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ABSTRACT

Focussed Solutions to the Einstein Vacuum Equations

A thesis submitted for the degree of Doctor of Philosophy in Mathematics, 2020

Nathan Thomas Carruth, Graduate Department of Mathematics, University of Toronto

We construct solutions to the Einstein vacuum equations in polarised translational symmetry in 3 + 1
dimensions which have H! energy concentrated in an arbitrarily small region around a two-dimensional null
plane and large H? initial data. Specifically, there is a parameter k and coordinates s, z, v, y such that the
null plane is given by x = k=1/2/2, v = T+/2 — k~'/2 for some T independent of k, the H' energy of the
solution is concentrated on the region [0,7"] x [0, k7 /2] x [Tv/2 — k~!,TV/2] x R!, and the H? norm of the
initial data is bounded below by a multiple of £3/4. The time 7" has a lower bound independent of k. This
result relies heavily on a new existence theorem for the Einstein vacuum equations with characteristic initial
data which is large in H?. This result is proved using parabolically scaled coordinates in a null geodesic

gauge.
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0. INTRODUCTION

0.1. Previous work

The question of finite-time existence of solutions to the Einstein vacuum equations has been studied
from various angles. These include attempts to prove existence for general data in as low regularity as
possible, such as the L? curvature conjecture (see Klainerman, Rodnianski and Szeftel [8]). This provides
a lower bound on the existence time of a solution to the Einstein vacuum equations with general initial
data depending on, among other things, the L? norm of the curvature of the initial data, and is currently
the best result known in this direction;* for an earlier classical result, see Fischer and Marsden [4]. From
another direction, one may seek more special solutions with even lower initial regularity. The results in
this thesis fall into this second category. Other important examples in the recent literature include the
results of Christodoulou [3], Klainerman and Rodnianski [6], and Klainerman, Luk and Rodnianski [5] on
the formation of trapped surfaces, as well as Luk and Rodnianski’s work on impulsive gravitational waves,
where the initial data has a delta-function singularity (see [9], [10]). We will now briefly review these results.

The papers [3], [6], [5], and [9] all make use of the same basic geometric setup, namely a double null

foliation of the spacetime. This can be described as follows. The spacetime is foliated by null geodesic cones

where C, is generated by outgoing null geodesics and C,, by incoming null geodesics, and u and u are optical
functions. C, and C,, are assumed to intersect in spheres Sy ,; let 64 denote coordinates on these spheres
(we assume 64 to be transported along the geodesics generating C, and C,). The work in [3], [6] and [5]
makes use of initial data on a particular outgoing null cone C,,, which is assumed to be Minkowskian except
for a ‘blip’ on an interval of length (in u) equal to a (suitably small) number 4.

Christodoulou [3] then specifies initial data for the (conformal class of the) metric on C,,, as follows
(see [3], 2.1). This process is slightly involved, but the important part for our purposes is as follows. Using
stereographic coordinates, the specification of the conformal class of a metric on the spheres S, ., is reduced
to the problem of finding positive-definite elements of SLy(R) (2.28), which are then expressed as the
exponentials of elements of sly(R) (the set of trace-free, symmetric 2 X 2 matrices on R). These matrices
are then specified using the ansatz ([3], (2.46))

Yup (u,0) = f;jwo (%,0) : (0.1.1)
for a fixed function ¢g. g is related (though not identical) to the function 7, introduced below (see equation

(0.2.29) and equation (5.1.20)).

* On the other hand, after reducing by a one-dimensional symmetry as is done in this work, better general
results become available: for example, the work of Smith and Tataru [14] suggests a general existence result
in H7/**t. This would still not be strong enough for the purposes of this work. (We thank the external

reviewer for bringing this point to our attention.)
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Klainerman and Rodnianski [6] re-express condition (0.1.1) in terms of ansétze on the trace-free part of

the second fundamental form of Cy,, Xo, as follows (see [6], (1.14)):
Xo(w,w) =62 fo(6~ u, w), (0.1.2)

where w are transported coordinates along their Hy (equivalent to Cy, in [3]); note that this is in line with
(0.1.1) since o should contain a u derivative of the metric. They then observe that a natural alternative

would be the parabolic scaling (see [6], (1.16))
Xo(w,w) = 6712 fo (67 u, 67/ %w), (0.1.3)

and use this to motivate conditions on the L? norms of the curvature components and Ricci coefficients, for

example the assumption ([6], (2.2))*

2 1 4
32| %ol 0 + D 82NV Roll 20w + D D, 872(82V)™ H(6V4) ¥ VRl L2(0,m) < 00, (0.1.4)
k=0 k=0m=1

where V4 indicates differentiation with respect to u, and V indicates differentiation with respect to the
angular variables.

It should be noted that in [3], as well, the specific ansatz (0.1.1) is less important than the conditions
on the norms of the curvature components which it motivates, see [3], p. 20.

Ansétze (0.1.2) and (0.1.3) give, in the left- and right-hand columns respectively,

||)A<O||Loo ~ 571/27 HXO”LOC ~ 571/2a
9k X0l ~ 67812 kRl ~ 6R2, (0.1.5)
IV X0l Lo ~ 6712, V™ %ol ~ 6Cm=1/2)

where the L* norms are taken over the initial outgoing null cone. The results in the left-hand column can be
compared to [3], (2.117), (2.69), (2.71); those in the right-hand column can be compared with the condition
(0.1.4).

The goal of [3] and [6] is to prove the existence of trapped surfaces, and this guides their assumptions.
Luk and Rodnianski [9], [10] proceed in a different direction (though obtaining, inter alia, a trapped surface
result, see [10]), by constructing solutions to the Einstein vacuum equations for which the curvature has a
delta function singularity across a null hypersurface. This is done by exploiting the structure of the Einstein
equations to compensate for the lack of regularity in one null direction by using high regularity in the spatial
directions. In [9] they construct initial data possessing such a curvature singularity, and also give a sequence
of C*° initial data converging to it. Their main work is concerned with the singular initial data and hence

does not make use of scaling anséitze like those above (which would be inapplicable in the singular null

* Here by L?(0,u) is meant an L? norm on the sphere Sy, and by L>(0,u) is evidently meant an L>

norm on the same sphere. Unlike [3], [6] solve in the region w > 0 rather than u > wug.
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direction). Nevertheless, the smooth approximating sequence they construct has properties which can be
compared to (0.1.4). Specifically, use is made of the sequence of functions (see [9], section 3.1; we have

corrected an addition to a multiplication, as evidently intended)

ho(2) = Lasop - Y, h(22) (0.1.6)
j=—o00
where ~ ~
~ ho(x) — ho(2x), x>0
h(m):{O()OO( ) z <0

and hg is a C° function with support contained in [—1,1] and identically equal to 1 on [—1/2,1/2]. The
smooth approximating sequence to the metric on the initial outgoing null cone is then obtained as follows.

First set

2

where 41, 42 are positive definite matrices with dety; = 1, and u, is a parameter chosen sufficiently small
that jn is still positive definite. The smooth approximating sequence to the metric is then obtained by
normalising jn:

PRNE S (0.1.8)

n =7,
\ /detln
Solutions are found for u € (0, €), where € > 2u, is sufficiently small.

To connect these results to the scaling ansitze in [3] and [6], we make the following observations. From

(0.1.6), we obtain for all n

hn(x) = hp—1(22) = ho(2™x), allz, n (0.1.9)
0, x < 2-(n+2)
ho(z) = {17 3 o) - (0.1.10)
Let us fix n and, for the purpose of comparison with [3] and [6], set 6 = 27". By (0.1.10), we have
hl (z) =0, x¢ (2—(n+2)72—(n+1))7
so by (0.1.9) and (0.1.10) we have, setting M = sup h{(x),
z€R
d ! n n / n 1
T (xhn(x)) = hp(z) + zhl, (x) = ho(2™2) + 2"zh((2"2) < 1+ §M
x
From this it is evident that there is some constant C independent of n such that
7]
ZAal<0
| <
for u € (0,u,). Continuing, it is clear that there is some constant Cy, independent of n such that
O < o2 = 05 (0.1.11)
aym ’)/77/ - m - m M
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for u € (0,uy). (Luk and Rodnianski obtain a similar result for the difference 4, = 4, — Yn—1, see [9],
section 3.1.) Using (0.1.11) to compare 0,%, with the ansétze in (0.1.5), it is clear that the derivatives of
the metric, in the direction along the initial outgoing null cone, are smaller in [9] by a factor of §'/2. This

will be discussed more later in the context of our results, see the discussion at the end of the next section.

Note that, like [3], the result in [9] does not include any kind of scaling in the spatial directions tangent
to the spheres Sy .. As we noted above, the ability to exploit high regularity in the spatial directions is

important to the work in [9].

0.2. Introduction

We have seen that [3] and [6] both make use of scaling assumptions on initial data. In both cases,
however, the work is carried out, and the results proved, in the original coordinate system (what we might
term the physical picture), and powers of the scaling parameter are kept track of through weighted norms
(see (0.1.4), for example). In this thesis we make the next logical step and rewrite Einstein’s equations in a

coordinate system to which a parabolic scaling (like that in (0.1.3)) has been applied.

More specifically, we work with the class of polarised translationally symmetric* metrics, and apply a
parabolic scaling to the reduced system. Specifically, we work in coordinates (s, z,v,y), where the metric is
translationally symmetric in y and the coordinate system sz v can be described as follows (see Section 1.2 for
the detailed construction). v parameterises null geodesics foliating the hypersurface s = 0, s parameterises
null geodesics throughout spacetime, and x is a transverse spatial coordinate, constant along the geodesics
parameterised by v and s. Thus the hypersurfaces of constant v are null, while the hypersurfaces of constant
s, other than s = 0, need not be. In terms of the double null foliation, s corresponds to the coordinate u,
while on the initial null hypersurface s = 0 the coordinate v corresponds to w. (This correspondence does
not hold for s > 0 since the other hypersurfaces of s need not be null.) While for us the hypersurfaces s = 0
and v = 0 are hyperplanes, not cones, and hence there is no real reason to consider one of them ‘outgoing’
and the other ‘incoming’, we may, for ease of comparison with the double null case, refer to s = 0 as the

‘outgoing’ initial null hypersurface, and v = 0 as the ‘incoming’ initial null hypersurface.

The Einstein equations for a metric of this symmetry class can be analysed as follows. In the above
coordinate system, a metric which is polarised translationally symmetric along y can be written in the form

(where indices 0123 correspond respectively to sxvy)

0 0 —e=2(s:20) 0
0 a(s,z,v)e" 280 (s, x v)e2v(520) 0

9ij = 76727('5,:6,’0) b(S, T, v)672'y(s,a:,v) C(S, z, 0)672'\/(5,1,1;) 0 ) (021)
0 0 0 e2(se)

* Note that our use of this symmetry class means that our results are not properly contained in those of

the papers just discussed, though there are connections; see Section 0.4 for further discussion.
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and the Einstein vacuum equations Ric (g) = 0 give rise* to Riccati equations

2
%a = ©sa)” 4a (8yy)° (0.2.2)
2a
0% = 5 (0.0) (0.8) — 40,7 (b0, +0.) (0.2.3)
2 2
d%c= (G 2057 (2&,7 + (b + c) D57y + 2baw) 2 (0:7)° (0.2.4)
2a a a a

for the quantities a, b, and ¢, and a free wave equation

2 2
[(b - c> 2 + 298582 — 20,0, + 185 21 ((b + c) Osa _ 498519 + %Bxa +205¢ — gamb + 8”a> s
a a a a a a a a

2 a
1/ 2 O0za 10sa -

for . This is in fact simply the wave equation [ 7 = 0 with respect to the metric (where indices 012

correspond to sxv)

0 0 -1
hij = 0 a b ] (026)
-1 b ¢

this can be compared to the form of the metric with respect to a double null foliation in 3 4+ 1 dimensions,
see for example Section 2.2 in [9]. Note that the system (0.2.2 — 0.2.5) is in 24 1 dimensions because of the
translational symmetry in y imposed on g. While the wave equation (0.2.5) is linear in +, it is coupled in a
nonlinear way to the Riccati equations (0.2.2 — 0.2.4), which taken as a system are nonlinear.}

Most of our work will be done in a scaled picture, given as follows. Define the scaled coordinates

5=s, T = k%, v = kv, (0.2.7)

and scaled quantities

=k(a?-1), b=kY%, c=c¢,  F=k'y, (0.2.8)

* As usual, the Einstein vacuum equations also give rise to constraint equations. We shall say more about

these shortly.
1 Curiously, the Riccati equations can be turned into a system of equations which are linear if solved in the

correct sequence: specifically, equation (0.2.2) gives a linear equation for £ = a'/?; given a (or, equivalently,
¢), equation (0.2.3) is then a linear equation for b; and given a (or ¢) and b, equation (0.2.4) is then a linear
equation for ¢. These linear equations are however still nonlinearly coupled to (0.2.5); also the requirement
a > 0 — necessary to ensure the metric (0.2.6) stays nonsingular — will for a general solution of (0.2.2) fail to

hold after a finite time. B
I Roughly speaking — see equation (0.2.14) below — ‘barred’ quantities, e.g., b, ¢, 7, will have bounds

independent of k — in appropriate spaces to be detailed later, see e.g. equation (0.3.30) — as will derivatives

of ‘barred’ quantities with respect to ‘barred’ variables.
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where ¢ > 1/2 is an exponent we shall leave unspecified for the moment. In terms of these coordinates and

quantities, system (0.2.2 — 0.2.5) can be rewritten as

0250 = —2(1 + k™ 160)k 2 (057)?, (0.2.9)
025 = I (0s30)(05D) — 4K~ 05 (07 + k5067, (0.2.10)
(0

2=k

- -2
o 2k =297 <2am+ 2k’1%8ﬂ+ k1 <c+ k:ll;> M) — k1*2%(aﬂ)2,(0.2.11)

while the wave equation (0.2.5) can be rewritten as

1/.b — 1,2 1o+ o
l(—wgawra%) + - <2b6g8;—0852—5_1a8£— ( ¢ — —0zb + ”£> o5+ ( b — 665266) Oz — SE%)
kE\ @ a / a a !
2 — - [ — 2 —
1 (b _0s0¢ b, - L0560 1 b 00500, | _

which is the wave equation Dﬁ'y = 0 corresponding to the metric h = kh represented in the 3Z ¥ coordinate

system by
B 0 0 -1 1 0o o 0
hij=1 0 1 0 |+ T 0 60(1+k='60) b (0.2.13)
-1 0 0 0 b c

Note that, for ¢ € [1/2,1), the terms of leading order in k on the right-hand sides of (0.2.9 — 0.2.11) are
forcing terms quadratic in 7 and (at least if we expand out 1/a = 1/(1 + k~16¢)?) independent of ¢, b,
and ¢, and that for any ¢ > 1/2 all other terms decay at least as fast as k~!. Similarly, the wave equation
(0.2.12) is clearly the Minkowski wave equation (—20505 + 02)5 = 0 with a correction of order k~'. Thus we
have the preliminary rough ansatz for the behaviour of the full solution on the bulk I'. It will be sharpened
and extended considerably momentarily in terms of the L2-based energies defined in equation (0.3.14) and
equation (0.3.30) below. Our ansatz is that there is some C' > 0, depending, among other things, on the size

of the initial data, but independent of k, such that

e T Pt L R L O e e
Loo(T) Loo(I) Loe(I) Leo(T) Lo(T) Lo=(T) L=y
(0.2.14)
where I is the region (see the figure)
1
I ={(77) eR*|5€0,T], 7€ [0,kTV2], —=(5+7) < kT} (0.2.15)

2
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Figure 0.2.1

for some T > 0, T/ > 1,* 5,m = 0,1, and 9; denotes one of 05, 0z and Jy. Equivalently, in terms of the

unscaled coordinates and variables,

k&7 1/2_1H /2999, 1/2_1H i0), 1/2_1H ‘k1/2 jb‘
O I L MU M S [ NCRERSS] (Y (L
j j . ~1/25j 1—15j
19208l oo ory » 102 ll oo ory » KO Y ow oy |3 /agaﬂ‘m(om’ K030, || oo oy <
(0.2.16)
where here
1
o = {(s,z,v) e R} |s € [0, 7], v € [0,TV2], —=(k's +v) < T} (0.2.17)

V2
7 =0,1,and m = 0,1,2. As noted, we shall sharpen this considerably after we introduce energies for the
quantities a, b, ¢, and v, below; in particular, we shall in addition require that derivatives with respect to @
and v do not change the order in k of any of the above quantities, up to the degree of regularity at which we
close our estimates (see Chapter 6 for the details). Note that this implies, effectively, that derivatives with
respect to  cost an extra factor of k'/2 while derivatives with respect to v cost an extra factor of k, exactly
as in [6], (1.23) (see also equation (0.1.4) above).
Our choice of gauge gives, on s = 0, the conditions (see Proposition 1.2.1)

dc

b=c=—=0. 0.2.18
c= 3. ( )

Given this, it can be shown that the Einstein vacuum equations are equivalent to the system (0.2.2 — 0.2.5)

together with the constraint equations on s = 0 (note the similarity between the first of these and (0.2.9))

»Pa _ (9ya) )

* The restriction 7”7 > 1 is made for technical reasons related to the need to take a cutoff in the 5 direction
(see the discussion after Theorem 0.3.3 at the end of Section 0.3 below); specifically, we do not wish the
cutoff to increase norms of s derivatives. We shall occasionally ignore it below, but we may always impose

it when needed.
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O (1298 _ e
7 (a 6s>_4a 00,y (0.2.20)

2

d%a 9%b ObOa  0Oalda (5‘b
2 a 95

2
=20—— — —— 4 — — hd 2 )
“ovos ~ “"9zds 050z | v Os ) +4a(9:7) (0.2.21);

in other words, we have the following lemma.

0.2.1. LEMMA. If the system (0.2.2 — 0.2.5) holds on the set " defined in (0.2.17), while the constraint
equations (0.2.19 — 0.2.21) hold on
%o = {(s,z,v) € T'|s =0}, (0.2.22)

then the Einstein vacuum equations

Ric(g) =0 (0.2.23)
for the metric given by (0.2.1) hold on o' x R!.

The proof is given in Chapter 2.*
In the scaled picture, this result implies that the Einstein vacuum equations (0.2.23) are equivalent to

requiring that (0.2.9 — 0.2.12) hold on T" (as defined in (0.2.15)), and that the constraint equations

50

o =201+ k180K 2 (957)? (0.2.24)

v

O5 (1 + k™60 05b) = 4(1 + k™' SO k' > 0907 (0.2.25)
-

2(1+k~150) - g@gi = (14 k~180)07 ([1 + k=160 05b) + i (95D)° + 26" (3:9)*  (0.2.26)

hold on the set
Yo ={(5,7,0) eT'|5 =0}

It is principally in the scaled form (0.2.24 — 0.2.26) that we shall study the constraint equations (see Chapter
5).
As initial data for the system (0.2.2 — 0.2.5), we must specify

a|5:0, asa/‘s:()a asb|5207 7‘5207 7'1}:0
satisfying (0.2.19 — 0.2.21). By (0.2.19 — 0.2.21), specifying v|s—o and
a|s:0, V=00) ava|s:0, V=00> 8sa|s:O, V=00> asb‘s:(),v:voa (0227)

for some vy € [0, Tv/2] will uniquely determine a, dsa and dsb on some neighbourhood of the line {v = vy} in

%g. To extend these solutions to [0,7/2], with a uniform lower bound for a, requires additional conditions

* Note that — unlike the treatment in [11] — here there are no separate constraint equations along the
incoming null hypersurface v = 0, essentially because the Riccati equations for a, b and ¢ play the role of

the constraint equations there.
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on v|s—o as well as the quantities specified in (0.2.27). In particular, we have the following result (see Section

5.1). Note the similarity of equation (0.2.29) to the scalings in (0.1.1), (0.1.2), (0.1.3).

0.2.2. LEMMA. Let 6v1, 003 € (0,1) be two fixed numbers,* independent of k, and assume that k is large
enough that kT/v/2 € (614, kTvV2 — dvy). Let wy, we be C™ functions on R? with support contained in

[0,1] x [0, 6T1], [0,1] x [0, 6T5],

respectively, and which, together with all of their derivatives, have L> bounds on R? which are independent

of k. Define w(T,v) on ¥y by

w1 (Z,7), v € [0, 671
@y (T, V) = 0, T € [601,kTV2 — 6] . (0.2.28)
wo (T, — (KTV?2 — 673)), T € [kTV2 — 60a, kTV/2]
If we specify
Y]s=0 = k™40 - wo (k' 2z, kv), (0.2.29)

where 0 < 1 is a scaling parameter independent of k, and

a’|s=0,v:T/\/§ =1 aﬂa's:O,v:T/\/i =0, 650"3:0,U=T/\/§ =0, asb‘szo, v=T/v2 — 0, (0230)
and furthermore assume that ¢ > 1/2, then for o sufficiently small (depending only on w) the equations
(0.2.19 - 0.2.21) have a unique solution on [0,7v/2], and @ has a uniform lower bound on that interval.

