
MAT334, COMPLEX VARIABLES, SUMMER 2020. PROBLEMS FOR MAY 25 – 29

SOLUTIONS

Due Tuesday, June 2, at 12:00 noon EDT.

1. [8 marks] Determine Log z for each of the following points and branch cuts:
(a) z = 1√

2
− i 1√

2
, branch cut along θ = π, interval (−π, π).

We have z = ei
7π
4 = e−iπ

4 , so Log z = log 1− iπ4 = −iπ4 .
(b) z = 1√

2
− i 1√

2
, branch cut along θ = 0, interval (0, 2π).

We have z = ei
7π
4 , so Log z = log 1 + i 7π4 = i 7π4 .

(c) z = e, branch cut along θ = π/2, interval (π/2, 5π/2).
We have z = e · e0 = e · e2πi, so Log z = log e+ 2πi = 1 + 2πi.

(d) z = e, branch cut along θ = π, interval (−π, π).
We have z = e · e0, so Log z = log e+ i · 0 = 1.

Marking: for each part, 1 mark each for the correct real and imaginary part of Log z.

2. [5 marks] Compute the following difference of limits:

lim
θ→0+

Log reiθ − lim
θ→2π−

Log reiθ,

where r > 0. Does this difference depend on which branch of Log is used? What would happen if we
considered instead the difference

lim
θ→θ+

0

Log reiθ − lim
θ→(θ0+2π)−

Log reiθ

where θ0 is any real number?
Strictly speaking, since

Log reiθ = log r + i(θ + 2nπ), n ∈ Z,

the first difference above would become a difference of sets of values, namely

{log r + i · 2nπ|n ∈ Z} − {log r + i · (2m+ 1)π|m ∈ Z},

which gives simply {2niπ|n ∈ Z}. What was intended, though, was that we consider a particular branch of
the logarithm before taking the limit. Now recall that choosing a branch also involves choosing a particular
interval for θ; now we wish this interval to have numbers close to but slightly above 0 as well as numbers
close to but slightly below 2π, and since it must be of length 2π, it must be simply the interval (0, 2π). If
we use this interval, we obtain

lim
θ→0+

Log reiθ − lim
θ→2π−

Log reiθ = log r − [log r + 2πi] = −2πi.

Taken in this sense, there is only one branch for which the limit makes sense, so the second part of the
question does not even make any sense. If, however, we consider the limits on θ not strictly as limits on θ
but rather as limits on points, while still requiring that the full 2π range between the points be included in
the θ interval, then we can take other branches, but only those for which the θ interval is (2nπ, 2(n+ 1)π)
for some integer n. For such a branch, the difference in the limits is now (rewriting the limits as noted above
to correspond to points)

lim
θ→2nπ+

Log reiθ − lim
θ→2(n+1)π−

Log reiθ = log r + 2nπi− [log r + 2(n+ 1)πi] = −2πi,

so that the difference does not depend on the branch chosen.
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The second part is very similar. If we consider the full Log function, it is quite easy to see that we will
get the same set as the difference:

lim
θ→θ+

0

Log reiθ − lim
θ→(θ0+2π)−

Log reiθ = {log r + i(θ0 + 2nπ)|n ∈ Z} − {log r + i(θ0 + 2(m+ 1)π)|m ∈ Z}

= {2nπi|n ∈ Z}.

If we consider a branch cut along θ = θ0, and again consider the indicated limits as indicating limits on points

rather than limits on θ, then we see that we must take the θ range to be of the form (θ0+2nπ, θ0+2(n+1)π),
and the difference in limits will be

lim
θ→(θ0+2nπ)+

Log reiθ − lim
θ→(θ0+2(n+1)π)−

Log reiθ = log r + i(θ0 + 2nπ)− [log r + i(θ0 + 2(n+ 1)π)] = −2πi,

exactly as before. This difference also does not depend on which branch we take.

Marking: Roughly, 2 marks for each difference, 1 mark for making a correct statement about the dependence
on the branch.

3. [4 marks] For a given complex number z, use the quadratic formula and the relation

cosw =
eiw + e−iw

2

to compute all complex numbers w satisfying cosw = z.
Let us write z = cosw; then we may proceed as follows:

z =
eiw + e−iw

2

eiw + e−iw = 2z

e2iw − 2zeiw + 1 = 0 [1 mark]

eiw =
1

2

(

2z + (4z2 − 4)1/2
)

= z + (z2 − 1)1/2 [1 mark]

iw = Log
(

z + (z2 − 1)1/2
)

[1 mark]

w =
1

i
Log

(

z + (z2 − 1)1/2
)

. [1 mark]

4. We know that the exponential function ez is analytic on the entire complex plane, and hence conformal
at each point. Let us see what this map looks like in practice.
(a) [6 marks] Consider straight lines parallel to the real and imaginary axes. What is the image of these

lines under the map z 7→ ez? (For example, if you parameterise the two lines as γk(t), what kind of
curve is eγk(t)?) Sketch a couple representative examples (both the original lines and the image curves).
A straight line parallel to the real axis can be parameterised as

γ(t) = t+ iy

for some real number y. Under the map z 7→ ez, this becomes

t 7→ eteiy = et(cos y + i sin y),

which is a ray from the origin (but not including the origin) going to infinity along the direction given by
cos y + i sin y. Similarly, a straight line parallel to the imaginary axis can be parameterised as

γ(t) = x+ it,
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where x is some real number; under the map z 7→ ez, this becomes

t 7→ exeit = ex(cos t+ i sin t),

which is a circle centred at the origin with radius ex.

