=\frac{e^{2}}{(z-2)^{2}}+\frac{e^{2}}{z-2}+\sum_{n=0}^{\infty} \frac{e^{2}}{(n+2)!}(z-2)^{n} \cdot[2 \text { marks }]
$$

Now the Taylor series for e^{z} around $z=2$ can be found as follows:

$$
e^{z}=e^{2} e^{z-2}=e^{2} \sum_{n=0}^{\infty} \frac{1}{n!}(z-2)^{n}=\sum_{n=0}^{\infty} \frac{e^{2}}{n!}(z-2)^{n} ;[2 \text { marks }]
$$

from this we see that the above series is simply this series, divided by $(z-2)^{2}$ term-by-term, as we would expect.[1 mark]

Now the Taylor series for e^{z} around $z=2$ converges on the entire complex plane; thus the series above for f will converge everywhere where it is defined, i.e., on the punctured plane $\{z \in \mathbf{C} \mid z \neq 2\}$.[2 marks]