We shall show in Chapter 2 that under the conditions of Lemma 0.2.2, if we specify 7|,—¢ appropriately

(in a way which satisfies the necessary consistency conditions, see equation (1.3.2)), the transverse derivatives

85’7‘8:07 8§a‘s:0a 8§b|5:07 aﬁc|5:0a

85’”0:07 8567“1):0; 85b|71:0, aﬁc|v:07

for suitable values of ¢, will also be uniquely determined in a way consistent with the system (0.2.2 — 0.2.5),
and will have L*° bounds on s = 0 and v = 0 respectively which are independent of k. See Proposition 5.4.1

for the details.

The treatment of the constraints in the scaled picture sheds light on the requirements on 7|s—¢ in

(0.2.29). As initial data for the system (0.2.9 — 0.2.12), we must specify

6ll5—0, 956l|5—0, dsbls—o. ¥ls=o0s ¥lw=0
satisfying (0.2.24 — 0.2.25). As before, specifying 7|s—¢ and

ﬁ|§:0,5:50; aﬂﬁ|§:0,5:507 &Wh:oj:%, sg‘gzoﬁzﬁ (0.2.31)

* The restriction 6o, 003 < 1 is purely for technical convenience.
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for some Ty € [0, kTv/2], will uniquely determine 6/, ds6¢ and dsb on 5 = 0. For the ansatz (0.2.14) to hold
with I" replaced by X¢, the quantities 6/, s6¢ and Osb must have uniform bounds, independent of &, on all
of Xg. For general 7|5—¢, this is nontrivial since (0.2.24 — 0.2.26) are transport equations in T, and on g, U
ranges from 0 to kT'v/2. To avoid this difficulty we require first that 7|s—o be supported in a region whose size
is independent of k.* A more careful study of (0.2.24) shows that for ¢ < 1, F|3=9 can only have support near
7 =0 and 7 = kTv/2: in other words, it cannot be supported in the middle of ¥y. In the unscaled picture,
this means that |s—o must be supported in a double strip {0 < v < C1/k} U{TV2 — Ca/k < v < T2}, as
in (0.2.29). For technical reasons, we also require the metric h to equal the Minkowski metric on Yg\supp7;
to obtain this condition, it suffices to require the quantities in (0.2.31) to vanish for vy € [Cy, kTV2 — Cy],
explaining (0.2.30).

Note that taking y|,—o supported on {Tv/2 — C/k < v < T+/2} (only) is similar to what is done in [3],
[5], and [6], inasmuch as it allows for the initial data to be Minkowskian followed by a short pulse whose
extent (in the null coordinate) is of size 1/k ~ §.

For ¢ = 1, the ansatz (0.2.14) with I replaced by ¥ will hold for 6/, b and € as long as 7|5 is compactly
supported, regardless of where its support lies.t Note that in this case the ansatz (0.2.14) implies that when
¢ =1, v is smaller by a factor of k~/2 than when ¢ = 1/2. This is exactly in line with our observation, when
comparing equation (0.1.5) with equation (0.1.11) in Section 0.2, that the derivatives of the initial metric in
Luk and Rodnianski [9] — where the initial data is large in the middle of the initial null hypersurface — are
smaller by a factor §'/2 ~ k=1/2 than the corresponding derivatives in Christodoulou [3] and Klainerman
and Rodnianski [6], where the initial data is large at the end of the initial null hypersurface.

The detailed construction of, and resulting L*° bounds on, the initial data are given in Chapter 5.

0.3. Main results

Our main goal in this thesis is to prove finite-time existence of solutions to the Einstein vacuum equations
which are highly localised in H! near a two-dimensional null plane. We achieve this in Chapter 7. Our results
there rely heavily on a more general existence theorem, for initial data satisfying the requirements laid out

at the end of Section 0.2.

* Presumably it would be sufficient to require instead that |z— fall off sufficiently rapidly in v, but we

do not investigate that possibility in this thesis.
T There is, however, a further obstruction in our situation to obtaining initial data satisfying the ansatz

(0.2.14) and the corresponding ansétze for higher derivatives: in order to obtain higher 5 derivatives of 7|5-¢
we must differentiate the wave equation (0.2.12) with respect to 5 and then integrate with respect to v —
again, over an interval whose length is of order k. Thus in general it appears that higher s derivatives of
7 will pick up extra factors of k, violating the ansatz for the higher derivatives. We believe that there are
ways of producing solutions in this case — either by circumventing the problem using other multipliers, or
by specialising still further to functions w which are constructed in such a way that the higher-order (in k)

terms ultimately all cancel — but leave the treatment of the matter for another time.
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Our main result may be stated in words as follows:

For every € € (0, 1) and every k sufficiently large, there is a solution to the Einstein vacuum equations
of the form (0.2.1) such that the fraction 1—e of the H! energy of 7, as a function of s z v, is contained
within a rectangular tube of size k~'/2 x k~! centred on a null geodesic. The existence time of this

solution does not depend on k.

By way of comparison with [6], note that their ansatz (0.1.3) gives an isotropic scaling in the spatial
variables w which amounts to taking initial data concentrated in a region equally small in both spatial
directions, whereas (because of the translational symmetry of the metric g in (0.2.1)) our result involves
initial data which is concentrated in a region small in only one direction (z), with both the data and the
solution constant in the other (y). Further, our solution remains concentrated off of the initial null surface.

More precisely, we have the following theorem (see Corollary 7.3.1).

0.3.1. THEOREM. Let € € (0,1) be given, and let " be as defined in (0.2.17),

1
o = {(s,2,v) € R*|s € [0,T], v € [0, TV2], \ﬁ(s + kv) < ETY.
Then there are constants C, C’ > 0, independent of € and k, such that for 7’7, T sufficiently small, independent

of k, and all k sufficiently large there is a function y¢p,,, supported on the prism
{(s,2,0) € Tlv e [TV2 -k, TV2, 2 € [0,k7/)}

and satisfying
IveB.ollme sy = C'R 4, (0.3.1)

¢ >0, and a solution to the Einstein vacuum equations of the form (0.2.1) such that

Iy — YGB,o |H1(0F)

< (Cle. 0.3.2
Ty (03.2)

Ylos, = YaB,olos,,

Here vgp,o will be a formal Gaussian beam for the solution metric (0.2.1), of whose initial data it is a
part. Thus the construction of vgp,, is more delicate than in the standard case, where the metric is known
from the outset. Also, for fixed 7", T, the H! norm of ygp,, on “Sy will go to zero as a (in general, high)
power of €. See Chapter 7 for the details.

The hard part in establishing this result is to show that the existence times 7" and T' do not depend on
k. This is nontrivial, since by (0.3.1) and (0.3.2) the initial data we use for v have H? norm on T of size
k3/%, which is too large to apply general results such as the L? curvature conjecture [8].

Thus the main work in this thesis is to prove a finite-time existence result of solutions to the Einstein
vacuum equations for initial data in a class sufficiently broad to encompass that needed in Theorem 0.3.1.
We shall describe the result we obtain first in the unscaled picture, and then in the scaled picture, though

most of our work in the actual proof is done in the scaled picture.
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To begin, we define coordinates

t—i(s—i—v) z—i(s—v)
1*/5 ‘f (0.3.3)
re ek (= (ko)
regions (see the figure)*
1
o= {(s,z,v) e R¥|s € [0,T"], v € [0,TV2], ﬁ(k_ls—l—v) <T}
%o = {(s,2,v) € T'|s=0}
0% ={(0,z,v) € o |v € [0 -k T'V2,0]} (034)
Uy ={(s,z,v) €T |v=0}
1
OAO' = {(8,:17,’11) € 0F| E(kils +U) = 0'}
%4, =4, N,
z
Figure 0.3.2
(we take x and ( as coordinates on YA, ); auxiliary quantitiest
On T
2\ 1/2
1+ )qg =Y
07 = k <—( +12k)‘z 2k> ~1l; (0.3.5)
T 2%

On U, indices cd correspond to t x z:

* Regions labelled with variables containing a leading 0 superscript are the unscaled (physical space)
equivalent of the regions in the scaled picture labelled by the corresponding unmarked variables; e.g., T’

corresponds to I', %) to X, etc.
T As with regions, quantities marked with a leading 0 superscript are the unscaled (physical space) equiv-

alents of the corresponding unmarked quantities in the scaled picture.
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b2 c b -1 (b c
cf-1 0 0 1 . 2a 2 vz K (% a 5)
_ -1 = N -1 _ E~'b
(1+k> ook o +2(1 21<;) e a1 —
0 0 k -1 b2 g) k' v c
2a 2 av'2 2a 2
1 1 0 0
+ 5% 0 k' o0 |; (0.3.6)
0 0 k2
On %y, indices cd correspond to z v:
ocd_i<1/2_> 1 0 L(1/2_ 71/2> 0 0,
Aoy = 7 a 1 0 Li! —|—2\/5 a a 0 k1) (0.3.7)

On Wy, indices cd correspond to s z:

0 Lo (’f 0) 11/2<f—0 . )
AUU_\@(a 1) 0 1)+ 550 b ety (0.3.8)

where the factors of k come from the k in the definition of °4, (see (0.3.4)) and the ansatz (0.2.16); sets of
dependent variables (6¢ = (a/2 — 1))

Qo = {60,b,¢},  Q=1{80,b,c,d,00,0,00,0,b}; (0.3.9)

norms on the initial data (here I = (i1,42) denotes a multiindex, |I| = iy + iz, 1 = 0192, we define a

z

function n by*
n(l) =iz +1i1/2,
X denotes one of %y and @y, and the L? norms are with respect to the coordinates zv (%o, OZ:,) or s
(Vo)
dlille) = V2 Y Y RO 010
[I|<n—1weQ
Z telh
=0
Tos, [f] = k3/2/2 - {Qk—l(awff + k;—z(avf)?} + k1 OARD fOuf dvda
0

V2
o7 [f]—kw/ 202+ 210,52 + k0N fOuf dsd
g = - \/i s 2 T oy Ye ] Od saxr

Uxmel] = > kDIx[0"0]

|I|<n71
LXn E LXn£

* Compare Klainerman and Rodnianski’s concept of signature and scaling in [6].
1 The explicit factors of k arise because we are working in the unscaled picture; compare the use of weighted

(0.3.10)

norms in Christodoulou [3] (e.g., (2.41), (12.125 — 12.140)) or explicit factors of the scaling parameter in
Klainerman and Rodnianski [6] (e.g., (1.22), (1.23)). One of the innovations of the current work is the
observation that explicitly scaling the coordinates allows one to work with energies which have no positive

powers of k, see equation (0.3.26), equation (0.3.27), and equation (0.3.30) below.
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squares of norms of the initial data on lines* (here the L? norm on A, is with respect to )

Olom[f](o') = Z k*2ﬁ(1)+1/2 HaIinQ(QAg) ’

[|<m

Ollm[f](o') _ Z k—zﬂ(l)-i-l/Q |:H81in2(QAU) + L1 Ha]awaiz(QAg)} ,

\I\<m
ZZI [05w] ZZI 03] (0.3.11)
=0 we =0 we

1
U0) = 3 { L unal0 (o) + K2 [0 089 (0) + K L0, [0 029 (0) }
21,22:0
1
Uiy = 3 {00 (0) + k22,0 02 (0) + L, [0 0 (0) |
21,22:0

(note that
Un(o) < %' h)(0),  “Llh(o) < °L'[A](0)), (0.3.12)

set

*[f](o) = K/ AA % [(01)? + 1 0uf)? + k200 f)?] + k" - ALY D, fOuf da dC (0.3.13)

o

and finally define energies (the L? norm on %A, is with respect to z and ()

- Y YO o),

|T|<n—1£=0

e Iae, |2
OEn,Z[hKU) _ Z Z k 2n(I)+1/2 |a aSW’Lz(oAU); (0314)

|T|<n—1wen

= Eunlhl(o)
£=0

These give squares of (semi-) norms of C° functions on °4,, and it is effectively with respect to these norms
that we shall close the energy estimates for our system. Note the extra s derivative (appearing as the explicit
d%) in (0.3.10), (0.3.11) and (0.3.14).

We fix v € (0,1),} and assume that the initial data satisfy

1 1
sup “nlhl(o) < 5502 own ]+ B n ] < 157 (0.3.15)
01l 1 2
sup [h)(0) < 5 " \/§(n+2)C§C§V (0.3.16)
1
or' < 2, 0.3.17
L) = R ey (0.3.17)

* Both here and in the scaled picture — see equation (0.3.27) — we use an underline to indicate squares of

norms defined along lines (in this case, 9°4,).
1 The restriction v < 1 is mostly for convenience, in that it allows us to bound v? by v? when ¢ < p and

hence gives the inclusions X™? ¢ X™ and X" C X", see the discussion after Definition 6.3.1 below.
The methods in Chapter 6 would probably allow us to treat the case v > 1 if more careful track were kept

of the exponents of the admissible nonlinearities used.
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where Cy is the Sobolev embedding constant on R! and C, is another constant introduced for technical
reasons (see equation (0.3.37) below). Existence of initial data satisfying the constraints (0.2.19 — 0.2.21)
and the bounds (0.3.15 — 0.3.17) will be shown (by working in the scaled picture) in Chapter 5; see especially
Corollary 5.4.1.

Given the above definitions, we may prove the following theorem.

0.3.2. THEOREM. Let n > 4, T > 1, T > 0. There is a constant C > 0 and a positive integer N, both
independent of k, such that if v € (0, 1) satisfies

T/N
< Cmin{TN, —
v < mln{ CT },

then for all initial data satisfying (0.2.19 — 0.2.21) and (0.3.15 — 0.3.17), there exist functions 64, b and ¢ on
T, having the given initial data on %S¢, and a function v on T having the given initial data on %y U %,
satisfying the Riccati equations (0.2.2 — 0.2.4) and the wave equation (0.2.5), and such that the bounds

(0.3.18)

hold for o € [0, T]. The metric (0.2.1), with a = (1 + §¢)?, will satisfy the Einstein vacuum equations on the

region .

In the scaled coordinates, the foregoing can be written out as follows. We define for convenience the

quantities

We define coordinates
T=—(54+7), £ =1, (=—=(G-19), (0.3.19)
and note that 7 and ¢ will be timelike and spacelike, respectively, for k sufficiently large. We define regions

(see the figure)

1
57,7 eR3|5€[0,T],7 € [O,kT\/i],ﬁ(EjL@) < kT}

(0.3.20)
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auxiliary quantities

On I

_— V1+

A (r6,0) = (

Figure 0.3.3

L(Ga+3) + 5k (cda 1)

Vi-%

On I, indices cd correspond to 7&(:

/\
—_
|
§|0|

o = O
= o O
+
N

On ¥( and X4, indices c¢d correspond to T :

cd __
Az —_—

On Uy, indices cd correspond to ST v:

A =57

sets of dependent variables

1 14+ k7160 6-1a
2 (

o

Qo = {6¢,b,¢},

O = {30,b,¢,0500

2
]l
wolol
Q|
S S
[\v)

o
|
—
Q

(o)

N———

|o-|

|
S

S O ol
|@|

(]
b
Q|
S]]

I—‘OO&

N——

+
N
=|
—
o = o

) ’U(S‘ea zg}a

[0.3

(0.3.21)
¥z
2ka 2

5
av?2

3z
2ka 2

: (0.3.22)

(0.3.23)

(0.3.24)

(0.3.25)

norms on the initial data (here I = (i1,42) denotes a multiindex, |I| = i1 + iz, O = 821 822, X denotes one
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of ¥y and Uy, and the L? norms are with respect to the scaled coordinates 3, T, v, 7, £, ¢, as appropriate)

mell@) =v2 Y 3 00y,

[I|<n—15eq
1
o) = tnslh](0)
=0
Is, [f] =/ % [;(%f)%((%f)ﬂ + kT AEO, fO4f dvdT
0 12 ) (0.3.26)
Tulfl = [ 5 |@s7 + 501 | + 7 60 0uf s
Ixnel7) = Z Tx[0'04)
|I|<n71

LXn § Lan

squares of norms of the initial data on lines (as before, 9; represents one of ds, 0z, or 95, or equivalently 0.,

e, 9¢)

= m; 107172 00, LL[f)(o) = HZ; 107|131 o0,
ZZI [05%7] L szn 1[053)(0), (0.3.27)
(= OweQ =05eq
I[7)( Z Z,n 080 (0), I Z ZI 02 0127](0)

£1,65=0i=0 £1,65=0i=0

(note that
Uh)(o) < MR(0),  Lk(0) < IM[](0)), (0.3.28)

set

ANlo) = [ 51O+ @ef + Oc?] + k7 A0 f0uf dec, (0.3.20)

and finally define energies

Z Z 8185

|I|<n—1£=0

12
Yo D 00 s (0.3.30)

[I|<n—15eq

- Z En,é[h‘] (0)
=0

These give squares of norms of C*° functions on A,, and it is effectively with respect to these norms that
we shall close. Note the extra 5 derivative.

We fix v € (0,1), and assume that the initial data satisfy

1 1
sup iu[h](0) < v, Tng [+ T[] < 512 (0.3.31)
o<kT 32 12
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1

sup A < v? 0.3.32

J§ET7 k(o) < 1+Vv2(n+2)C%C? ( )
1

I'A) (o) < 2 0.3.33

s L0I0) < T G 2032’ (0.3.33)

where Cg and C, are as in (0.3.15 — 0.3.17) above. Existence of initial data satisfying the constraints (0.2.24
—0.2.26) and the bounds (0.3.31 — 0.3.33) will be shown in Chapter 5; see especially Corollary 5.4.1.

Given the above definitions, we prove the following theorem.

0.3.3. THEOREM. Let n > 4, T/ > 1, T > 0. There is a constant C' > 0, independent of k, such that if

T/N
<Cmin{TN —
v < mln{ CT },

v € (0,1) satisfies

then for all initial data satisfying (0.2.24 — 0.2.26) and (0.3.31 — 0.3.33), there exist functions 6/, b and ¢
on I', having the given initial data on ¥y, and a function 7 on I' having the given initial data on ¥y U Uy,

satisfying the Riccati equations (0.2.9 — 0.2.11) and the wave equation (0.2.12), and such that the bounds

En[h}(()') S V2a
_ (0.3.34)
En[l(0) < v
hold for o € [0, kT]. The metric (0.2.1), with
a=[1+k150%  b=kY%, c=c¢ y=k'7, (0.3.35)

will satisfy the Einstein vacuum equations on the region

{(s,x,v,y) € R*|s € [0,T'], v € [0, TV?2], %(s—i— kv) < kT}.

This will be proved in Chapter 6.
We note a technical point. In deriving energy inequalities for E,[h] and E,[7] it is useful to require the
upper boundary of the bulk region I" to be a null hypersurface. Since this need not be the case in our choice

of coordinates, to prove Theorem 0.3.3 we first extend I' to the region

' ={(57,7) € R®|5 € [0,2T"], v € [0, kTV2], %(Ejt v) < kT'}, (0.3.36)

let x € C*°(R!) have support contained in [—2,2] and satisfy Xl=1,1) = 1, define

Oy = max{CEsup {xV(z) |z € R, i € {0,---,n+1}},1}, (0.3.37)

where CL is a combinatorial constant depending only on n whose exact form is not important (see equation

(6.2.8) below), and replace the quantities 67, b and ¢ in the wave equation (0.2.12) with the quantities

5= (;I) 5, b=y (;) b, =y (;) g, (0.3.38)
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and also define the quantities

~ ~12 ~
a:{ljtk*lz%} , a=a-—1, Sla=a —1.

We then replace the wave equation (0.2.12) with

< 5 Taoy — 5027 + 2200007 % (2355_ 200+ 8@“) 07 + ~5L334y ;&jjaaﬂ 355“am>
a

a a

El

+

~2

T 7 7 —~ 1
2 [ Loy L < &—6 4b%§b bé%a) 7 — 5 bg 0500077 | —k~* b ‘955“8#7 » (03:39)
a

a 2 a

similarly extend the quantities, regions, and norms in (0.3.20 — 0.3.30) to I/, and solve the system (0.2.9 —
0.2.11), (0.3.39) on I". Existence of solutions to this system is shown by an iterative method. The results
thus obtained imply those given in Theorem 0.3.3.

0.4. Innovations, and further comparisons to previous work
In addition to the novelty of the main results (Theorems 0.3.1 — 0.3.3), the current work contains several

unique points of a technical nature. We begin with two which are unrelated to the coordinate scaling.

Choice of gauge, including constraint equations. Our gauge is constructed (see Section 1.2) by
ruling the surface ¥y with null geodesics parameterised by v, and then ruling the three-dimensional region I'
with null geodesics transverse to g, parameterised by 5. Thus the level surfaces of ¥ are null, while the the
level surfaces of 3, in general, are not (with the exception of ¥y = {5 = 0}). In particular our gauge choice
is definitely distinct from the double-null gauge more typically employed (see [3], [9]). (A similar gauge, but
using timelike rather than null geodesics, was used in [1].) Further, for a 3 + 1 metric of the form (0.2.1),
the Einstein vacuum equations give ordinary differential equations (in fact Riccati equations) for a, b and ¢
with source terms depending only on the first derivatives of . See Section 1.2 for the details.