Marking: For both lines, 2 marks for a full and correct description of the image curve. 1 mark for each of
the corresponding sketches.
(b) [4 marks] Now consider two lines passing through the origin, making angles θ1 and θ2 with the positive

real axis. What is the image of these two curves under the map z 7→ ez? Sketch the image curves for
two particular values of θ1 and θ2 (neither of which is a multiple of π/2!).
A curve passing through the origin making an angle θ with the positive real axis can be parameterised

as
γ(t) = t(cos θ + i sin θ);

one way of seeing this is to note that the complex number cos θ + i sin θ corresponds to a unit vector which
makes an angle θ with the positive real axis. Thus the image of the two given curves under the exponential
map z 7→ ez is

et(cos θ1+i sin θ1) = et cos θ1 (cos [t sin θ1] + i sin [t sin θ1])

and
et(cos θ2+i sin θ2) = et cos θ2 (cos [t sin θ2] + i sin [t sin θ2])

If there weren’t the factors of et cos θ1 and et cos θ2 , these would be circles centred at the origin; but this leading
factor means that we get instead spirals – at least as long as cos θk 6= 0!

Marking: 2 marks (total) for determining the image curves; 1 mark for each of the graphs.
(c) [3 marks] How does your work from (a) and (b) exemplify the conformality of ez?

For part (a), it is clear that rays from the origin and circles centred at the origin intersect at 90◦ angles,
just as do lines parallel to the real and imaginary axes. For part (b), conformality would mean that the
angle between the original lines at the origin is equal to the angle between the spirals at the origin – if
they intersect anywhere else it doesn’t matter. The angle between the spirals at the origin can be found by
computing their tangent vectors. In complex form, these are

d

dt
et(cos θ1+i sin θ1)

∣

∣

∣

∣

t=0

= cos θ1 + i sin θ1,

d

dt
et(cos θ2+i sin θ2)

∣

∣

∣

∣

t=0

= cos θ2 + i sin θ2,

which are just the direction vectors for the original lines. Thus the angle between the spirals at the origin is
the same as the angle between the original lines.

Marking: 2 marks for noting that the rays and circles in (a) intersect at 90◦ as do the original lines. 1 mark
for observing that the spirals in (b) make the same angle at the origin as do the original lines.

5. We know that branches of root functions are analytic on their domains, and hence conformal there. Let
us see how this works out in practice.
(a) [8 marks] Choose a particular branch of the square root function z 7→ z1/2. (Make sure you indicate

your choice clearly!) Consider straight rays from the origin and circles centred on the origin; what
is their image under this map? Derive formulas and sketch a couple representative examples (sketch
both original and image curves). How does this exemplify the conformality of your particular branch of
z 7→ z1/2?
We choose the branch obtained by making a cut along the negative real axis and requiring θ to lie in

(−π, π); thus we have
z1/2 = r1/2eiθ/2 when z = reiθ, θ ∈ (−π, π).

Now a straight ray from the origin which makes an angle of θ with the positive real axis can be parameterised
as

γ(t) = t(cos θ + i sin θ), t ∈ (0,+∞);
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we may assume that θ ∈ (−π, π), which means that the image of this ray under the chosen branch of the
square root function is simply

t 7→ t1/2
(

cos
θ

2
+ i sin

θ

2

)

, t ∈ (0,+∞)

which is still a ray from the origin, but at an angle of θ/2 to the positive real axis instead of θ. Similarly, a
circle of radius r centred on the origin can be parameterised as

γ(t) = r(cos t+ i sin t), t ∈ [−π, π];

in order to find its image we drop the point −r, which corresponds to t = ±π, and thence obtain the image
curve

t 7→ r1/2
(

cos
t

2
+ i sin

t

2

)

, t ∈ (−π, π),

which is a semicircle extending from −π/2 to π/2 and with radius r1/2, though still centred at the origin.
Since straight rays from the origin intersect both circles and semicircles at 90◦ angles, we see that the

angles between these curves is preserved by the square root function, as expected.

Marking: 2 marks for specifying the branch (both the location of the cut and the θ interval). 2 marks each
for deriving an analytic representation of the image curves. 1 mark for both sketches, 1 mark for noting the
conformality relation.
(b) [4 marks] Consider two rays from the origin which make an angle of less than π with each other. What

is the angle between the images of these lines under the map from (a)? Does this contradict what we
know about the relationship between analytic functions and conformal maps? Why or why not?
Note that any two rays from the origin make two angles, one of which is less than (or equal to) π and the

other of which is greater than (or equal to) π. Suppose that the angle which is less than π does not include
the branch cut, and let θ1, θ2 ∈ (−π, π) denote the angles between the lines and the positive real axis; then
|θ1 − θ2| < π. We may assume that θ1 > θ2 (just reorder if not!). The two rays may be parameterised as

γ1(t) = t(cos θ1 + i sin θ1), t ∈ (0,+∞),

γ2(t) = t(cos θ2 + i sin θ2), t ∈ (0,+∞).

Under the square root map, these two rays will be mapped to the rays

t 7→ t1/2
(

cos
θ1
2

+ i sin
θ1
2

)

, t ∈ (0,+∞),

t 7→ t1/2
(

cos
θ2
2

+ i sin
θ2
2

)

, t ∈ (0,+∞),

which make an angle of 1
2 (θ1 − θ2) with each other – i.e., half that of the angle between the original two

rays. This does not contradict what we know about the relationship between analytic and conformal maps,
though, since the square root function is not analytic at the origin.

Marking: 2 marks for showing (this requires some kind of computation, not simply a picture) that the angle
between the image lines is half that between the original lines. (The requirement ‘make an angle of less than
π with each other’ was actually an accidental red herring.) 1 mark for saying that this is not a contradiction,
1 mark for an explanation as to why.
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