In Chapter 2, we perform a direct evaluation of the full Ricci tensor and use it to derive the constraint
equations in this gauge. We show that they can be formulated as ordinary differential equations in ¥ on
the surface ¥y and are preserved by the evolution under equations (0.2.2 — 0.2.5); unlike the case of wave
coordinates in 3 + 1 dimensions (see [11]), there are no separate constraint equations along Uy.*

Utilisation of the algebraic structure of the equations. As stated above (see Chapter 1 for the

proof), the Einstein vaccum equations reduced by one polarised translational symmetry imply the system of

* Presumably, the equations on Uy corresponding in some sense to the constraint equations on ¥y would
include the Riccati equations (0.2.2 — 0.2.4), but we consider these to be evolution equations rather than
constraint equations. The lack of symmetry between ¥y and Uy appears to be due to the lack of symmetry

in our gauge choice.
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Riccati and wave equations (0.2.2 — 0.2.5):

2 (8Sa)2 _ 2
dia = Tou 4a (0s7) (0.2.2)
02 = 5 (0.0) (.5) — 40,7 (40,7 +0.) (0.2.3)
2 2
afc = @ — 205 (23117 + (b + C> 057 + 2b6w'7) - g (890'7)2 (0.2.4)
° 2a a a a
2 2
[(b - c> 2 + 298581 — 20,0, + 183 1 ((b + c) Osa _ 4933b + %Bma +20,¢ — gal,b + 8”“) s
a a a 2 a a a a a a
1/0b 2 Oza 1 9sa B

The algebraic structure of these equations is special in at least two (related) ways, which are crucial to our
ability to close the energy estimates in the geodesic gauge we use. Note the top-order derivatives in v which
occur in the wave equation (0.2.5): 92, 050y, 950, and 92: in other words, the only second-order derivative
which does not involve 9, is 92. This, together with the second-order (in s) nature of the Riccati equations
(0.2.2 — 0.2.4), allows us to take an extra s (or 5) derivative in the energies (0.3.30), which also define the
norms with respect to which we close (see Chapter 6 for the details). Second, note the derivatives of a, b,

and ¢ which appear in the first-order coefficients in the wave equation:

asa, 8Ia, ava
0sb, 0b
0scC.

Now note the derivatives of v which appear on the right-hand sides of the Riccati equations (0.2.2 — 0.2.4):

a: Osy
b: 0y, Oy
C: 8573 8I’7, aﬂ’y

Differentiating the terms appearing in each row of the second table with respect to the derivatives appearing
in the corresponding row of the first table gives exactly the second derivatives of v which we must bound in

order to bound the coefficients appearing in the wave equation. These are precisely

852'75 6xas% avas7
927, 90,7, D2y
05047, 050z, 050y :

which, in turn, are ezactly those second-order derivatives of v appearing in the wave equation itself!

More carefully, though somewhat less dramatically, the foregoing plays out in our work below in at least
the following way. Note that since we have extra s derivatives, due to the nature of the energies (0.3.30),
second-order derivatives involving an s are not too big of a concern. On the other hand, to bound 9,b, we
need to bound 92+, which looks like a loss of derivative. However, as noted above, we may solve the wave
equation (0.2.5) for 9%y in terms of second-order derivatives of v with at least one s derivative, meaning that

this term is on the same footing as the others. In this vein, note that had the wave equation involved a 0,b,
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or any derivative of ¢ other than dsc, we would not be able to treat it in this way, and this presumably would
lead to a real loss of derivative. In other words, somehow, the derivatives of the metric components a, b, and
¢ which we need to bound are more or less exactly those we are able to bound without losing derivatives.
This algebraic structure presumably reflects something deeper, but it is not readily apparent what.

Coordinate scaling. As noted, the foregoing innovations are independent of the coordinate scaling
(0.2.7). The explicit use of scaled coordinates is a very central innovation in the present work. In other
works with which we are familiar in which scaling assumptions play a role, explicitly or implicitly (such as
[3], [5], [6], [9]), the scaling is at most used as an ansatz, encoded in prescribed bounds on energies, or used
to define weighted norms; in none of these works are the actual equations themselves studied in a scaled
coordinate system. While the use of coordinate scaling does not, by itself, give rise to new results (it is, after
all, just a very simple change of coordinates), it does, in our setting at least, give rise to a much cleaner
presentation, and greatly reduces the number of explicit powers of k which must be carried around (compare
the definitions in (0.3.5 — 0.3.14) with those in (0.3.21 — 0.3.30), for example). More significantly, by allowing
us to separate out terms in both the wave (0.2.5) and Riccati (0.2.2 — 0.2.4) equations by order in k, it makes
transparent the origin of the ansétze (0.2.14), (0.2.16). We also hope that this new approach will lead to
further new results in the future.

Comparisons on the scaling of x. Precise comparisons can be made between the main existence
results (Theorems 0.3.2 and 0.3.3) and the results in [3], [5], [6], and [9]. Given that all four of those references
work in a double null foliation, which is distinct from the geodesic gauge we use, and given also that our
scaling is imposed in 2 4+ 1 dimensions while that in [3 — 6], [9] is imposed in 3 + 1 dimensions, the best
way to obtain precise comparisons is through L* norms of initial data. In particular we may compare the
second fundamental form of the spacelike surfaces {z = 2,y = yo} in the outgoing initial null hypersurface
{s = 0} with analogous quantities in [3 — 6], [9]. In our case, the trace-free part of the second fundamental

form is given with respect to the orthonormal frame X = ¢7a!/29,, Y = e~7d, by (see Section 6.7)

- 0y + &2 0 .
0 0y — %

We also have the following result (see Proposition 6.7.1):

0.4.1. PROPOSITION. Suppose that -y|os, is specified as in (0.2.29), but with an overall factor of k~* instead of
k=1/2 with ¢ > 1/2. (Thus, in particular, 7|og, is supported in the double strip {0 < v < k™ JU{TV2—k~! <
v < T+/2}.) Then there are constants C;, Cy, depending on £, m, and w but not on k, such that*

k@rm/?fl,’ k€+m/2fbf3/4.

10507 oo (054) = Ch 10507 L2 (05) = C

By Proposition 0.4.1, 89 will have size k'+™/2=¢ in [°°. This may be compared to (0.1.5), and

also to (0.1.11) if we recall that xo ~ Ou¥». When ¢ = 1/2, this is exactly the scaling appearing in the

* We obtain actual equalities, rather than just bounds, since we are working with the initial data, which

is known exactly.
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right-hand column of (0.1.5) (note that a scaling for both w and u derivatives follows in that case as well).
When ¢ = 1, it is the scaling given in (0.1.11) when m = 0, in accordance with what we have already noted

at the end of Section 0.2 above.

0.5. Extensions

In this section we suggest a way in which the preceding results may admit of extension.

By domain of dependence arguments (see equation (1.2.7)), the metric g arising via (0.2.1) from a
solution to (0.2.2 — 0.2.5) with initial data as constructed in Lemma 0.2.2 will be Minkowskian whenever z
is outside of a compact set whose size is determined by k~', T, and T”. Let us term the closure of the set on
which a solution gives rise to a metric which is not Minkowskian its support (in terms of the usual definition

of support, this is the union

supp (a — 1) Usupp b U supp ¢ U supp+y.)

Let (ag, bo, co,v0) be a solution to (0.2.2 — 0.2.5) with initial data as in Lemma 0.2.2. Clearly, then, for any

Az, this solution shifted in & by an amount Az, i.e., the quadruple

(al, b1, c1, ’71)|(s,ac,v) = (a0a bo, co, 'VO)|(S,$+A37,1))7

will also be a solution to (0.2.2 — 0.2.5). For Ax sufficiently large, depending only on k=%, T, and T’, the
support of (a1,b1,c1,7v1) will be disjoint from that of (ag, by, co,70). If we further define, for any integer n,

the quadruples

(aru bn7 Cn, 7n)|(s,x,v) = (GO, b07 €0, 70)|(s,x+nAz,v)a

then clearly the supports of the (a,, by, ¢n, vn) Will be pairwise disjoint. By domain of dependence arguments,

then, we may paste them together to obtain the solution

_ (anvbnacna'Yn)» X € [0,1]+TLACL‘
(a,,e,7) = { (1,0,0,0), otherwise.

Here we can think of n as varying over a finite (though arbitrarily large) subset of Z. In particular, noting
that Proposition 0.4.1 shows that ||| r2(ox,) is of size k=5/4, if we choose n > k*/4F2 for some a we can
produce a solution with initial data for v of size at least k% in L?(°S¢). Note that 7" and 7" are completely

independent of n, and of course still independent of k.

0.6. Historical note.

The bulk of the work through the end of Chapter 6 was completed before the connection of the key
coordinate scaling (0.2.7) to the work in [6] was understood. It is possible that the current treatment could
be modified to bring it closer to the method suggested there. On the other hand, the scaling here originated
from a study of the structure of the equations (0.2.2 — 0.2.5), and it is possible that a further study of this

structure could shed additional light on the significance of this scaling.

0.7. Outline of current work.
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We now give a short outline of the present work. In Chapter 1 we describe how the full 3 + 1 Einstein
vacuum equations may be reduced to the scalar field Einstein equations in 2 + 1 dimensions when a trans-
lational symmetry is present, construct a gauge choice for the reduced metric, and show how the reduced
Einstein equations give rise to Riccati equations for the metric components. In Chapter 2 we determine the
constraint equations, prove that they are preserved by the evolution, and show that the constraint equations
on the initial hypersurface together with the Riccati and wave equations derived in Chapter 1 are equivalent
to the Einstein vacuum equations. We then briefly introduce our choice of initial data. In Chapter 3 we then
describe a certain coordinate scaling and rewrite the equations in the scaled coordinates. In Chapter 4 we
give certain fairly straightforward algebraic and analytical background results. In Chapter 5 we construct
the initial data and show how to bound their higher transverse derivatives. In Chapter 6 we prove the
existence theorem Theorem 0.3.3. Finally, in Chapter 7 we apply the results of Chapter 6 to construct a
family of solutions to the 3 4+ 1 Einstein vacuum equations which are concentrated in a small region along a

null 2-plane.

0.8. Organisation.

Each chapter is broken into sections. Propositions, lemmata, theorems, and corollaries are numbered
separately in each section (so each section has, for example, a Proposition 1, Lemma 1, Theorem 1, etc.).
Equations are also numbered separately in each section. References to equations and results are of the form

(chapter number.section number.item number).

0.9. Notations and conventions.

For convenience in dealing with cases where T > 1, we set T’ = min{1,T"}; this allows us to replace
quantities 7/~ with 7/ ~™ if n > m.

We denote the partial derivative of a function f with respect to an independent variable = by either 9, f
or f,. We use these two notations interchangeably.

We always work with tensors in terms of their components, and employ the Einstein summation con-

vention throughout. When writing out the covariant derivative, we use expressions like
ViTjke (0.9.1)

to mean the ijk¢ element of the 4-covariant tensor V7 — it must be borne in mind that this is completely
different from the ith derivative of the jk¢ element of the 3-covariant tensor 7', which would be simply 0;Tjx¢
and is of course not a tensor. Where confusion might result, we employ parentheses as appropriate.

To facilitate complicated calculations, for example those of the Ricci tensor in Chapter 2, it is often
convenient for us to treat rank-2 tensors (of whatever degree of co- or contravariance) as matrices; we make
the convention that in doing so the first index (left to right) represents the row while the second index
represents the column. When working with indices, in the unscaled picture (see Chapter 3) we always use 0
for s, 1 for z, 2 for v, and (in the few cases when we deal with the full 3+ 1 problem directly) 3 for y, where

y is the coordinate of translational symmetry (see Section 1.1) and szv is the coordinate system described
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in Section 1.2. In the scaled picture (again, see Chapter 3) we use 012 for either 3T v or 7£( (see Chapter 3,
equation (3.3.1), and Chapter 6, equation (6.2.1)); which one is intended will be indicated unless it is clear
from the context. We shall not have occasion to deal with the full 3 4+ 1 metric in the scaled picture.

Our definition of the Sobolev norm H™ includes the L? norm; in other words, for example,

1A Fim gy = > 10" FII72 (e

[I]<m

where T is a multiindex in all directions in R™. Similarly, if X C R™ is any open linear submanifold (i.e.,
any open subset of an affine subspace of R™), or any open linear submanifold together with some or all of

its boundary points, we shall, unless explicitly noted otherwise, take

1Ay = D 107 f132x),
[T]<m
where J is a multiindex in all directions tangent to X. We shall write the Sobolev norm without the L?

norm as

oo = 3 107 Fl200) (0.9.2)

1<[J|<m
When dealing with function spaces, we shall sometimes, by a slight abuse of notation, write things like
f € L*(0X) when f is a function defined on X whose restriction to X is in L? on 0X, in place of the
technically correct f|px € L?(0X).
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1.1. Reduction of Einstein vacuum equations in the presence of one translational symmetry.

Let () denote rectangular coordinates on R*, and suppose that on some open set in R* we are given
a Lorentzian metric which has representation

o ,1 2 2
g= 2@ ete) 103 & a3 4 Z ohij(l'o,xl,(EQ)dxl ® da?,
i,j=0

i.e., that g has a linear translational symmetry along 23. Clearly, oh;; is a Lorentzian metric on R?2. Suppose
that g satisfies the vacuum Einstein equations Ric (g) = 0, where Ric (g) denotes the Ricci tensor of g, and let
hij = 627@0*11@2)0}%. Then, letting R;; denote the Ricci tensor of, and L, the wave operator corresponding

to, h, it can be shown (see [15], Appendix D, [1], (1.12), (1.13)) that, on an appropriate open set in R3,
Dh’y = 0, Rij = 282»78ﬂ. (111)

We note that these equations are the Einstein equations coupled to a free scalar field in 2 + 1 dimensions,

but we shall not make explicit use of this fact going forwards.

1.2. Gauge choice

In this section we construct the gauge we shall use to analyse equation (1.1.1). We shall assume that
there is a neighbourhood O in the domain of h and v which can be coordinatised in the following way.
Let p € O. There is a spacelike curve A : R! — O satisfying A(0) = p and h(A(x), \(z)) = ao(x), where
ap : R' — RT and the support of ap — 1 in R! is compact (note that this last condition can be guaranteed
by reparametrisation as long as a has a uniform upper bound and a uniform positive lower bound on R!).*
Then along A there are null vectors L(x) and L(x), smooth in , such that if X = A then {L(z), X (), L(z)}

is a basis of T)(,)O with respect to which h has the matrix representation

0 0 -1
0 apn 0
-1 0 O

(in other words, h(X,X) = ao, h(L,L) = h(L,L) = —1, and all other inner products vanish). Consider
the null hypersurface ruled by the null geodesics tangent to vectors L(z) (call it £J), and extend L(z) to
this hypersurface by parallel transport along these geodesics. Extend the function x to ¥ by requiring it
to be constant on the null geodesics tangent to L, let v denote the affine parameter along these geodesics
with [y = 0, and define on X9 the function a = h(9,,d,). By construction, a = ag on the line v = 0, and
therefore there is a V/ > 0 such that a(z,v) > 0 for v € [0, V), z € R
We now wish to complete the process by foliating a neighbourhood of X8 by null geodesics. Define on
s = 0 the functiont
d = h(0y, L), (1.2.1)

* Note that it would be possible, again by a reparameterisation, to require ag(z) = 1 for all . As we

shall see in Chapter 5, however, such a condition would be too restrictive.
1 Note that requiring d = 0 would contradict the constraint equations derived in Chapter 2.

25
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and define a new vector field along - by

d d?

We will show in the proposition below that N is null and perpendicular to 8, on 39.

We now complete the construction of the gauge by foliating a neighbourhood of X9 by null hypersurfaces
ruled by geodesics parallel to N(z,v); call this neighbourhood I". Let s be an affine parameter along these
satisfying S|2g = 0, and extend z and v to functions on I' by requiring them to be constant along these

geodesics. By construction, there exist S,V > 0 such that the region
o= {(s,z,v) € R*|5€[0,5),ve[0,V)} (1.2.3)

is contained in IV and such that a > 0 on I'y. Given this coordinate system, we have the following result.

1.2.1. PROPOSITION. There exist functions a : g — R*, b, ¢ : Ty — R! such that on I'y the representation

of h with respect to the basis {05, 95,0, } is given by

0 0 -1
0 a b (1.2.4)
-1 b ¢

Furthermore, the functions a, b, and ¢ satisfy the following conditions, for all x € R}, v € [0, V):
a(0,z,0) = ap(z), b(0,z,v) = ¢(0,z,v) = d5¢(0, z,v) = 0. (1.2.5)

Proof. We note first that along A we have X = 9, and L = 9,; thus along A we have d = h(9,,L) =0,
so by equation (1.2.2) N = L, which gives, along A\, L = 9s. Now by construction, along A\ the metric h in
the basis {L, X, L} = {0, 0., 0, } has the representation (since a = ag on \)

0 0 —1
0 a 0 |. (1.2.6)
-1 0 0

We claim that the metric h has the representation (1.2.6) in the basis {95, 0,0, } everywhere on s = 0. To
see this, note first that since 0, is parallel-transported along itself on s = 0, it is null there, so we have

h(0y,dy) = 0. Next, note that Vy, 0, = Vy, 0, since 0, and 9, are coordinate vector fields; thus
1
611]7'(611’ 6:8) = h(@v, Vavax) = h(ava Vazau) = 5890}1(81}’ av) = O;

so that h(0,,0;) is constant on s = 0 and hence equal to zero there. Finally, we have (recalling that L is

parallel-transported along 9, on s = 0, so that h(L,d,) = —1, h(L, L) = 0 must hold everywhere on s = 0)

h(0s,0y) = h(N,0y) = h(L,0,) = —1
h(Ds, ) = h(L, By) — gh(ax,ax) —d— g =0
2 d &2 B
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showing that in the basis {05, 0,y }, the metric h does indeed have the representation (1.2.6) everywhere
on s = 0.

To finish the proof, note that since 9, is parallel-transported along itself throughout I'g, we have by the
foregoing that h(ds,ds) = 0 everywhere in I'g, and thus

0.0, 0.) = (s, V,0.) = h(0s, Vo, 00) = £0.h(Ds, 04) = 0,

and by the same logic dsh(d,,0s) = 0. Thus throughout 'y we have also h(d,,ds) = 0, h(dy, 0s) = —1, and
the representation of h in the basis {0s, 0, 0, } is indeed given by

0 0 -1
0 a b
-1 b ¢

for functions a, b, and c satisfying for all z € R, v € [0,V)
a(0,2,0) = h(0y,0z)|x = ao(x),
b0, 2, 0) = h(r, ) a0 = 0,
c(0,x,v) = h(0s,0y)|s=0 = 0.

The condition a > 0 was already obtained in the definition of Iy by a suitable restriction on S and V.

Finally, note that on s =0
0s¢ = 0sh(0y,0y) = 2h(0y, V,0y) = 2h(0y, Va,0s) = 20,h(Dy,0s) = 0,

where we have used the fact that 0, is parallel-transported along itself. This completes the proof. QED.

Recall (see section 0.9) that when we work in the unscaled picture (as here) the indices 012 always
represent the coordinates s, x, and v, respectively.

Conversely, let h be some metric on the region Iy which has the form given in equation (1.2.4) and
satisfying (1.2.5), where ag : R! — R is equal to 1 outside of some compact set. From our work in Chapter

2 below, the Christoffel symbols for h are given by

0 ba s — ab g bb s — acq

1 b
F?j - 27 ba’s N ab’s 7(62 - ac)a’s + bavm B a’(?bvm - aﬂ)) 7(b2 - ac)b,s + ba,v —ac g
"B e, —(0 —ac)bs + bay —acs —(b* —ac)e,s +b(2by — c0) —acy
0 as b
Tij=57 | @ @a—bos ay—bby
a b75 Q. — bb,s Qb,v —Cgp — bc,s
1 0 0 0
Ffj = % 0 aas ab,

0 aby, acg,

Since 'k, = 0 for k = 0,1,2, it is straightforward to show that all curves x = xg, v = vg, § = o in [y are

geodesics. They will be null since on I’y we have h(ds,9s) = 0. Similarly, on s = 0 the Christoffel symbols
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become

1 0 —abs 0
. =_—| -ab, ab, 0
S N R

1 0 as bs

]-—‘11 = 5 As QG Ay

T 2a b, a 0

1 0 0 0
Ffj =2, 0 aas abs |;

“\0 ab, 0

since now I'§, is also zero for k = 0,1,2, it is again straightforward to show that the curves s = 0, x = xy,
v = o in I'y are geodesics, which are again null since on s = 0 we have h(9,,9,) = 0. Finally, the curve
s =v =0, x = o will be a spacelike curve since ag > 0. Thus if h is any metric which on a set of the form
o= {(s,z,v) € R®*|s €[0,5), v €[0,V)} has the form given in Proposition 1.2.1, then the curve s = v =0
must be spacelike, the curves s = 0, x = xg must be null geodesics, and the curves x = xg, v = vg must also
be null geodesics.

We shall work in this gauge from henceforth. For future use, we note that the determinant of the matrix

in Proposition 1.2.1 is —a = —h(3,,9,), and that its inverse (and hence the representation of A1) is
ac—b* —b a % —c g -1
—-= -b -1 0| = b 190
@ a 0 0 -1 0 0

It is worth noting that a Minkowski metric on R3 is of the above form with a = 1, b = ¢ = 0, in the
which case s and v are null coordinates and x is a spatial coordinate. For future reference, we note the

following related result. Suppose that on {s = 0} U {v = 0}, the functions
a—1, b, c

have support contained in the strip {z; <« < z5}. As just noted, the metric on {(s,z,v) € T'g|s =0orv =
Oandx € [z1, 22]} will be Minkowskian. If we let C,, and C,, denote the Minkowskian null cones emanating
from (0,x1,0) and (0, z2, 0), respectively, then by domain of dependence arguments it is clear that h will be
Minkowskian on the set

Lo\ [Cy, UCy, U{(s,z,v) €Ty |z € [21,22]}]. (1.2.7)

We shall now derive evolution equations for a, b, and ¢, given that the metric h has Ricci tensor which
satisfies the second of equations (1.1.1). These equations can also be derived from the explicit representation
of the Ricci tensor given in Chapter 2 below, but here we shall give a simpler geometric derivation. Let*
K;; = V;Nj. Then we see that

0sa = 05 (0, 0x) = 20(0x, Vo, 05) = 2K11,
0sb = Osh(0z,0y) = h(Vg,0s,0y) + h(0z, Vs, 0s) = 2K12, (1.2.8)
0s¢ = Osh(0y, 0y) = 2h(Dy, Vo,0s) = 2K 2.

* If we restricted ¢ and j appropriately, this would be the second fundamental form corresponding to the

foliation of I'y by surfaces of constant s.
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Further, K;; satisfies the following equation:

1.2.2. PROPOSITION. We have

0sKij = h'* Kip Ky — 2hij (057)° + 2hiodsy0j7y + 2hoj0svdy — hE Oydiyhjohio,
or alternatively

OsKij = h'* Kip Ky — 2hij (057)° — 2010057057 — 2020570y — 8120 j2h* 001,

where d;; represents the Kronecker delta.

Proof. Let K? = h/* Ky, = V;N7. Then we have
(VaK) = 0.K7 — Thich + T K.

Now

Tt = h* (hori + hio — hoiy) ;

but hg; is constant for all ¢, so

Th = h"hy, 0 = WM (2K),) = 2K,

by equations (1.2.8) above. Thus
(VNK)! = 0,K] — 2KFK} + 2K} KF = 0,K.

But now also (remember that N¥V;, N7 = 0 since N = 9, is parallel-transported along itself)

(VNK)! = N*V, VN’
= N*V,VyN’ — R}, NFN
= — (VilV") (VN7) — Rjio
——KERL - R
Thus we have

O:K] = —K[ K — R},

SO
88Kij = 0, (hijzk) = (8shjk) sz + hjkast

= 2K, KF + hji, (KK} — Rf;)
= W'* K Kij — Rjoio-

Now we have in general (see, e.g., Wald, (3.2.28))

2
Rijri = Cijr + ﬁ(hi[kRz]j — i Ry;) Rhjihayj,

2
n— (n—1)(n—2)
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where Cjji is the Weyl tensor, [ ] denotes antisymmetrisation and R = R% denotes the Ricci scalar. In 3
dimensions the Weyl tensor is identically zero, and the Riemann tensor is uniquely determined by the Ricci
tensor. Thus if h satisfies the second of equations (1.1.1) above, we will have
Rjoi0 = hji Roo — hjoRio — hoi o + hooRsj — %R (hjihoo — hjohio)
= 2hij (55’7)2 - thoaﬂai’)’ - Qhoias“/ajV + hklakVaWhjohm
If we let §;; denote the Kronecker delta, then since in our basis hg; = hjo = —0;2, this expression may also

be written as

Rjoio = 2hi; (0s7)” + 26205707 + 201207057 + B 0,010 12015
Combining everything together gives the desired results. QED.

From this we may derive the evolution equations for a, b and ¢ as follows. Write

0 0 0
Kij = 0 « B
0 8 9

Then we see that, according to our rules for matrix representations given in Section 0.9, the tensor h* K, K, 1j

has the matrix representation

00 0\ /Z—c bt 1\ /0 0 0
hleik-Klj: 0 « ﬁ g é 0 0 « ,8
0 8 ¢ -1 0 0 08 9
0 0 0\ /0 0 0O
= ga—ﬁ 1o 0 0 o B
bp—s 1 0) \0 B ¢
L (0 0 0
=-10 a®* ap|,
“\0 ap B

whence we obtain the equations
L, 2
Osa = —a” — 2a(0s7)",
a

1
asﬁ = Eaﬁ - 285’7 (baﬂ + 3z7) s

1 5 b? b 1 2
0s6 = =% — 0y (2007 + | — +¢) 0y +2-0uy ) — = (827)°.
a a a a

Since we have also (see (1.2.8))

dsa =2a, 0sb=28, 0sc =29,

we have finally the following evolution equations for a, b, and c:

2
82a = (8;a) — 4a (957)? (1.2.9)
a
0% = 5 (0.0) (.0) — 40,7 (40,7 +0.) (1:2.10)
2 2
dc= G 205y (28v7 + (b + C> 957 + 2b8ﬂ) 2 (@a7)” - (1.2.11)
2a a a a
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In the first equation above, it turns out to be very convenient to consider, instead of a, the quantity £ = /a,
which is easily seen to have the evolution equation

dsa 0% B (0sa)?
“2va  2Va 443

We shall refer to these four equations as the Riccati equations for the metric components.

9% =20 = —20(0s7)>. (1.2.12)

1.3. Wave equation and bulk region

The coordinate form of the wave equation in the gauge in Proposition 1.2.1 can be determined as follows.

The wave operator may be written
Cny = 198,05y — hT};01,

where 4,5 = 0,1,2 and Ffj are the Christoffel symbols for h. We recall that A%/ has the matrix representation

b2 b
s[5 1
e T

-1 0 0

As already noted, from Chapter 2 we have the following matrix representations for the Christoffel symbols

in our gauge:

1 0 ba s — ab g bb s — acq
I‘?j =5 ba s —ab s —(b? - ac)as +bay —a(2by —ay) —(b? — ac)b s + ba, — ac
“\ by —ac, —(b? —ac)b s +ba, —ac, —(b? —ac)es +b(2b, —ci) —ac,
1 O a/7s b,S
F}j =5, as Qg —bag a., — bb s
“\bs a,—bbs 2b,—c,—bey
1 0 0 0
r? = % 0 aas aby |;
“\o abs acg

and thus we see that
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, 1 % —c 7 -1
h“I‘?j = Q—Tr g Lo
¢ -1 0 0
0 ba s —ab s bb s —ac
bas—abs —(b*—ac)as+ba, —a(2b, —a,) —(b? —ac)b s +ba, —ac,
bb s —ac,s —(? —ac)b s +ba, —ac, —(b% —ac)es +b(2b,, — cp) —acy,

)

1
= — [Z(ba s —abg) — (bbs —acy)

b 1
+ —(bas —abs)+ —[—(* - ac)a,s +bay —a(2b, —a,)] — (bbs — ac,s)]
a a
1 b 2 1
=2 (2= —ab )= 2. —ac.)+ — —ba., . — 2ab ,
5 { e (ba,s — ab ;) a(bb’§ ac,s) + e [(ac — b%)a,s + ba ; — 2ab 4 + aa,v]}
1 bb
=5 [ [(ac +b%)a s +ba, — 2ab, + aa,v]]
——be’s—i—c _b7$+a7v+ba,$+l g—i—c a,s
o a A 2a 24?2 2\ a a’
y [ % — g -1 0 as b
hUF}j 5 T g % 0 as agz—bag a,y, — bb g
L -1 0 0 b,s bb 2b,1) —Cx — bc,s
1 (b b 1 b bs ag
:778_b8 —a,s - w_bs_bs =505 — — 77
2a aa’ ot aa’ + a(a’ 0,5 ’ } 2a2a’ a + 2a2
| L [[(E-ct -1\ [0 0 o0
pid F?j 2—Tr g % 0 0 aas ab,
a -1 0 0 0 ab, acg,
_ a,s
24’

so that the wave equation takes the form

2 2
[(b—c> 63+2basax—2858v+18§—1<(b+c) Osa 8 a+20s,¢c— =0, 8"a> s
a a a 2 a a a
1/0b 2 - Q 10sa B

We are thus led to consider the system

2 _ (asa)2 _ 2
dia = Ton 4a (0s7) (1.2.9)
02 — % (0:a) (9sb) — 40,y (b0yy + D) (1.2.10)
2 2
(936 = @ — 207y (23,/)/ + (b + c> Osy + 2b81'y) — 2 (517)2 (1.2.11)
2a a a
2 2
[(b—c)33+2b853 20,0, + 52—<(b+0) Osa 8“)35
a a 2 a a
1/0b 2 Oza 1 0sa B
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As initial data for (1.2.9 — 1.2.11) (assuming y given, and considering them as standalone ordinary differential
equations), it is clearly sufficient to specify da, 9b, and 9%c on s = 0. Similarly, for (1.3.1) (assuming a,
b, and ¢ given, and considering it as a standalone wave equation), it is sufficient to specify v on the two
null hypersurfaces s = 0 and v = 0 (the functions specified must — see Rendall [11], Section 4 — satisfy the

consistency conditions that

o* 0"
lim dith = lim it | ,
v+ Ost| _ . soo+ 08t _
o =0 5 v=0 (1.3.2)
lim it} = lim it} ,
b0t QU | smot Qvt|

where the transverse derivatives may be computed from the wave equation as explained in Chapter 5 below).

To sum up, we have shown that the equations (1.1.1) imply the Riccati equations (1.2.9 — 1.2.11) and
the wave equation (1.3.1). The converse is however false: the equations R;; = 20;70;7 give rise, in addition
to the Riccati equations (1.2.9 — 1.2.11), to three constraint equations relating the quantities a, b, ¢ and +.
In the following chapter we shall derive these equations, and show (see Proposition 2.3.2) that the Bianchi
identities imply that they are preserved by the evolution inherent in the system (1.2.9 — 1.2.11), (1.3.1), in
that if the constraint equations (see Corollary 2.4.1)

9%a  (8y0)° 2
a2~ 20 (0
O 1200\ )
5 (a 95 ) = 40720, y0yy
0%a 9%  9bda  da ob\? 2
2(1(%85 = 2a6:c83 ~ 992 + %aaas +a (35) + 4a (0.7)

hold on %Y, and the system (1.2.9 — 1.2.11), (1.3.1) holds on I'g, then the constraints also hold on I'g. Finally,

we shall show (again, see Corollary 2.4.1) that in this case the original Einstein equations (1.1.1) hold on I'y.



2. CONSTRAINT EQUATIONS

2.1. Introduction

It is well known that the Einstein equations R;; = 0 — or, in our case, R;; = 20;70;y — represent
constraints as well as evolution equations. In this chapter we shall, by an explicit computation of the Ricci
tensor and a comparison with the Riccati equations derived in Chapter 1, determine the constraint equations
as restricted to the initial hypersurface s = 0, and show, by explicit computation and an application of the

Bianchi identities, that they are preserved by evolution under the Riccati and wave equations.

2.2. Ricci tensor
While there might be a quicker derivation of our final results by using a geometric decomposition of the
Ricci tensor for A, certainly the most straightforward method is to simply calculate it directly. We do this

now. We first find the Christoffel symbols. We recall that

O~ o

so we may compute, recalling our convention (see 0.9) that in the matrix representation of a rank-2 tensor
the first index (left to right) will denote the row while the second will denote the column and using e to

indicate the appropriate cross-diagonal element in a symmetric matrix,

A 1 .
G = Sh (hej + haj — hyne)

2
0 0 O
hok,j = hoj =0, hjro=10 as b,
0 bs cs
1 1 0 O 0
F?k = —— (hOj,k + h()kJ' — hjk,O) = *hjk70 =—10 aa s ab7s
2 2 2a 0
abs ac
0 0 0 0 as b, 0 O 0
hije=1as @z av |, hig;=|0 az ba |, hixa=|0 az bo
b,s b,.’r b,v 0 (171) bﬂ) 0 bﬁf c@
0 ag bs
hijg +hikg —hjka = | as ag a.
bs a, 2b,—cy
1 b 1
i = % (hojk + hok,; — hjro) + % (hajg + hik; — hjk1)
s b
0 5% e L [0 a b.s
o i Bl I U L
b s bb a .y be s 2b .y —C o b s v — bb s 20 . . b .
2a  2a + 2a¢  2a + 2a e, ” ¢ ¢
0O 0 O 0 bs cgs 0 O 0
h2_]7k b)s bw bﬂ) B h2k;,] = 0 b,a; C,I s h]k,Q = 0 a,’U b,’U
Co Ca Cu 0 by co 0 by cy
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0 bs Cs
hoj + hokj — hjk2 = | bs 2bp—ay co
Cs Cax Cu

5

1/v? b 1
F?k =3 < - C) (—hjk0) + % (hijk + hikg — hjra) — 5 (hoj ik + hokj — hjk,2)

a
1 0 ba s —ab s bb s —ac
=5 bas—abs —(b*—ac)as+ba, —a(2b, —a,) —(? —ac)b s +ba, —ac,
a bb s —ac,s —(? —ac)b s +ba,, —ac, —(b% —ac)es +b(2b,, — cz) —acy,
1 . 1 A 1i— Q. 1 a,ss - al,s2 a,sr - a,sa,m a,sv - a,sa,u
I = iajloga, ik = 3 (kJanJ) =5 | @se maste Qe — az’ gy — Cl,a:(lév
a,sv - a,sa,'u a,a:'u - a,a:a,'u a,vv - a,v
0 0 0 ba s —ab s as 0
Ffo =5 bas—abs as 0], Ffl =3 —(b? —ac)as+ba, —a(2by —ay,) ar—bas aas |,
a bbs—acs bs 0 a —(? —ac)b s +ba, —ac, a,—bbs abs
1 bb s —ac b.s 0
F§2 =50 —(b* —ac)b s +ba, —ac, a, —bbg ab s
—(b? —ac)e s +b(2b, — Cz)—acy, 2b,—cy+bes acg
_ “ ba s — ab g bb s — ac g
I, = 1 2 e —(0*—ac)as+ba, —a(2bs —ay) —(b* —ac)bs + ba, — ac,
@ \e . —(b? —ac)es +b(2b, —cp) —acy,
0 as b 0 O 0
Q. ; ; a.y
+ 4’2 as Gg—bas G, — bb s + 4’ 0 as b
@ \bs ay,—bby 2b,—c,—be, “\0 b e
0 bas’>+azas—aashs bbsa s —aa sc s+ a b
1| aca s> — b%a 42— caa sb s —b%a b s + ba ya s—
by aa s(2b 4 —2a,) + a7x2 aa,sCqp + ap(a, —bbs) 4+ aa b

2
. . aca sC g — b asCs+ ba’s(2b,v - C,r)_
aasCqo + a,a:(2b7v —Ca — bc,s) +aa,,Cs
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as(bas —abg)+ bs(ba s —abs)+
a752 (a0 —bas)a s+ (ap —bbs)a s+
aa,sb,s ab,SQ
(ba,s —ab s)(bb s — ac )+
o ab )t 0 (5 — achb £ by~ acs) +
¥ ,: )
2a, [—(b2 —ac)as + ba, [—(b —ac)a,s + ba
_ . (2, —a U)} n —a(2b, — aw)} b s+
T 4a? 5 ’ ’ 9, 2 (a,; —bas)(a, —bbs)+
(a’m B ba’vs) + 2aa,s(a7U - bbvs) +a bwg Claf,s(Qb,v —Cx — bC,s)“r
ala, —bbs)b s+ a2b,sc7s
(bbs —acs)*+
2b s (—(62 —ac)b s+ ba, — ac,m) +
. U (a, —bbs)*+
4ab75(26,v —cy—bes)+
a’e
as” a0 a,vas
2a T 2a 2a
ca.2—2a.b.+2a.a,+ —ba scs — bb752 +ab sc s+
B i o (,;xz ,sY,x ,8 7121 Ca,sb,s —aCq — b,xb,s+
BEZ s 2asbatab g e o b,
o . acs? — 2bb s 5 + aéf +

7 Y _ 10 1 2 Y/
ki —Loje =Tiko+Tiea + 150 — Lok

b ? —2bgCp 4 2b b,

2
ba’aSS - abyss_ bb,ss + b,s —G5Cs
0 ba s> bb sa s
e 4 bsas —QCss — —g— T QsCs
—(2bb s —asc—acs)as — (b* —ac)a g5+ —(20bs —a sc—acs)b s—
bty +bays —as(2b, — aﬂ,Q)— (b — ac)b ss + b sa,p + bays—
° a.s 2 a sb s
1 a(2b s — aps) + (b2 — ac)==—— a,sCqe — ac s + (b° — ac) ==
= ba za s ba va, s
2a et as(2y —ay) e A
—(2bbs —a sc—acs)cs—
(B2 — ac)e,s 4 by (2b,y — c.0)+
L4 L4 b(2b,vs - C,ms) — A,sCqy — ACys
a a
+(b? —ac)e s Lt — b2 (2, — cp)+
a>SC7U
a,sa ; bsa .
0 Qs = g b,xs I
1 ° a4 zq b,xa,s - ba,xs_ avx — b,zb,s —bb xs
— a, a,
+ 2, (aq— ba,s)f (a,— bbﬁ)Tx
° ° 2b,vm - C,mm - b,xc,s - bc,ms
a,z
(20, — o —bcs) ="
a,s2 [N a .y
1 0 0 0 1 A ss = — Azs — — 3 a ys @ a
2
+— 10 aa ab — _ G _ 40ag
24 ,US ,US8 2. ° @ xa p @y a
0 ab,vs ac ys a,v2
o L4 a,vv -
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it —
Jkyi L5k 2

Rjp =T},

a,s?

a

Ricci tensor

— ab 4—
+bsa

ba, s

—Qss + bas

s

—(2bb s —acs)a,s—
(b? — ac)a ss + b sa ,—
* bsay —a(2bss —2a s)+

2
2a,s
b a

_a,ss+

a.s
a ;
2a @ la, b)

F]k+Fim ik Fzy mk

ba;2
—abss — =2+

asaz bab
+ ey
2a

ba s
2 b,s

s —
zQ,s 1

2a

—ac, )0,75 — (b2 — ac)a)ss‘i'
—bsay —a(2bss —2a,5)+
—2a,sb 4+ 2a 50,4+

— cavs

1
+ §ca752—

2 2
b%a
2a

- %ays(Qb,x —2a,)

—(2bbs —acs)bs
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bb s + b % — acs—
bb sa
e +bws
bsaz a,s0,v
’T*avs‘}’

— (b — ac)b g5+
B2 a,sbs

- bb,ws+

b
gb,sa,w + abms — GC g5

bsa .y +ba s +
ba ,a,
—== —byb s

—(2bb s —acs)cs — (b? — ac)c ss+
—2¢45)+

bs(2by — Cg) + b(2b 45
pRlste Dpte(op) e )t
2b,vw - C,;E:r - b,xc,s_

(2by —cCp — bc7s)% — Qo+ a’;
bb os +bs° — aces—
bb 00.sa,s +bzs _ b,s;,fﬂ_
avs+ a,s00 azZU+
bb2; éa C.s + a.. b

—(2bb s —acs)bs — (b* — ac)b ss+
bsa,p + bays + b2 Lte

M —bybg — bb st
Zb,sa’ +ab s — ac g
— {—bayscﬁs —bb? +ab e+
cashs—agscy, —byb+
apbs+ L 4 a,sbﬂ,]

— b2a,sb75 + ba ya s—

+ﬁ [caa,sb7s
—bb.) + aab,|

aa sCp + a.(a,

—(2bb s — acs)e s — (b — ac)c s+
bs(2by —cg) + b(2b s — 2¢ 45)+
b?Eete — pE2(2h,, — ¢ p)+
2b,vw - C,x:p - b,xc,s_

(Qb,v x T bc,s)a(‘lm - a,vv+
aw’ [ac,S2 — 2bb sc s + a2’“::+

a
b 2 —2b 0 + 2b7sb,v} + 5 [aca7sc7s—
bla scs +bas(2b, —cqp)—

aa sCy+ az(2b, —cy—bes) + aaﬂ)c,s}
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) ba .. —ab .o— bb,ss — GC ss b,xs — Qs
—a a,s B9 )58 b2 bb sa s bsa.,
a s — =+
,58 2a 1 (b £ b7sa7s) . 2a 1 2a

2

—bb 2 — (b — ac)b s + b(a ys — b os)+
ac’sa,s - (b2 - ac)a,ss + b,sa’z_ ’ b2(1,(sb,s B b{z,v’a,s n Zgb,;a@ ’ )

ba,? +
° a(2b s — 2a + 2 2a 2a 2a
( s TS ”US) 2a a(b’vs _ C,ws) + ba’vc)s _ %Ca/75b)s+

1 2 2
R = — 5Ca.s° — asa, — ab 1 1
ik = 54 2Ca,s s 8 Ta e, +Laub,
—(b% —ac)e ss + b sCp +2b(bys — Cus)+
b2a sCs ba s
2a ~ 2a (2b,v - C,CE)+
° ° 2b .y — Cpg — Qpy — b g€ s—

a,y

a
5 (20,0 — C +beg) + 5o —
2
cb® + tace, — ta e, + Fac,

(2.2.1)
2.3. Equations of motion and constraints
From the expression for the Ricci tensor in (2.2.1) we see that the equations Rog = 27,52, Ro1 = 27.57.2,

Roo = 27 47,0, and Ry = 27,932 give, respectively,

2
a.ss = ai - 40/7,527
2a
1 2
ba,ss - ab,ss - 5 (ba’s - b,sa,s> = 40”7,87,17
a
1 bb sa bsa a.sa 1
C,ss = - bb,ss + b,ms - a,vs + b,s2 - 28 P + 2 704,5675 - 47,57,1);
a 2a 2a 2a 2
1 b2a 2 1
bays —ayps=— [acsas— (b2 —ac)a,ss + b sa s + s fca752 — a5, — ab,s2 — 27@2.

2a 2a 2

From these equations we obtain the following proposition. We recall for reference the Riccati equations (1.2.9

~1.2.11):

2
as 9 1
_ %s S — 3.1) — (2.3.
Q,ss % dary s b,ss 2aa,8b,s 4,5 (07,5 +7.2) (2.3.1) = (2.3.2)
b > b? b 2
Coss = = — 27 <2'y,q; + ( + c> V,s + 27@) — .2 (2.3.3)
2a a a a

2.3.1. PROPOSITION. We have the following equivalences:
(i) Equation (2.3.1) holds if and only if Rgg = 27v,2.
(ii) Equations (2.3.1) and (2.3.2) hold if and only if Rop = 27,52 and Ro1 = 27v.s7.»
(iii) Equations (2.3.1) — (2.3.3) hold if and only if Roo = 27,2, Ro1 = 27V, and —2Ros + 1Ry =
~2(27,67,0) + 27,0”
Proof. (i) is clear. Ryp = 27732 and Ro1 = 27,7, together imply

1 (ba?
4a7,s’y,m = ba,ss - ab,ss - 5 ( 67: - b,sa,s>

b 2
= 2%s 4ab7,s2 —ab g5 —
2a
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SO
=== =4y, (bys + V),

and the converse is also clearly true, thus establishing (ii). Furthermore, if Roo = 27,52 and Ro1 = 27 5Y,a5

then multiplying Ro2 = 27,57, by —2 and simplifying gives

b b 1. o5 asa, 1 b 1 1
ss:_4 s v_;_i sbs 7bs - = — st s 7bss 7b1‘s_7 vSs
< Vs, 2a? 2q2 %" +a ot 2a? 247" +a ’ +a ' a”
b b 1. o5 asa, 1
= —4d~v, — == — ——ayby —b - — 5 QsC;
Vs 2a? 2q2 %" * a’ + 2a? 247"
b sb s 1 1
+ - (ah - 4b’7,s2 - 47.57,90) + *b,ws — —Qys
a 2a ’ a a
b2 b 1 azbs 1 .0, 1. o 1
=—4 s v s "l 7bms_#_7 vSs —— 7b5 5 WYstss 234
’Y, ,y) + a,% + a’Y; :| +a ) 20,2 aa’; + 2(12 +a ) 2aa: c7 ( )
while multiplying
Ry = 2v,°

by 2a gives

2 a0 1 2 2 2 as” 2
dav 4 = 200,45 — 50,5 — 2ab zs + b sa 4 + T +acsas — 50@S —ab " — (b° —ac) 2— —4day s
a a

_ 92 <1 Casa, 1 a,zb

B gb’m + 2a2

1 , 1 bs  Cals by’ i
= 20,2 <aa/,vs - a;;gv - Eb,ls + % + % B 27; -2 (c B (l) 7752)

so that adding 1/(2a)? times this to equation (2.3.4) gives

> +acas— ab752 + 4(b2 - ac)a'y,s2

2

2, b 1 b? b?
=Yz — 4’7,8 Vv + —V,x +-|lc+— V,s + =
a a 2 a

2 b2 b 1 b2 b2
Css ="z — VsVt —Vst -Vt slc—— )]s )+
a a a a

which is the third of the Riccati equations.

Since the steps here can evidently be carried out in reverse, this establishes the proposition. QED.

This proposition can be rephrased by saying that the three Riccati equations are equivalent to the

system

Roo = 27,5 (2.3.5)
R()l = 27,57730 (236)
1 2
—2Rgy + ERH = —2(27.470) + 5%2. (2.3.7)

Thus for the full equation R;; = 27 ;7,; to hold, it is sufficient for the equations Ris = 2v,47,v, R22 = 27,1,2,
and any linear combination of the equations involving either Rps or Ry; which is linearly independent of

(2.3.7), to hold. We shall term any such set a system of constraint equations. We shall next show that, if



40 CONSTRAINT EQUATIONS [2.3

the Riccati equations (2.3.5 — 2.3.7) and the wave equation (1.3.1) hold on Ty, then for a particular system
of constraint equations, the Bianchi identities allow us to conclude that the system holds on all of T'y if it

holds on ¥ = {(s,x,v) € Iy | s = 0}.

2.3.2. PROPOSITION. If the system (2.3.5 — 2.3.7) and the wave equation (1.3.1) hold on I'g, then the
equations

Rii = 27,7, Ri2 = 27 27 0, Ros = 27,°

hold on Ty if they hold on %.
Proof. Given (2.3.7), R1; = 27,2 holds at any given point if and only if Rp2 = 27 47, does; thus it
suffices to work with this equation instead. To begin, we note that, using the Riccati equations, we may

write 2a Ry as

2

1 b b bsar asa, 1
—4b27,32—4by,s~y@+§b,32+2a~y,s [(a + c) s+ 270 + 25% +29 22 4D s — gy — —o il

—=QsC
2a 2a 2 ’

SO
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0s (2aR20 — 4ay,57,0) = Os %byf + 27752(ac — ) + 27,932 +b s — Gus — % + % — %QSQS
=b,5b,ss + 47,57,55(ac — b2) + 27,5 (a,sc+ acs — 2bb ) + 47,0V 52 + b sse — @ ssu
+ b,sg;a,w - a;Za =+ ? (=bsstp — b sl s + Q500 + Q50 0s) — %a,ssc,s - %a,sc,ss
= iaﬁb,f —4bb v,s* —4b V.

+ 475

1 b2 b
20 50 — 20,50 + V,z2x — 3 <a73 <c + a) —4bb s + Ea’” +2acs —2b 4, + am) Y.s
1/0b a.y 1
- a5 —Qg T a sYv
2\a’ a ", 27 ",

Q. 1
+ |: 2 26L b + 2 (a,rsb,s + a,sb,xs) - 4'7,sm(b’y,s + ’Y,m) - 47,s(b,z’}/,s + b7,sm + ’Y,mr):|

+ 27 52((1 sC + ac,s - 2bb,s) + 47,:67,51

2

a,sa bsasa a.,a
- |: ’32 + % —4a UPYS - Sa”y s7, sv:| + ’52;2 LA ’;a’;
a,sb s 9 2
—bsa s — —Aby 2 Ay Y a2 —day P ) ay +asas
2a 2a

?
L (o 1 b2 b? b 2

78 —4a 'Y,s — 505 - ,8 27,11 +|—+c)vs+ 277,1‘ - 7’7,x2
2 2a 2 2a a a a

1 1 b2 ba 1 a.sb
= _—asb 32+473 ——las—+2acs —2by ) vs— ,37;8 - —asVw +2ac,37,32 4 DSEs
2a 7 ’ 2\ 7a ’ 2a 2 ’ 2a
2 2 2
2 Os0ps 05D a0, | Q504 Csls 2 a,sb,s
—4bsvs" — a2 T Taz T Toa T T TRacsvs 1a 2078V

b2 b a
+a, ( - c) Vst +2-07 e + Y
a a a

1 o Gsbas  asaus  asbsa, agta,  cgal’ 2 b2 as o
= _—a.b »SY _ sty _ ysTYsH, ) U 8™, —q . — a.c—2b )
4a °° + 2a 2a 4a2 * 4a? 4a t % “a tas @ |t a ®
a.s 9 bbsas bsa, asa, 1 1 9 asbgsa,
» bb —ac b _ SHS _ H8 »S e —a.b _ 87,8,
a( ss ¥ 00 2a 2a | 2a 2% ) Tages 4a?
2 2 2
a.s°a C.sQ b a
+ 22— 22y P las— Fasc| + 229,
4a 4a a a

as 1
=aRa — % ( 4b%y % — 4by 7,0 + ib’SQ +2(=b* + ac)y,s? +day, sV, + 4by V.0 + 27,z2>

1 a s a g
b 7 | 20— a0)| + 20y = s (Rao = 27.70)
a a a

Thus if a, b, and ¢ satisfy the Riccati equations (2.3.5 — 2.3.7) and + satisfies the wave equation (1.3.1), and
if the values of these functions on X satisfy the equation Rag = 27 57.,, then this equation will continue to
hold for all s > 0. Again, by (2.3.7), the equation Ry; = 27,2 is then also preserved by the evolution.

That the other two equations, Ri2 = 27,7, and Ry = 277v2, are likewise preserved by the evolution
may be proved using the Bianchi identity and the foregoing, as follows. Now note that

. b> b 1
R=g"R;; = (a — C) Roo + 25301 — 2R + 5R11a
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while
2

y b 1
97 (27,i7,5) =2 K - C> Vsl +2=YsVe = 2V V0 + =V | 5
a a a
so by our work in the previous paragraph, if R = 2¢%/~ ;v ; holds on £, then it will hold on all of I'y. (Recall
that we are assuming that the equations (2.3.5 — 2.3.7) hold throughout I'y.) Further, note that the equation

, 1 .
VI (v7,5) = §vigjk'7,j'7,k

holds since ~ satisfies the wave equation (this is just conservation of the stress-energy tensor).
Now the Bianchi identity gives
- 1
VIR = iviR.

Suppose that (a,b,c,7) is a solution to the system (2.3.5 — 2.3.7), (1.3.1) which moreover satisfies all six

equations R;; = 2,7, on the surface 28. Then we have on I'y
i 1 1 ik i
VIR = §viR = §Vz‘ (297", 7,k) = V7 (27,7,4)
so, writing Tj; = R;; — 2v,7y,; for convenience, and letting, as per our note in 0.9,
Vi Ty = O Tij — T4, T — ngTiZ

denote the kij component of the covariant derivative of the tensor T,

. b2 b
VITjs = (a - C) VoTo2 + gvole = VoTa

b 1
+ ;VlTOQ + 5V1T12 — Valpz =0,
. b2 b
VT = i VoTo1 + gvoTn - VoIn
b 1
+ gvle + gvlTll - VaTp = 0.
Now we already know that Ty = Ty = T11 = 0 on I'g, so these two equations become simply
b 1
EVOTIQ = Vol + aV1T12 =0 (2.3.8)
—VoT12 = 0. (2.3.9)

The second of these equations is, in full,
0= 00Tz — 6, Ts2 — T5,T1

1

= 0;T12 — % [(bas —abs)Toe — a sTia — (bb s — acs)Tig — b sToo]
1

- as,-TlZ - %[_a,sTlﬂv

from which we see that
a
63T12 = —iTH:
2a
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so that if T12 = 0 on 28 then Ty will vanish on I'y. Substituting this into equation (2.3.8) above, we obtain

—VoTs =0, or, in full,
0= 00Ta — T, Ts2 — Ty Ths

1
= 0515 — p [(bb,s — acs)Toz + b,sTi2] = 0sT52,
so that if To5o = 0 on s = 0, then 755 will vanish for all s. This completes the demonstration of the
preservation of the constraint equations by the evolution. QED.
2.4. Initial data

From the foregoing we obtain the following corollary.

2.4.1. COROLLARY. Suppose that on I'y the system

a.s? 1

55 = —— — dary 42 bes=—asbs—4vs(bVs+7a 2.3.1) —(2.3.2
a, 5y ~ 407, : 5 Gsbis = 47,5 (075 +7.0) (2.3.1) = (2.3.2)

b2 b? b 2
Css = LA 27 (27,1, + ( + c) Vs + 27@.) - 7%1‘2 (2.3.3)

2a a a a

b2 b 1 1 b2 s b b 2 »
[( - c> 02 +2-0,0, — 20,0, + ~0% — (( + c> Ls _ d=bs+ —a,+2cs— —bs+ a’) 0Os
a a a 2 a a a a a a
1/0 2 a. la,
- J— g**bg 2 R v = ]. .1
2<a2a" a"+a2>at 2@8]7 0 (1.3.1)
holds, and that on X9 the system
a,vQ 2
—Q .y + 2% = 4a7,fu (241)
bsa gy —2a(bgs — aps) — Q50 — ab,s2 = 4a77w2 (2.4.2)
1
ab s + §a,vb7s =4day 40 (2.4.3)
as well as the conditions

b=c=c;=0 (2.4.4)

hold. Then the equations (1.1.1)
Ly =0, Rij = 201705y

hold on T.
Proof. By (2.4.4), the equations Ry = 2775,32, Riz = 27,74, and Roy = 2771,2 are equivalent to the
system (2.4.1 — 2.4.3) on X9. The result then follows directly from Proposition 2.3.2. QED.

We note that in terms of the quantity ¢ = y/a the equation (2.4.1) becomes
920 = —20(8,7)2. (2.4.5)

We have the following proposition, which will be sharpened considerably after we have introduced the

coordinate scaling in the next chapter.
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2.4.1. PROPOSITION. Suppose that on £ the quantity « is specified, that on £ the condition (2.4.4) holds

and the quantities

0
E0

5

Q‘Egv aﬂ)‘Egv as %9 bs

are specified on a line v = vy, and that a|28m{v:vo} has a positive lower bound. Then equations (2.4.1 —
2.4.3) give a unique set of initial data for the Riccati equations (2.3.1 — 2.3.3) on some neighbourhood of
v =g in X9.

Proof. Recall that a full set of initial data for (2.3.1 — 2.3.3) is a specification on s = 0 of

are free. Suppose that these three quantities, together with a , (this is needed since (2.4.1) is second order)
are specified on v = vy for some vy > 0, and that a on that line has a uniform lower bound. Then on some
open set U in XY containing v = vy equation (2.4.1) can be solved for a, and we may moreover assume,
shrinking U if necessary, that a|y has an upper bound and a positive lower bound on U. (Note that our only
requirement on U is that it be a neighbourhood of the line v = vy.) Given a|y, equation (2.4.3) then gives a
linear, first-order equation for b ;|r7, which has a unique solution on U once b s|yn{y=v,} is specified. Finally,
given aly and b |y, equation (2.4.2) becomes a linear equation for a |y, which has a unique solution on
U once as|unfv=v,} is specified. (It should also be noted that equations (2.4.2 — 2.4.3) do not give rise to
singularities on U since a|y has a uniform positive lower bound.) This completes the proof. QED.

As stated already, we shall later (see Chapter 5, especially and Proposition 5.4.1) give a much more

precise treatment of the solutions of (2.4.1 — 2.4.3).

A slightly similar setting has been considered in Rendall’s paper [11]. In section 5 of [11] the 3 + 1
vacuum FEinstein equations are studied in harmonic coordinates which, somewhat like our situation here,
originate from data prescribed on two transverse null hypersurfaces. In this setting one starts out with a
2-dimensional spacelike hypersurface S, corresponding to our spacelike curve A(x) (see Section 1.2), from
which null hypersurfaces N; and Ns are developed, exactly as in our case. For purposes of comparison we
identify ! (a null geodesic coordinate along N;) with s and 22 (an analogous coordinate along Ny) with v.
Subsequently an equivalence class of positive-definite metrics on .S is considered, and a conformal factor 2
introduced to define a particular element of this class; since up to conformal equivalence there is only one
metric on a one-dimensional spacelike curve, 2 can be identified with a in our treatment. Theorem 3 in [11]
then guarantees the existence of solutions to the Einstein equations given the conformal equivalence class of
the metric on .S and the specification on S of the quantities 2, € 1, € 2, g23,1 and gaa,1, where z3 and z* are

coordinates along S. We may indicate the correspondence between these quantities and quantities in our
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present work as follows:

Q~a, Q1 ~ags, Qo ~a,

923,1,924,1 ~ Goaw,s = b,s5

and their specification on S in [11] corresponds to their specification along A(z), i.e., along s = v = 0, in the
present case.

While our setting is sufficiently different from that in [11] to not allow for any direct application of
the results therein, the above comparison suggests that we have not gone too far off. (For purposes of
comparison, we remind the reader that — as noted in the footnote after Lemma 0.2.1 above — in our case
there are distinct constraint equations only along the null hypersurface s = 0, and not along the hypersurface
v = 0, the role of the latter being played by the Riccati equations.)

This completes those portions of our work which are independent of the coordinate scaling.



3. COORDINATE SCALING

3.1. Introduction and summary

In the previous two chapters we have dealt with the general problem of solving the reduced Einstein
vacuum equations (1.1.1) in our particular gauge, without considering the special problem of finding highly
localised solutions. Our ultimate goal is to find solutions to the system (1.1.1) which are tightly localised (in
zv) on a scale of size k~'/2 x k=1, We shall proceed by first obtaining existence theorems for solutions with
initial data which are so localised, and which have therefore large derivatives in the v direction. It turns
out that the structure of the equations (1.2.9 — 1.2.11), (1.3.1), and (2.4.1 — 2.4.3) allows us to introduce a
scaling of the coordinates = and v, as well as the quantities a — 1, b, ¢, and -y, which greatly simplifes this
task: with respect to these scaled coordinates, all derivatives will remain bounded (in spaces to be specified)
with respect to k. In particular, we shall ultimately (see Chapter 6) be able to define energies in this scaled
picture which remain bounded, uniformly in k, up to a time proportional to k, and from this the desired
solutions can be readily derived.

In the present chapter we provide some motivation for the scaling we shall use, and then determine the
equations of motion (1.2.9 — 1.2.11), (1.3.1) as well as the constraint equations (2.4.1 — 2.4.3) in the scaled
picture. In Chapter 5 we shall construct a particular class of initial data in the scaled picture and show that
it satisfies the bounds which shall be necessary in Chapter 6. Finally, in Chapter 6 we define energies in the

scaled picture and show that they remain bounded up to a time proportional to k.

3.2. Motivation
Before giving this scaling, we provide some motivation. For convenience in reference, recall that the

Riccati equations for the metric components are (see (1.2.9 — 1.2.11))

2
%a = % — 4a (8,7)* 0%b = % (0sa) (85b) — 4057y (bDsy + 0p) (3.2.1) — (3.2.2)
2 (abb)Q b2 b 2 2
d5c= — 207 [ 2¢0s7 + 20,7+ | — —¢ ) Oy +2=0,v | — — (027)", (3.2.3)
2a a a a

while the wave equation for v is (see (1.3.1))

2 2
[(b - c> 2 + 2basaz — 20,0, + 183 21 (85“ <c—|— b> - 4935b+ %&ca +205¢ — gamer a”“) s
a a 2 a a a a a

a a

. (basa - %asw 8za> o, - L%y

2 \ a? a? 2 a

vy=Lhy=0. (3.2.4)

The scaling we shall use is suggested by the theory of Gaussian beams.® In particular, it is quite

straightforward to show that an approximate Gaussian beam solution to the wave equation [,y = 0 along

* We shall show in Chapter 7 below that it is possible to find a Gaussian beam-like solution in our current
setting, but depending on two parameters instead of one: first, k, which controls the spatial extent of the

beam; second, a parameter we shall call r, which controls to what extent the energy is concentrated. While

46
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the null geodesic = v = 0 is given by (see Lemma 7.2.3)

L kBo—Llik—ZJo*
iC— L sl TR L T
Yo = k7 ¢(z,v)R —— EJ0a | g o2+ (4 [, %)

s 2
(5l a)

where A, C, D, and E are arbitrary positive constants, a = a(s,0,0) is the metric component a along the
geodesic, and ¢ is some C* function with compact support satisfying ¢ = 1 on a neighbourhood of (0, 0).
The important point for us is the scaling in the exponential; note that the terms involving x and v are of the
form kv, kv?, and kz?. In terms of Sobolev norms, then, a derivative in v counts essentially for one power
of k, while a derivative in x counts for half a power of k.*

Another motivation for the scaling we shall make comes from a scaling symmetry of the system (3.2.1 —
3.2.4). Before presenting this, we wish to clarify our perspective. The components of the metric h, which in
the coordinate system szv include a, b, and ¢, have geometric significance, and, hence, will change in a well-
defined way if we scale the coordinates. To put it more simply, a, b, and ¢ might properly be considered as
components of a tensor (namely the metric tensor h) rather than as scalars. For the purposes of this current
section, however, we ignore this and consider system (3.2.1 — 3.2.3) from a purely analytical standpoint; thus
we consider the functions a, b, and ¢ as scalars which do not change under a coordinate transformation. We
shall discuss how the coordinate scaling impacts the actual components of the metric h later (see Section

6.2).

the solutions we construct in Chapter 6, and hence also in Chapter 7, have an existence time which is
independent of k, the existence time of the Gaussian beam-like solutions we construct in Chapter 7 does in
principle depend on r.

It is felt that taking full Gaussian beam initial data may produce more sharply peaked solutions than
those we are able to give here — for example, solutions with ¢ = 1/2 but ||y| g2 scaling like k instead of k3/4
— but attempting to integrate the usual development of Gaussian beams directly into the system (3.2.1 —
3.2.4) we have here causes difficulties due to the coupling between the coefficients in the wave equation and
~v. It is felt that it might be possible to continue by expanding all quantities in a series in k, but that is

beyond the scope of the present thesis.
* In terms of our previous footnote, it is worth noting that the inconsistent scaling in v — that in one

term v scales with k& while in the other it scales with k'/2 — is a major cause of the difficulties mentioned
when attempting to extend the standard Gaussian beam treatment to the coupled system (3.2.1 — 3.2.3),
(3.2.4). In particular, note that if we replace x and v by the scaled variables — see equation (3.3.1) below —
T = k'/?z, T = kv, then the term kv? will go to ©2 /k, which goes to zero as k increases, meaning that for
large k the function vop is only weakly peaked in 7. This would render the L? norm of vop along the initial
hypersurface X of size k/4, which — as we shall see in Chapter 6 below — would cause great difficulties for

our present method.
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With this understood, suppose now that (a,b,c,7) is any solution to the system (3.2.1 — 3.2.4), and

consider the general scaling of coordinates and dependent variables

5=Ks, T =k, v = kP,
ae = k(s&w ax = kaaia 81) = kﬁ&vv
_ (3.2.5)
a=ka(357,70), b=k"b(s,T,0), ¢ =kc(3,7,7),
7 = k'y(5,7,9),

and define also ¢ = v/@. The system (3.2.1 — 3.2.3) then gives for @, b, and ¢

—\2
82a = (a;g) — 4ak=2(857)2, 820 = —20k~24(359)2,
02b = k=292 = k1% kas(aga)k"”(agb) — 4k (9) (K~ bosy + kaaﬂ)}
a
= o (057) (058) — 4k~ D607 + K 10077),
- 2
92¢ = Kk 0,c = k0% lk%“‘”@“ (6:t) ;)
a

-2

— 2k 29y <2k—9+5caﬂ + 2kP o5y + <k—2’7+< % — k—9c> K295y 4 2k~1+¢ Zkaaﬂ>

2
_ k2(0t—b+<)5 (557)2]

=2

0sb)? b b
_ k@—Qn—i—C( 26) _ 2k—2baﬂ <2k6+9_68b’7+ <k<+9_2na +C> 8ﬂ+2k9+a+<_n_6aaﬂ>

a—tL — 2 =
_ p2amit =040 2 (g 2

a
while the wave equation (3.2.4) becomes
v’ b 1
[<k262n+c _ k2606> asg + 2kfn+C+5+a:a§a§ _ 2k5+ﬁa§% + kC+20:a%
a a a
72 _ - —
. } §26-05 4 k25+cf2nbj @ _ 4k26+C72nga§g+ k”a*“”%@ﬁ
2 a a a a
+2kP-0g5c — appratinlo gy kﬁ”aﬂ Os
a a
— 1 ka+5+<_”jb28§6— 2k6+a+<_’7i5§5+ k2a+<@f O — lk‘;“ﬂ@&g 7 =0.
2 a a a 2 a

For these transformed equations to be formally identical to the original system (3.2.1 — 3.2.4), it is necessary

and sufficient that we be able to cancel all powers of k. From this we see that it is necessary and sufficient
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that + = 0, that

a+n—0=0
0—-2n+(=0
B+0—-6=0 (3.2.6)

0+a+(—n—0=0

20@+¢—=96)+6=0,
and that there be a constant A such that

20 —2n+¢=A

20 —0 =X\
—n+{+S+a= A\ (3.2.7)

§+8=A

C+2a=A\

From these, it is straightforward, if slightly tedious, to show that we must have { = 0, while

a:%% B=—6+A
n:a—%x 6 =25\

(3.2.8)

Now if we do not scale the s coordinate — motivated by the Gaussian beam situation described above — then
we must take § = 0, whence the first of these give 8 = 2a. In other words, there is some sort of intrinsic
scaling symmetry to the system which requires that the v coordinate scale with an exponent equal to twice
that of the x coordinate, exactly as occurs with the approximate Gaussian beam.

We note finally that the wave equation in free space in 2 + 1 dimensions, written in terms of null
coordinates sxv as here, is simply

_2858117 + 337 =0,

which is clearly also invariant under the scaling transformation s = s, T = k¢

3.3. Scaling and scaled equations

With the foregoing as motivation, we now give the coordinate scaling we shall use in the rest of this
work. In terms of the parameters defined in (3.2.5), we take « =1/2, =1, =0,(=0,n=1/2, 60 = 0;
finally, we require ¢ > 1/2 but leave it otherwise unspecified for the moment. It is worth noting that these
choices satisfy the first two equations in (3.2.8) if we take A = 1, but the equations for 7 and 6 — which we
recall controls the scaling of b — will then fail, and of course the choice ¢+ > 1/2 also breaks the scaling. As
we shall in great detail in Chapter 5 and Chapter 6 below, though, the extra terms resulting will all be of
lower order in k, and thus in some sense unimportant.

The above choice of scaling parameters gives the scaled coordinates

T = k1/2:c, 7 = kv,

|

:57

(3.3.1)
as = 6§7 8;8 = kl/QaaTa a’U = kaﬁ7
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and scaled dependent variables

a=a, =10, b=k, t=c, (3.3.2)
5 = k*y. (3.3.3)

We further define quantities da, 6/, and d—1a by
a=1+k 1da, (=1+k150, al=14+k"191a. (3.3.4)

Note that all five of the quantities @, da, ¢, 6¢, and 5 la uniquely determine a; we shall use whichever of
them is most convenient for the purpose at hand.

As our work in the sequel will show, given suitable* initial data, the above scaling allows us to obtain
k-independent bounds for ¢, b, and ¢ in appropriate Sobolev spaces. (See Chapter 6 below for the details.)

For comparison, we note that this implies the following ansétze on a, b, and c:
a=1+k 'a, b=k, c="=¢.

We shall not have occasion to explicitly use these ansétze in the following, however.
We shall always assume that k£ > 1. This is permissible since we are interested in what happens when
k is arbitrarily large.
The wave and Riccati equations may now be written out in the scaled coordinates. The above choice of
scaling parameters gives for the scaling exponents in the wave equation (cf. (3.2.6), (3.2.7))
20-2n+(=-1
26—60=0
—-n+(¢(+d+a=0
i+p6=1

(+2a=1.

The wave equation thus becomes

2
[(k _c> 042

>
Q| o

st — k0D + k202

ol

-2 — —
1 a _
- (c—i—k‘lb) CppP L ZafaJrzagc—Qafbm%a]ag
2 a a a a
1/b 1, - a 1 Osa
—(iaga—z&bwaw)a;—k T 5 =0
2 \a a a 2 a

* The particular choice of initial data will affect the exponent (. For the initial data we construct in

Chapter 5 below, it is sufficient to take . = 1/2.
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Now since @ = - = (14 k~160)2, we have
0;a = 2@(922 = 2k_1?8iﬂ;

substituting this into the foregoing, collecting powers of k, and multiplying by k~!, we obtain

1/ b — 1. - 50 1. - 00:60 50
l(—23§55+8%)+ (250m0r - 02— 57002 — (o0 Loab+ X% )0+ (Fo0 - 5 ) 0 - 200
k a a / a a 4
1 (b, 50 b - blO=00 100060 | _
5 | = —|e—=— —2= eb s — — T | — 372 — Us = U. <D
+k2<aag (c : a&)& = &) 5 &]7 0 (3.3.5)

Note that the leading-order term is simply the free-space (Minkowski) wave operator.
We may similarly write out the scaled Riccati equations. We note that the scaling exponents for these

equations are (again, cf. (3.2.6), (3.2.7))
a+n—0=1
0—-2n+¢=-1
B+0—-0=1
O+a+¢(—n—0=0
20@+¢—-06)+0=1,

so that the Riccati equations become

—\2
OO jah2(0m)?, 920 = -2tk (0m),  0250 = 2Tk (97)%, (3.3.6)

2a

020 — o= (0s0) (O5F) — Ak~ O (3057 + k07) = 2k~ (OTE)(0) — k107057 + k507) (3:3.7)

1 (05b)?

2a

- -2
02 =k~ — 2k 720y <Qam+ 2k*1§aﬂ+ k! <c+ kll;) M) = k““‘t%(ﬁﬂ)? (3.3.8)

Note that the restriction ¢ > 1/2 means that the right-hand sides of these equations will not have any positive

powers of k.

3.4. Constraints in the scaled coordinates

Recall the constraint equations (2.4.2 — 2.4.1):

2 2
bsarz—2a(bys —ays)—asa,—abs” =4day,~,

) s

1
ab,vs + ia,vb,s = 40/7,90'7,717
a.,?

= 4ay 2.
2a >,

_a,'uv +

We shall now derive the corresponding equations in the scaled coordinates. It is often convenient to work

with the quantity ¢ = /@ instead of @ itself. We have the following proposition.
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3.4.1. PROPOSITION. In the coordinates 3Z v, the equations (2.4.2 — 2.4.1) become

2 s — 105 (T '05) — 005" = 2k 272

T = 20k 2,

Proof. We note the following derivatives of ¢ and 6¢:

Recall also the following derivatives (see (3.3.1 — 3.3.4)):

0, =05, 0 =k"05,
0pb =05,  Oyb= k25D,
817 _ k1/2—l,aﬂ7 av'Y _ kl—Laﬂ.
Given these, the equations (2.4.2 — 2.4.1) become
- 1 _
_(1/2 —-1/27 _ L1275 (1129 ) -
(1#/%05) (172/%55) + g (7175 (705 a)

asay 1

s — k% -5 (k—l/%,g)g =2 ((1&/25?) k“ﬁ)Q

a

2a 2k o
9 5ls — 105 (T7'55) — b’ = 227 2,

which is equation (3.4.1);

_l’_
05 ((bs) = 40K 5 7 7,
which is equation (3.4.2); and

= 2
kg + KT = kT
Ky = 2T 2
Sl = 202 2,
which is equation (3.4.3). This completes the demonstration.

Proposition 2.4.1 in Chapter 2 shows that, given the quantities

57, 305 b

(3.4.1)
(3.4.2)

(3.4.3)

QED.
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on a line {5 = 0,7 = vy} for some Ty > 0, there is a neighbourhood of this line on which the system (2.4.2 —
2.4.1) will have a unique solution.

We now wish to study the solutions to the system (3.4.1 — 3.4.3), and in particular to show that it
admits solutions on sufficiently large regions and with sufficiently well-behaved bounds to serve as initial
data for the equations of motion (3.3.5 — 3.3.8). We shall do this in Chapter 5. First we pause to build up
some analytic machinery for that chapter as well as the work in partial differential equations we shall do in

Chapter 6.



4. INTERLUDE: ANALYTIC PRELIMINARIES

4.1. Introduction

In this chapter we collect some algebraic and analytic results for use in the final two chapters. These
fall into three categories: first, two simple algebraic results; next, more-or-less standard L°° bounds on
solutions to ordinary differential equations, which will be used to prove the existence of initial data satisfying
appropriate bounds; finally, modifications of standard Poincaré and Sobolev estimates, together with related
results, which will be needed in the analysis of the system (3.3.5 — 3.3.8).

This chapter is independent of the rest of the thesis. In particular, the results we give are in spaces

independent from those on which we solve (0.2.2 — 0.2.5).

4.2. Algebraic results

We have the following lemmata.

4.2.1. LEMMA. Let a € R™, and let g be a function on a neighbourhood of a which satisfies g(a) # 0. Let
p > 1 and suppose that J is any multiindex for which 87 g(a) exists. Let K denote the set of all collections of
multiindices { K1} whose sum equals .J. There is a collection of combinatorial constants {C? (K} |[{KL} € K}

such that at a
[T 9%g
Z P Ke{K}
{Kk} gH{Kx}+p 7
{Kr}eK
where |{K}}| denotes the cardinality of {K}}.
Proof. This may be seen by induction. If |J| = 1, then it suffices to take C{J} = —1. Suppose the above

formula holds for all J with |J| < j, some j > 1. Then differentiating gives

. Y reirey 0059 {H " %'y dig 1{_[ }5K9

J L K'e{Ki}\K Ke{Ky

00" 5= > Clwy PILIEe — (B + 1) — i (-
{Kir}eK

which is of the correct form. QED.

Let [|[M|as = (3.4 Meal?) /2 denote the Hilbert-Schmidt norm of a matrix M. (Note that M need

not be square.)

4.2.2. LEMMA. The Hilbert-Schmidt norm has the following properties:
(a) If V is a covector in some Euclidean space and |V| denotes the Euclidean norm, then ||V;V;||gs = |V ]2
(b) If A and B are two square matrices, then Tr AB < || A||gs||Bllas-

Proof. (a) We have

IViVillies = > V2Vt = (Z V) DVP| = IVEVE = I
i i j
(b) Since the Hilbert-Schmidt norm on square matrices can be written as || A||% ¢ = Tr A%, and (A, B) —

Tr AB is an inner product on square matrices, this follows from the Cauchy-Schwartz inequality. QED.
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4.2.3. LEMMA. Let f be a real-valued C'*° function on some convex open set O C R™. Then there is a C*>°

map F': O x O — R™ such that for all x1,x5 € O,

f(x1) = f(x2) = (x1 — x2) - F(x1,X2).

Proof. This is elementary: define
1
P’(Xl7 Xg) = / Vf(XQ + t(X1 — XQ)) dt;
0

then clearly F': O x O — R™ is C*°, and moreover

bd
f(Xl — XQ) = / dtf(X2 + t(Xl — X2 dt / Vf X9 + t(Xl — Xg)) (X1 — Xg) dt (Xl — XQ) F‘(Xl,Xg)7
0
as claimed. QED.

4.2.4. LEMMA. Let O C R™ be open, let F' : O — RP? be C*, and suppose that fi, -, fm : O' — R,
O' C RY open, are also C*®°. Let K be a multiindex in RY. Then 05X F(f1(x),- -, fm(x)) is a sum of

combinatorial constants multiplying expressions of the form

@' F)(f1(x), -+, fm(x) [T 0" () (4.2.1)

where K}, are multiindices on R? and J is in R™, satisfying |J| < | K| and Y | K| = | K].

Proof. We proceed by induction. If |K| =1, say K = 9;, then we have by the chain rule

WF(fL(x), s fn(3) = D (O F) (F1(x), -+ fin(%))0i f3(x),
J
which is of the desired form. Now suppose that the result holds for all multiindices K with |K| <n, n > 1.
If we differentiate (4.2.1) with respect to 9;, we obtain by the product and chain rules
D007 F)(fu(x), ., fm(x))0uf5(x) [ [ 0% fi(x0)
J

+ (O F) (%), () D005 fu(x) [[ 0"+ filx

Kp#K*

which is again of the correct form. QED.

4.3. L* bounds for ordinary differential equations

We recall that Proposition 2.4.1 shows that the constraint equations (3.4.1 — 3.4.3) can be solved locally
as ordinary differential equations for the initial data a, a s, and b ;. The following results will be applied in
the next chapter to derive L>° bounds on these initial data, as well as the initial data for v. Those bounds

will also allow us to provide lower bounds on the interval of existence of a, a s, and b ;.*

* We note that the following results could be sharpened considerably in many places by replacing quantities
like X || fI| Lo (jo,x]) With || fll£1([0,x])- On the other hand, the bounds in the form we give them are suitable
for our purposes, and to directly apply results with L' norms in place of L> norms in Chapter 5 would

require us to introduce yet another series of norms on the initial data.
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Let M, xm(R), where m is a positive integer, denote the set of m x m matrices over R.

4.3.1. PROPOSITION. Let [0, X] be some compact interval in R!, and suppose that x : [0, X] — R™,
M: [0,X] = Mpxm(R), and b : [0, X] - R™ are C* functions on [0, X] which satisfy

x=Mx+b
on (0,X). Then on [0, X], x must satisfy
x| (1) < eXNMOlmslie= (|x](0) + X [[[b](t)] ) -

where | - | denotes the Euclidean norm on R™, and || - ||p~ denotes the L> norm on [0, X].
Proof. For simplicity we write everything in index notation; upper and lower indices are equivalent since

we are working with a Euclidean metric. The differential equation becomes
x; = M;;x; + b;.
Let € > 0, and define e = |x|? + ¢ = x;x; + ¢€; then
é = 2x;%; = 2x;M;;x; + 2b;x;,
from which we see, by Lemma 4.2.2, that we have on [0, X]
¢ < 2|M| mslx|? + 2/bl[x| = 2| M||zrse + 2[ble!/?.

Dividing through by e'/2, and multiplying by the integrating factor exp [(— fot IM(E) |l 7rs dt')} , we see that

this is equivalent to

il (- /ot M) ls ) || 42} < pige M o

t / ’ t t " "
eU/2 < /2(0)e o M)l dt +/ o MG a3 8y
0

< e'/2(0)eXMMOllaslize L x|[|b](t)|| oo e XNM Ollms o

whence we obtain

— XM O s oo (61/2(0) n X|||b\(t)||Loo) :

from which the result follows by taking ¢ — 0. QED.
We obtain the following three corollaries.

4.3.1. COROLLARY. Let f, g, F be C*° functions on an interval [0, X], and suppose that f satisfies
f'+af=F
on [0, X]. Then on [0, X], f satisfies

1< (O] + X[ Flg<] e ol
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where || - ||~ denotes the L>° norm on [0, X].

Proof. This is just Proposition 4.3.1 in the case m = 1. QED.

4.3.2. COROLLARY. Let f, h, g, F' be C* functions on an interval [0, X], and suppose that f satisfies
f"+hf +9f=F (4.3.1)

on [0, X]. Then on [0, X], f satisfies

1/2

(PO +17PWO] < (1RO + 17 PO 4+ X[ Fl ) X0 lsli,

where || - ||z denotes the L> norm on [0, X].

Proof. Note that the equation (4.3.1) is equivalent to the system
f'=u
u = —gf —hu+F,

which is of the form of that in Proposition 4.3.1 with

(1) () e (D)

since for any t € [0, X]

x®)] = [IF2® + 1FPO]?, M@ |as < 1+ 9@+ h@®)], b)) = [F)],

the result follows from Proposition 4.3.1. QED.

4.3.3. COROLLARY. In Corollary 4.3.2, suppose that h = 0 and f(X) = f/(X) = 0. Then on [0, X] we have
LF@OL 1/ ()] < X||F|| oo X Hole=],

Proof. This follows by replacing = by X — z in the differential equation satisfied by f. QED.

Clearly, many terms like X||g||r~ in the foregoing results could be replaced with the L' norms which
they bound. In the applications we shall make of these results below, though, it is more natural to deal with
the L°° norms, which is why we have stated the foregoing as we have.

We conclude this section with one result on L Sobolev spaces. Let U be any open set in some linear

submanifold of R?, and let J denote a multiindex in derivatives tangent to U. We define the Sobolev norm

[J]<m

(this is equivalent to the usual definition with a maximum instead of a sum), let W™ (U) denote the set

of all functions on U for which the above is defined and finite, and note the following lemma.
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4.3.1. LEMMA. For any m > 0 there exist constants C,, and C? such that, for any f,g € W™>(U),

£ gllwm.oe @y < Conll fllwm.o@ylgllwm.ewy,

and for any f € W™ *°(U) for which [|1/f| z ) is finite,

. 1 m—+1
<O (14 i)™ Hf

|5
f Wm.oo(U) Lo (U)

Proof. The first inequality is a trivial application of the product rule

o0 =3 () o1

J<I

where [ — J is the componentwise difference and J < I if and only if I — J has nonnegative entries. The
second inequality follows from Lemma 4.2.1: if |I| < m, then

[ oFf
a[l _ Z Cp KG{K;C}

f ek {Ky} FHERHT

< Y Oy (L [ lwme o)

H 1 HI{Kk}Hl
{Kx}eK f

) 1 m—41
< (14 |l o) HfH |

as claimed. QED.

4.4. Poincaré- and Sobolev-type inequalities.

As usual, when deriving energy bounds we shall need to avail ourselves of Poincaré and Sobolev inequal-
ities on spacelike surfaces of constant 7. However, these surfaces shrink to a line in the limit as 7 — 07,
which means that the standard versions of the Poincaré and Sobolev inequalities cannot be applied directly
as the ‘constants’ could potentially go to infinity. Thus in this section we derive appropriate replacements
which can be used in our context.

The general definitions of Sobolev norms in 0.9 give rise to the following special cases. If X C R" is
any open subset of an affine submanifold of R?, or any such set with some or all of its boundary points

included,, and m > 1, we have, according to (0.9.2),

1F1Fm = D, 10 f122x), (4.4.1)

1<[1]|<m

where I indicates a multiindex in the directions tangential to X. Further, if L > 0, we define Q7 = R! x[0, L]

and 99, = R! x {0}. Let m > 1. Then we have
+oo

1oy = [ 1f@0Pde+ [ s 0 ds (4.42)

— 00 — 00

+oo
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Here these definitions are for all functions f for which the right-hand sides exist.
We shall denote a generic point in Qf, by (z,y). We have the following two results, which adapt the

Poincaré inequality and a Sobolev inequality, respectively, to our situation.

4.4.1. PROPOSITION. Let L > 0, and let f € H'(Q) N L?(99Q). Then
1 lz200) < VIE V10,20, + 1 2200 | -

Proof. It suffices to show this for f € C*°(Qr), and that case is elementary:

+oo L +oo L
£ 1172 ) :/ /0 |f|? dy dx < 2/ /0 [

+o00 L L
<2 [Pz [ 0Py de <28 10, T, + @0

2
+ f(x,0)|2] dy dx

/0 0,1 (') dy'

from which the result follows immediately. QED.

4.4.2. PROPOSITION. Let L < v/2, and let m > 2. There is a constant C, independent of L, such that for all
feH™QL)NH (99y)
1wy < CIflam @) + 1 lar o)) - (4.4.3)

Proof. It suffices to show this for f € C*°(§2;) having support which is compact in the first variable.
Let L < v/2. We note the following elementary version of the Poincaré inequality: if g € C*°([0, L]), then
for any z € [0, L],

L

l9(z)] = / g'(u)du+g<o>]s|g<o>+ / 19/ (w)] du < [g(0)] + ZV2[1¢'ll12(0.1)-

by the Cauchy-Schwartz inequality; in other words, there is a constant C, independent of L (more precisely,

depending only on an upper bound for L, here v/2), such that for g € C°([0, L]) we have

913 to.c1y < € (191320, + 19O -

Now let f € C°°(21) have support compact in the first variable, and for any z € R! define f, € C*°([0, L])

by fz(y) = f(x,y). Then clearly for all x € R! we have (here f, is a function of one variable, and f/ is its
derivative, f.(y) = 0, f(z,v))

1o @) 0,21y < € (12132 0.9 + £, 0] -

Further,

1@ )3y < 1@ 0.2, < C 1512 0.00) + 176, 0] |

Loo(Rl) - Loo(Rl) ;

now if we let C’ denote the Sobolev embedding constant on R!, we have

1£(2,0)*[| e 1) = [1f (2, 0)[[ 7 (m1) < C"2 {Hf(ffvo)”%z(r{l) + ||3zf($a0)\|%2(R1)]



60 Analytic preliminaries [4.4
and, since f has compact support in x,
0o L 0o L
2 2
020y < [0 [0t an = [ [ 210,50.0, 1y

oo L
< / / 0y 12 + 1000, £ dy d < |11y

so finally
1) B,y < 20" + 172 [1F iy + 17130200,
from which the result follows. QED.

We shall denote the constant in this proposition by Cy when necessary.

We now wish to prove bounds on norms of products. We begin with the following extension lemma. We

let C2°(§2y) denote the set of functions on Qf, which are C* and have compact support.

4.4.1. LEMMA. Let L < /2, let m > 0, and let ¢ € C*°(R!) have support contained in [—1,3] and satisfy
®|(—1/2,2) = 1. Then there is an extension map e : C°(Qy) — HJ* (R x [—1,3]) such that
(i) e(fla, = f,
(i) le()lm ety < C [Iflamn) + X7 105 | yn-reionss |
where 0, denotes the one-sided derivative into Qr, and C¢ is a constant depending only on m and ¢ (in
particular, C* is independent of L and the size of the support of f).

Proof. The main idea is to extend 8, f by 0 and then integrate m times in y, multiplying by a cutoff
at the very end. We first show how to do this in one dimension. Fix some f € L?([-1,3]), and let ao, ay,

-, am, be a sequence of real numbers. We first define, for € [—1, 3],

I(f, =a+ / f(t)
Now since [—1,3] has finite measure, we have f € L'([—1,3]) as well, so that I(f,a)(z) is differentiable

almost everywhere and
L 1(f,0)(a) = f()
as functions in L!. Thus
IL(fsa)llma =13 = I fllz2(=1,3))-
We now claim that
(S, a)ll 21,3 < 4lal + [ Fllz2(-1.31)-

It suffices to show this for f € C°°([—1,3]). For such f, we have clearly
x
| 1w ,

0 L2([-1,3])
2 3 z 2 3 x

< [ |[ swa] ae< [ | [
L2([-1,3)) -1 0

< [ [ 0P =121

11(f,a)llr2(-1,3) < 2|al +

T iz

SO
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H(fs )l z-1ay <4 (lal + [ Fll2 1))
as claimed. Thus we have
IL(f; )l =13 < 5(al + 1l z2-13))-
We now define I} (f) inductively by
L(f) =1(fra0),  Tin(f) = IUIE(S); ar).
We claim that || 12 (f)||2(-1,3) < 4" (Zi:& lag| + ||fHL2([_173])>. This may be shown by induction:
117 (D)2 1.3y = I(f,a0)ll 213 < 4 (laol + [ Fllz2-1.3)) »

I (P 2=,y = IR () ar)lpz=1,3) < 4 (lak] + R ()l p2=1.3))

k—1 k
<4 <|ak| +4F Z lae| + |f||L2([—1,3])]> < gt (Z lag| + |f”L"’([—1,3])> ,
£=0 =0
establishing the claim. Now we note moreover that
d R
otk (f) = Le(f); (4.4.4)

thus

k
IR ) ez < kA (Z |ae| + ||f||L2([1,3])> ,

£=0
and similarly there must be some constant C' depending only on ¢ and k such that

k
oLy ()l e (—1,3)) < k4kC (Z lag| + ||f|L2([—173])> . (4.4.5)

£=0
We now define the extension map e. It suffices to work with f € C°°(€) with support compact in the

first variable. Pick such an f, and define first

_ J oy f(z,y), y €0, L]
Fz,y) _{ ! 0, otherwise

clearly F(x,-) € L?([—1,3]) for every x. We then define

e(f)(w,y) = o(y) I, (F () (y),

where the sequence for each Iy, is ag = (85 f)(x,0). Clearly e(f) is zero outside R* x [—1, 3]. It is also clearly
C® in z. Further, the bound (4.4.5) will hold with k¥ = m and f = F(x,-). Thus, noting that all of this
holds with f replaced by 9% f for any 4, and that differentiating by x commutes with e, we have

le()lam@mixi-1ay < > 0J0Fe(H)ll2@ «-1,3)

j+k<m

= Z 105 e(02f) Il L2 x [(-1.,3)

J+k<m

m :nfk
<> > katC
k=0 j=0

k

|02.0,.f (2, 0)] + 192.f (2, )| 21,39
=0

L2(R1Y)

<

Hf||H""(QL) + Z ||(85f)($70)||Hmf(aszL)] )

£=0
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completing the proof. QED.
It is worth noting that the H™ norm on the right-hand side of the inequality in (ii) can be replaced with a
norm only on the x derivatives of f. Further, by continuity, the map e can clearly be extended to the set of

all functions f € H™ () which satisfy also 85]” € H™4(9Qr), £ =0,---,m (in a trace sense, for example).
This allows us to derive the following lemma, see [12], Lemma 6.16.

4.4.2. LEMMA. Let m > 2, L < V2. Let f1, ---, fy € H™(Qy) satisfy 95f; € H™4(9Q), £ = 0,---,m,
t=1,---,k,and let Iy, - - -, I} be multiindices with |I; 4 - - + Ix| < m. Then there is a constant C' such that

k m
07 f1 - "51’“fk||L2(QL) <c (o) H (Z 105 fill srm—e 002, + |fiHm(QL)> :

i=1 \/£=0
Proof. This follows from the result just cited, together with the embedding in Lemma 4.4.1 and the
Sobolev inequality on R?: specifically, for i = 1, - - -, k, let ﬁ be the extension by 0 of e(f;) to all of R?; then
by [12], Lemma 6.16, and the Sobolev inequality on R? we have

s

k
LRz S C};[l 1 fill e () -

But by the lemma || fi|| g (r2) < C¢(3 70 105 fill im—s(a0s) + I fill 5 (0y)), SO that we have

[0 fy-- 0" g < o0 Fu-- 0" )

<cEe)"]] <Z 105 fill rrm—e 002,y + |fi||Hm(QL)> :

L2(R2) i=1 \¢=0
as claimed. QED.
The constant can evidently be taken to depend only on m (by taking a maximum over multiindices);

we denote it by Cj; when convenient.

The form of the next result follows as an easy corollary, but we give a separate derivation which is more

careful with the constant.

4.4.3. LEMMA. Let m > 2, L < /2. There is a constant C' > 1 such that if fi, fo, -+, fr € H™(Qy) satisfy
affl € Hmie(QQL)v €:0,~-~,m, i = 13"'7ka

k m
Ifr - fullamen) < CFT] (Z 108 fill e (002, + ||fz'||Hm(sz>> -

i=1 \¢=0
Proof. As in the lemma, the key point here is that the constant C' does not depend on L. Let
f,g € HZ*(R?); then there is a constant C’ such that

I1f - gllzm @2y < O fllam@2) 9]l am(r2)-
We may assume C’ > 1 without loss of generality. Now by the lemma, we may extend the f; to functions
e(f;) in Hy'(R' x [—1,3]); extending by 0 outside of R! x [—1, 3], we obtain functions f; on R2, which still
satisfy

| fill g (r2y < C° (Z 105 fill 200, + ||fi||Hm(QL)> .

£=0
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Thus finally

I fifo - frllamony < I fooe fllammey < CF 7 fillam e | follam ey - | fl 2y

m

k
< C'R(Co)k H(Z HaffiHHm%(QQL) + 1 fillam @y

i=1 £=0

so taking C' = max{C’C*¢, 1} (and recalling that C* is independent of L) gives the result.

We denote the constant C by CM or CM when convenient.
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5. EXISTENCE OF INITIAL DATA

5.1. Introduction

In this chapter we shall construct initial data for the system (3.3.5 — 3.3.8),

1 1
2 — - — 20—
1 (b, 0 b, - blOs60 1000500 |_
k2<aa§<c 5 28§b)6L = s — 057 =0 (3.3.5)
02a = (0sa) dak =2 (057)? 020 = =20k~ (057)* 0250 = —20k* 2 (957)* (3.3.6)
s 26 S bl i 57 I S - S b

025 = - (05m)(058) — 4k~ 057 (005 + kD7) = =k~ (OsT0)(O6F) — Ak 07(07 + K~ 10057)  (3:37)

l;) M) “H 202 (338)

| <=

aﬁ —k 1(&b)
2a

IS

—2k'72 057 (2% +2k oy + k! <c+ k1

which satisfy the following two conditions:

(1) The solution obtained from the initial data, when substituted into the metric (0.2.1) via (cf. (0.3.35))
=1 +k7%0%  b=kY%, =g = kY%, (5.1.1)

will give a solution to the Einstein vacuum equations;
(2) The initial data, together with their transverse derivatives on X and Uy, satisfy the bounds (0.3.31 —
0.3.33) on Xy and Uy. More specifically, this requires us to find bounds* on the quantities

o'otse,  o9'o%,  o'oke (5.1.2)
on Y, and bounds on
o'ozy, 070k, (5.1.3)

on X U Uy, where in all cases I and J are multiindices in T and © and ¢ € {0,1}, and we recall (see

equation (0.3.19)) that 7 = (3 +7)/V2.

Satisfying condition (1) comes down to finding initial data which satisfy the constraint equations (0.2.24
—0.2.26) and the gauge conditions, see Corollary 2.4.1. Let us lay out the process systematically. It is clear
that sufficient initial data for the system (3.3.5 — 3.3.8) by itself, in isolation from condition (1), is given by

0c0lls—0,  Obls—0,  Otls—0, (5.1.4)

Als=0,  Flv=0 (5.1.5)

where ¢ = 0,1, and where the functions in (5.1.5) satisfy the consistency conditions (1.3.2). The gauge
condition (2.4.4) fixes three of the six functions in (5.1.4):

blgzo = 6|§:0 = SE|§:0 =0. (516)

* These bounds will be with respect to various different norms. We shall obtain data which are compactly

supported, in the which case the norms of the initial data in all of these spaces are bounded by L* norms.
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Given 7|z, the constraint equations, written in the form (0.2.24 — 0.2.26)

0%l 157\ . 1—2¢ —\2
5T = —2(1 + k7100 k 2 (957) (0.2.24)
O5 (1 + k™60 05b) = 4(1 + k™' 60 k' > 0707y (0.2.25)
-
214+ k) 000 = (L k00 (1 + kB0 0RD) + g (96D)° + 2K (9)7, (0.2.26)

give ordinary differential equations in T whose solution will give the remaining three functions in (5.1.4),
ﬁ|§=07 %ﬁ|§=07 a§5|§:()7 (5.1.7)

given, for some Ty > 0, the values (see Proposition 2.4.1)

To sum up, we have the following lemma.

5.1.1. LEMMA. Suppose given the quantities
¥ls=0s 7lw=0, 00|50, 570 - 560|5—0,5=74» 0500|520, 5=+ 50|50, 5=70 + (5.1.8)

where Ty is such that {(0,7,7g) |T € R} C X, and F|5—¢ and |5 satisfy the consistency conditions (1.3.2).
Then on some neighbourhood of {(0,Z,7y) € Xy |Z € R} in g there is a unique set of initial data (5.1.4),
(5.1.5) taking the values indicated in (5.1.8) and satisfying the constraint equations (0.2.24 — 0.2.26). Any
solution to (3.3.5 — 3.3.8) corresponding to such initial data will give, via (5.1.1) and (0.2.1), a solution to
the Einstein vacuum equations.

Proof. The first statement follows from the foregoing, and the second follows from Corollary 2.4.1.QED.

This takes care of condition (1).

Condition (2) is much trickier. Obtaining bounds on the initial data (5.1.4 — 5.1.5) and their derivatives
tangent to the initial hypersurfaces is not difficult. Note however that obtaining bounds on the quantities
in (5.1.2 — 5.1.3) — which are necessary to allow us to close our estimates with respect to the energies E,,[]
and E,[h] (see equation (0.3.30) and equation (6.2.26)) — will require, on both hypersurfaces, bounds on

derivatives with respect to

C: 5(575)7

and hence will require that we bound derivatives with respect to s on Xy and with respect to v on Uy, for
all four functions &4, b, ¢, 7. (See also the conditions (0.3.31 — 0.3.33) and the definitions (0.3.26 — 0.3.27).)
For 6/, b, and ¢, this can be done using the Riccati equations (3.3.6 — 3.3.8) and the constraint equations

(0.2.24 — 0.2.26). For 7, note that the wave equation (3.3.5) on ¢ simplifies by (5.1.6) to

2050y + 02+ k! (—5—1aa§— a%(%@g—i— (i b— mi“) b — }Z%ﬂ 5= 0 (5.1.9)
a
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given the quantities in (5.1.7), as well as 7|30, this is an ordinary differential equation in v for 9s7|5—9, and

hence we can obtain 057|3—9 given
057 |5=0, 5=,

for Ty as before. Similarly, as we shall discuss in more detail later (see Proposition 5.2.2), differentiating

(3.3.5 — 3.3.8) with respect to 5 allows us to obtain

DL50|5—0, D4bls—o, 0%e|5—0, 07150 (5.1.10)
for £=0,1,---,m given
0550 5=0, 5=7, » 05|50, 5=y £l 5=0, 5= 5|50, 5=70,
for £=0,1,---,m, and moreover to obtain L> bounds for the quantities in (5.1.10) in terms of L> bounds

on Jlz=o, dz7|s=0, and d57|5=0, all of which are known completely once 7|3 is specified. (There is a loss
of derivative in these bounds but this does not cause any difficulties here as |z is entirely specified.) A
similar method (which is however rather more involved, due to some nontrivial coupling; see Proposition
5.3.2) works to determine the transverse derivatives 957|5—o, etc.. Further differentiating with respect to
tangential derivatives (97 and d5 on Xy, dz and 95 on Up) allows us to obtain bounds on the tangential
derivatives of the quantities in (5.1.10). This is all spelled out in great detail in Section 5.2 and Section 5.3.

On X, there is an extra issue to be dealt with, which does not come up on Uy. Note (compare our
discussion at the end of Section 0.2) that to determine the quantities in (5.1.10) we must integrate equations
(0.2.24 — 0.2.26) and (5.1.9) and its 5 derivatives with respect to © — and T ranges over a interval [0, kTv/2]
with length of size k. In order for the 5 derivatives of 7 to have bounds in L?(3g) which are independent
of k — as required by (0.3.31) — we must be able to prove that this integration does not lead to factors of k.

The simplest way to ensure this is suggested by the following proposition.*

5.1.1. PROPOSITION. Let C' > 0 be some constant independent of k, let §v1, v, € [0, C], and suppose that
the set
»* = {(0,Z,7) € %o |T € (071, kTV?2 — 672)} (5.1.11)

satisfies

X" Nsupp s, = 0. (5.1.12)

If Ty € (601, kTV2 — 003) and &4, O56¢, Osb is the solution to (0.2.24 — 0.2.26) on ¥ satisfying

0|50, 55, = 0, 0560|5—0, 57, = 0, 0500|350, 5-5, = 0, Osbls=0,5=5, = 0,

* See also the footnote at the end of Section 0.2, and the discussion in Section 0.5 — we believe it may be
possible to deal with this issue by other methods, such as, for example, by using a special class of functions
for 7 which will make all terms of higher order in k£ vanish identically which might appear upon integrating

(5.1.9) and its 5 derivatives. That is however beyond the scope of the current work.
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then

on X*.

Proof. Note that, by equation (5.1.12), on X* the constraint equations (0.2.24 — 0.2.26) become

%50
—0 5.1.13
862 ( )
O ([L+ k100 95b) =0 (5.1.14)
21+ k~1o0) - %L _ (L4 k76007 (1 + k~'00) "' 05b) + L ( 5)2 (5.1.15)
0vds v s 2k V0 o
(5.1.13 — 5.1.14) together with the conditions d|s—¢ 5—3, = F50{|5=0,5=5, = Osb|s=0,5=3, = 0 clearly give
60 = 3sb = 0 on T*, whence (5.1.15) becomes
N
ovds
and 0500|5—-9, 5=z, = 0 implies G50/ = 0 on X* also. QED.

Because of this proposition, we shall assume for the rest of this chapter that all our choices of F|5—q
are of the following form. Let 6v1, 62 € R, §771, 005 € (0, 1) be two fixed numbers,* independent of k, and
assume that k is large enough that kT/\/i € (6vy, ETV?2 — §v3). Let w1, wq be C°° functions on R? with
support contained in

[0,1] x [0, 671], [0, 1] x [0, 6Ts],

respectively, and which, together with all of their derivatives, have L> bounds on R? which are independent
of k. (This condition will be satisfied, for example, if w; and wy are fixed functions independent of k.) We

assume in particular that they satisfy

1 1
Now define wg(T,7) on Xg by
w1 (Z,7), v € [0, 074 ]
wo(Z,0) = 0, T € [601,kTV2 — 603) (5.1.17)
w2 (T, — (KTV?2 — 603)), T € [kTV2 — 6vq, kTV/2]

note that wq, together with all of its derivatives, has an L° bound on ¥y which is independent of k£, and
also satisfies (5.1.16) (since the supports of the two ‘blips’ comprising w are disjoint and (5.1.16) involves
an L norm). We now specify

¥(0,Z,7) = o - wo (T, D), (5.1.18)

where 0 < 1 is a scaling parameter (also independent of k) which we shall set later, and

ﬁ|§:0,5:kT/\/§ =0, aﬁ@%:o,a:w/\/i =0, 85@|§:0,5sz/\/§ =0, a§6|§:0,5:kT/\/§ =0.
(5.1.19)

* The restriction 6o, 003 < 1 is purely for technical convenience.
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We define also the function 7, on ¥y by
Yo(Z,7) = 0 wo(T, ), (5.1.20)

so that (5.1.18) may be written 7|s, = 7,. With these choices we have specified everything in (5.1.8) except

for F|z=9. We will choose this (see Section 5.3) so that for £ = 0,---,m, m some positive integer, we have

agﬂz:o,a:kT/ﬂ =0 (5.1.21)

logic similar to that used in Proposition 5.1.1 will then allow us to conclude that aéﬁ\gzo must vanish when
v € (001, kT2 — 003). (Note that (5.1.21) is not part of the specification of the initial data — the transverse
derivatives 9%y|5—¢ are quantities derived from the other choices of initial data. What we are saying here
is that we can force (5.1.21) by an appropriate choice of 7|z—g, which is part of the initial data.) This will
complete our specification of the initial data, and we shall assume for the rest of the chapter that all initial
data is chosen in this way.

On Xy, the problem, as thus phrased, has a formal reflection symmetry in the line 7 = k7/v/2, in that
we shall obtain the quantities in (5.1.2 — 5.1.3) for © € [0,kT/+/2] by integrating backwards from kT/+/2
to 0, and for 5 € [kT/v/2,kT+/2] by integrating forwards from kT/v/2 to kT2, and these problems are

mapped into each other by exchanging w; and ws and mapping
T kTV2 - 7. (5.1.22)

Note that equation (0.2.24) is preserved by (5.1.22); the other equations we solve are preserved only up to
signs, but since we are only interested in obtaining bounds, signs will not matter. It thus suffices to consider
just one half of the problem. Since the half with @ € [0, kT'/v/2] is the only one which matters for determining
¥|5=0, we shall focus on it in the following, with the understanding that the other case follows by the same

logic. Thus in the next two sections, unless otherwise noted, we assume v € [0, kT/+/2].

5.2. Initial data on 5 =0
In this section (only) we let I denote a multiindex in T and .

We have the conditions

W|§:O,E:kT/\/§ = @,5‘3:05:1&’/\/5 = @,g‘E:O,E:kT/\/? = B-E|§:O,E:kT/\/§ =0, (5.2.1)

which imply (for k sufficiently large) the conditions

5=07=1 = bsls=05=1 = 0. (5.2.2)

In all of the results in this section we shall assume that (5.2.1), and hence (5.2.2), holds.
We define the set
22 = {(0,7,7) € Do |7 < kT/V2}.
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As observed at the end of Section 5.1, the results we prove below on Eé will also hold on the complement
So\Z2.
In accordance with our definition of W (see (4.3.2)), we have, for any (say C™) function f defined
on Eé ,
_ J1 52 =
||fHW7n,oo(20%) B jl-g‘z:gm (o,sz)pezoé 07 022 f(0,z, ).

1
We now have the following results. Recall that on ¥; we have 7 = 7.

5.2.1. PROPOSITION. Let m be a fixed positive integer. There is a combinatorial constant C}, > 0 such that
any solution to (0.2.24 — 0.2.26) with initial data given by (5.1.18) and (5.2.2) satisfies on § = 0 the bounds

> 00> —k' 2|07 |7, (5.2.3)
m
s L ¥5ll? 2.4
||6€||Wm°c(20%)§0 HV Wm,OO(EO%)[ W’UIWm-,oo(EO%J ’ (5.2.4)
m
(2+C"k * 1Tally e iy 0+ 7 wa(z;))m)
HZH y, < Cm = : (5.2.5)
Wm.(57) <1k QLHV*HLoo(w )
m o m+1
e OBk 7l oty (4 ol s
all,. .y < Cat weoh U el oo
wmee(5¢) 1 k2 H,)_HLOo 22
7= HWMQEQ 17 = ||W7W(EO%), (5.2.6)
3m+6
2 u 2 |5 m—+1
1€l ... i3, S Ok A (] R TR (i e
Wm0 (52) 1 — k- 2L||77HL00(22)

(HV ol ety Tzl ety + 17l oty ity *+ 1Tl 2 ) (5.2.7)
Proof. We shall derive the result for separate constants in each place, after which the result as stated
follows by letting C be the maximum of all of the constants. Since all results in this proposition are to
hold on Eé, we drop the $ = 0 subscript for notational simplicity. It suffices to prove the result for v € [0, 1];
the result will then follow for © € [0, kT'/+/2] by Proposition 5.1.1.
Consider (5.2.3). Recall that we have the conditions (see (5.2.2))

|g=1 = 050{|5=1 = 0, SO l5=1 =1, 95l|5=1 = 0.
Thus there is some 7y € [0, 1] such that on [0, 1], £ > 1/2 > 0, and on this interval we have
0l 55 = —20k' 2y 32 <0,

which, since ﬁﬂgzl = 0, implies that

1
o= / 5w dv’ > 0 (5.2.8)
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on [Ug, 1], so £ is nondecreasing and hence must satisfy ¢ < f|z—1 = 1 on [, 1]. Since, by (5.1.16), 7 7> < 1/4,

we obtain on [Ug, 1] that

@,WZ—

N —

Since 1 — vy < 1 and 8¢ 3]3=1 = 0, this implies that on [y, 1]

1
565 < 57
T2

whence since also 6¢|3—; = 0, on [y, 1]
— 1
o> —=.
-2

Thus finally (since k > 1) £ =1+ k=150 > 1/2 on [v, 1] for any By > 0, and hence £ > 1/2 on [0,1]. From

(5.2.8) we then see that 6¢ < 0 on [0, 1].
Substituting ¢ < 1 into (0.2.24), we obtain

6&@ Z —2k1_2L| 2

’y,v LOC(EO%)7
1
To= [ Tamdd <20 -0 >3l _
T UL (23)
57— _/15£dv/ > _9 (1 — T4+ 11)2> k1—2L|77 2 . =—(1 _E)2k1—2L||77||2
. - 2 2 e (n2) v LOO(ZO%)’

so since T € [0,1] equation (5.2.3) follows. Note that we also have

|
l

1

1 — _ L—2t||~ _||2
o2y L1k IIW,UIILW(EO%)

)

which will be used in proving (5.2.5), (5.2.6) and (5.2.7).

The proof of (5.2.4) is by induction on m. For m = 0 it follows from (5.2.3) with C§ = 1. Now suppose

it holds up to some m > 0, let I be a multiindex in Z and ¥ with |I| = m + 1, and differentiate equation

(0.2.24) using 9!

20157 1-20 91 7= 2 1-2 I'\ or—gsj 07 1= 2
020"50 = —2k* 720" 507 5 — 2k > <J o' 75007 [75% .
17|21, J<I
By induction and Lemma 4.3.1, and since k > 1, + > 1/2, every term in the sum is bounded by

j1-J]
' =12 1411712 = |2
IIW,@IIWIHW(EO%) +||7,UIIW‘17]‘,OQ(Z§) II%UIIWWW(EO%)
2

1
W7n,oo(202 )

<7502 1+

1 Vs
Wm,oo(gg )

since |I — J| < m — 1. Thus we may write

2 _ 2k172LF

v

020"50 = —2k' 0" 50y
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where
m

1+ |75 1

F < C|7 5l
IFl 4 < IIV,UIIW,,”,OO(EO%) Wmoe ()

L>(5¢)

for some constant C. By Corollary 4.3.3, then, we have (since 6| . is supported on {(0,Z,7) € ¢ |Z,v €

[0,1]})

%
EO

LK 27 5017
Lo(22)

a's0 L < 2kV2F e
Lo (22)
0

1
LOO(ZOQ)
m
<oamEOlLE [1+|m||2 ]
W'm,oc(EOQ) Wm,oo b )

using ||77§||L = < 1/2 and k'~2* < 1. This gives the desired result.
0
(5.2.5) follows from this and Lemma 4.2.1:

<ai, <2 R

m 1
£2) '< >m+“
)

= 1
f Wm,oo(z(;i)

so the result follows by substituting in (5.2.4).
To prove (5.2.6), we recall equation (0.2.25):

% (ZEE) = 42]417%757,5?
integrating and using b z|z—1 = 0, this gives
_ 4 L _
bs =k / (1+ k1007 7777 dv'.
We note first that

1 1
— 0y / L+ k70077 zd0 = A+ k™ 007 3777 = — / O (A + k1007 77 5] dv,

and similarly that 0 commutes with the integral. Since moreover for any function f on [0,1] and any

/ab £(2) dt

this fact together with Lemma 4.3.1 and equations (5.2.3), (5.2.4) allows us to conclude that there is a

a,b € [0,1] we have

< fllze= 0,115

constant C such that

7 1—2¢ 1 11|y ~ ~_
||b’SHW"‘*°°(Eo%) =k mevw@é‘) {Hk WHWW@?J HV’””WW@?) Hv’””HWWOO@(?)
m—+1
L+ O Tl sy (1 Tl
< cp- e e I
1— k=2 7| ; T (Bg) 1T IW e (5¢)
Vol oo (3

as claimed.
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(5.2.7) may be proved similarly. We have the equation (0.2.26):

230 s — 105 (T 05) — 2B = 267 2%

— 1 [t b= 1 .-
ls=—2 o2 )+ ik’lbf k1 2L d*’
=g [ o)+ e

Note that there is a loss of derivative in the first term in the integral, inasmuch as one derivative of §¢

integrating, we obtain

depends on two derivatives of b; this will not however impact us since our initial data ¥, is C*. Since k > 1,

1 1
we may bound the second term in W (X¢2) by its norm in W™T1°°(32); thus there is a constant C' such

that
Tl
=4)
B m—+2
<C 24 Canalt 2L|h*“ww+1°@(zé 1+ 7 me+1w(z§>)m+l
e
m—+2
2+Cﬂu’b+lk 2 ||7 HW"L+1 OC(E% 1+H’y ||Wm+1 W(E%))m"’l
C«#’H_lkl—m
T Y
LTI S
2+ Ok [Tl s ot O Tl ot )\
- el mined) T i 0}
+ Chpa k™
1— k=2 ||75HL°°(E§)
2
||77||Wm+1 00(22) H715||W7n+1,o¢(22)
24+ CHr k™ 2 (1 ~y m) "
+ Ckl—QL + ||v7||W'nL 00(2% + ||rY7)HWm 00(22)) H*EHZ %
kT, st
_ B 2 3m—+6
< CR 2+ Gk |7z me“m(z% A4 Tl )™
1— k=2 ||7*HLOO £}

(ol sty Pl sty I iy Tty Wl )

as claimed. QED.
This gives the following corollary.

5.2.1. COROLLARY. Consider any solution to (0.2.24 — 0.2.26) with initial data given by (5.1.18) and (5.2.2).

For every € > 0 there is a § > 0, independent of o and k, such that

< €.

¥zl 1 <J implies |67 o5 || 3 1625

HﬁﬁH z Wm+1,oo(z;0§) wm, °°(22 > (2§) Wm'oo(zoé)

-
Wm+1,oc(202)
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Moreover, 64, 55 and @3 all vanish identically for v > 1.

Proof. Since

ol sty Tl sy < Il

and

A

the first statement follows from continuity of the upper bounds in Proposition 5.2.1 and the observation that

7zl 7zl

3

1 1
Wm,oo(zg) Wm+l,:x:(2(;2)

these bounds vanish when ‘WiH = 0. The second statement follows from

Wm+1,oc(20%) = H,Y’EHW"H'L”(EO%)
Proposition 5.1.1. QED.

We note that the conditions on ’WEH and |W§|| 1 in Corollary 5.2.1 and the

W7n+1,oo(20%) Wm+1.oo(20§)
similar results below can be reformulated as a smallness condition on the parameter o, see (5.1.18).

Our next aim is to produce a generalisation of this corollary to higher 3 derivatives of 0¢z, b5 and ¢35,
as well as § derivatives of 7. We first pause to consider exactly how these higher 5 derivatives are to be
obtained. Our final aim is of course to solve the system (3.3.5 — 3.3.8), at least for s < T”. Thus we seek

functions @, b, ¢ and 7 for 3 > 0 in some neighbourhood of zero which satisfy the Riccati equations

O = 30O, O =k (000)(05D) — 4K 0 (07 + K~ 1T057),

5b)2 (5.2.9)

ol 2
iy
o5e 2%

b
— —2
b b
— 2k 2055 (26m+ 2k*156ﬂ+ k! <c+ k1a> agfy) — kkmg(&ﬂ)?

and the wave equation

_28’0+ Z) +- 2isz_6*_ Traoz — SE_: 5137+ IL s+ :si_ f T z v
0505+ 02) +~ (2200, — w02 — 502 Lo O o4 (Log - 2200 o, Loy
Y k\a s r a a a’

Now on § = 0 we have ¢ = 0, so given 7|3—9 the wave equation (5.2.10) becomes an ordinary differential

equation (in ©) for 057y|5=¢, from which we can determine 8ﬂ|2% (and 8{7\2 \2%) given ¥ls_o 5_pr/y3- The
0 0\=o

Riccati equations (5.2.9) at 3 = 0 then allow us to obtain 92w, w € {0¢,b,¢} on Eé; differentiating the
wave equation with respect to s at 5 = 0, we can then obtain 8§2W|E 1 given 6§7|g:075:go, and so forth. In
particular, we are able to obtain a priori expressions for all 5 deriV;tives of 6¢, b, ¢, and 7, knowing only
that they satisfy the Riccati and wave equations with, respectively, 7 replaced by any function satisfying
the initial conditions on ¥, and &4, b, € replaced by any set of functions satisfying the initial conditions on

54, b, and ©.

5.2.2. PROPOSITION. Consider any solution to (0.2.24 — 0.2.26) with initial data given by (5.1.18) and (5.2.2).
Let m > 0, and suppose that
OAls—omerr/vz =0, £=0,---,m. (5.2.11)
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Then the following two statements hold:
(i) For every e > 0 there is a § > 0, independent of o and k, such that

FY,E 775 <,

||7 HW,,,LH,OO(E()%)aHi HW’”“)w(zé) < ¢ implies ||313§w||Lw(

1
%)
and moreover 8/ 94w vanishes for ¥ > 1, where w € Qo = {00, b, ¢}, |I| +2¢ < m;

(ii) For every € > 0 there is a 6 > 0, independent of o and k, such that

Yo Tz

||7 HWerlvm(ZO%) 9 || < 5 1mphes ||a[a§7”L°°(EO%) < €,

[
Wit (s2)

and moreover 87 9%y vanishes for 7 > 1, where |I| 4+ 2¢ < m.

Proof. Fix some m > 0, and let Qy = {0/, b,¢} for convenience. The proof is by induction on ¢. For
¢ =0, (i) and (ii) follow from the previous corollary and F|z—¢ = 7, since we have |I| < m in this case. (i)
also holds for ¢ = 1 and all I satisfying |I| < m, again by the previous corollary and the fact that ¢z = 0
on Eé. Now suppose that (i) and (ii) hold for |I| 4+ 2¢ < m and £ < ¢y, ¢, > 0. We shall show that they
hold also for ¢ = o+ 1. Let £ = £y + 1, and let I be such that |I| + 2¢ < m. Note that this implies that
[I| < m —2. We show (i) first. If £ = 1 then (i) is already known to be true, so we may assume that ¢ > 2

in this case. Now 6/, b and € satisfy on 5 = 0 the Riccati equations

0257 — 2Tk 2(87)?, 0% — %k”(&;@)( B) — 4k 2 05(057 + k15057),
o2 = k*li(a;? —2k' 05y <2am + 2](1%857 + kT (c + k:lba> z—m) - k1*2é(aﬂ)2;

differentiating with respect to o7 85_2, we see by the product rule that there exist polynomials P, P5, Ps in

{87 3LT | |I'| < |I|, ¢ < 0 —1} and {87 8EF||I'| + 2¢' < |I| 4 2¢ — 2} with no constant term such that
8185@ =P, 818@ =P, 61%5 = Ps.

Note that |I| +2¢ — 2 < m — 1, so that all of the arguments in the above polynomials are bounded in
1

L>(X¢) by the induction step, and vanish for ¥ > 1; thus by continuity of polynomials and the fact

that the polynomials have zero constant term, we have that if ¢ > 0 there must be a § > 0 such that

, 17 2] < ¢ implies ||618§w||L s < ¢, and that 794 must vanish for v > 1,
0

||7’5HW77L+1,00(20% |W7n.+1,oo(20%)
for all @ € Qg, showing (i).
(ii) can be shown in a similar fashion. Here we must include the case ¢ = 1. Recall that 7 must satisfy

the wave equation (3.3.5) for 5 < T":

=l

IS
I
I
|
~I
2l gz‘
~
N——
8
|
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~
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N——

l

l(—zagaﬁa%n;@aga;—ca%—mai—(sc—laf+ 2o (
a
— - 727
2 (baasg_ (C 15_2283>ag_ b0 £a§> _ab 482554%]7:&
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We may rewrite this schematically as

-2

dz057 — k™ 'eo2y + 2

—20;057 = 2k~ —8%7 + Pl&iﬁ + Pziaﬁ7 (5.2.12)
a

Q|

where P; and P} are polynomials in o = Qo U 3500 U {0560, 0560, 0zb, 6—1a} with coefficients which are
constants or nonpositive powers of k and with no constant terms, and 9; € {9, 0z, 05}. Differentiating this
with 97 6571, we obtain

2

>

k_l

ISIERS,

—20501 0%y = 2k~ 0501 0y + k1

2l |

— c] ool + Pl o7 + P, (5.2.13)

where P is a polynomial in 9705 " [ﬁ/ U {027, 8, 857}} with no constant term. Since £ — 1 = £, and
[I|+2(¢—1) = |I|4+2¢—2 < m—2, we see that all of the independent variables in P are bounded and vanish

1 —
for © > 1, by the induction step. Moreover, on ¥; we have b =¢ = 0, so that equation (5.2.13) reduces to
—28501 0 = PY9T 9 + P.
Since 8§7|§:075:kT/\/§ = 0, and thus 9%]5-9,5—1 = 0, we may integrate this to obtain
(VIS Y A Y
0'057 = 3 ) Pe 2w dv’;

noting that P and P both vanish for ¥ > 1 by the induction step, we see that 9! 8§7 does also and

o 1 %HPQOHL s
0" 0y 1 < -||P 1 = ;
100871, g3, < 51PI, L s ¢ o,
since P and PY go to zero uniformly as ’W?H it oo ok and HW;H et oo i do (by induction and
w (=) w (=5)
continuity of polynomials), so does ||07 8§7||L by This completes the proof. QED.
0

We note one last time that all of the results in this section are still true if we replace @ by kTv2 — 7,
1
and hence hold on ¥¢\¥Z, and hence on all of 3.
The specification of the initial data on Uy is more complicated, since we need our choice to be such that

(5.2.11) holds. We consider this now.

5.3. Initial data on 7 =10
In this section (only) we let I denote a multiindex in T and 5. We also assume that on 5 = 0 the
quantities

ota, b, oz, o

S

have been solved for as described in the previous section, from initial data given by (5.1.18) and (5.2.2) (see
Proposition 5.2.2).
We now describe the initial data for % on ¥ = 0. Let 857(0,5,0) denote the derivatives of 8%7 at

5 = =0 as solved for in Proposition 5.2.2, assuming as there that 8§W|§=0 T=kT /3 have been set to zero,
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for £ up to some m. Recall (see above equation (0.3.37)) that we have x € C*°(R!) which has support
contained in [—2,2], and which satisfies x|(—1,1] = 1. We define

U(.7,0) = x(25) > ilagw(o,z, 0). (5.3.1)

Note that for s € [1/2, 1], derivatives of U with respect to 5 will add extra powers of 2, but since we are only
interested in taking finitely many derivatives such powers only contribute overall constant factors, which we

may absorb without particular comment. Clearly
04U (0,,0) = 0%(0,7,0). (5.3.2)

We define 5 on v = 0 by
l5=0(5,%,0) = U(5,%,0);

by solving the equations for 82’y|go obtained in Proposition 5.2.2 backwards, it is evident that this choice
will give Bgﬂgzojzl = 0. This choice of data clearly satisfies the first of the consistency equations (1.3.2).

As on Y, we shall also need the transverse derivatives of 7 along Uy, which in this case are the ©
derivatives. Given J|z—o as above, we may solve the first two Riccati equations (3.3.6 — 3.3.7) to obtain §¢
and b along Uy; however, the equations for 057, 050/, and € all couple together, and the process of obtaining
appropriate bounds therefore requires a more careful treatment than on 3. We shall prove the following
analogue to Proposition 5.2.2. We set UJ = {(5,7,0) € R?*|s € [0,1]}. Note that U is supported on
{(5,7,0) € UY |7 € [0,1]}.

We have the following straightforward proposition.

5.3.1. PROPOSITION. For every € > 0 there is a § > 0, independent of o and k, such that

175l ¥ <6 implies  [|Ullym. oy <e.

)

1 1
W27n,+1‘oo(zof) W2m+1,oc(207)

Proof. Let € > 0. Note that the condition [|U||yym.~ o) < € is equivalent (dividing e by a combinatorial
constant) to the condition that for all I with |I| < m,

10 Ul| e gy < €. (5.3.3)

Let

g, _
70 ),

?\‘EIJ\

=0
and note that Proposition 5.2.2 implies that there is a § > 0 such that for all I with |I| < m,

N7zl 3 <6 implies [0'U*|| vy < € (5.3.4)

,y W27n+1,oo(202)

Hi HW2m+1 oo 22

The extra factor of 2 is necessary since I can contain up to m derivatives in 3. Since for any I with |I| <m

we must have (by Lemma 4.3.1) that, for some constant C' depending on x (through C,, see (0.3.37))

10U | e (wg) < CIO"U* || s gy
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the result now follows. QED.

5.3.2. PROPOSITION. For every € > 0 there is a § > 0, independent of o and k, such that the following two

statements hold:
(i)
< ¢ implies H@I@%LUHLW(Ug) <€,

kT

7l iy 171

Wamts.00 (0 )
where @ € {§¢,b,e}, |[I| +2¢0 <m (20 <m —2ifw =¢);
(i)

[ied Tz <6 implies [0l L~ () < €

O o=

5”W27n+5,oo(20%) ’ || ||W2’”+5’°°(E

)

where |I| +2¢ < m.

Proof. Fix m > 1; we will proceed by induction on ¢. Suppose ¢ = 0. Part (ii) holds for ¢ = 0 by
Proposition 5.3.1. Let as above Qy = {/,b,¢}, and recall that for @ € Qy we have the Riccati equations
(3.3.6 - 3.3.8)

_ _ _ 1 o _
0250 = —20K =2 (057)?, 02b = ?k—l(agaz)( b) — 4kt 207 (077 + kT bosT),

=2

. _
02¢ = k*l—(a;? — 2k 20y (2&ﬂ+ 2k*1%8ﬂ+ k! <c+ klil) 8;7) - k1*2L2(8ﬂ)2.

a

These equations may be rearranged as follows:

0250 + 2k~ (07)260 = —2k* 2 (057)?, (5.3.5)
050 — k™ 85256 5b + 4k~ (057)%b = —4k' > 057057, (5.3.6)

022 + 2k~ 2(957)% = —4k' 20707 + Roo(@,l ' ,b,0:0,057,057),  (5.3.7)

where R is a polynomial with coefficients made up of constants and nonpositive powers of k, and with no
constant term. Since 02¢ depends on 97, which we have not yet bounded, we leave ¢ for the moment and
verify (i) for 6¢ and b. By Corollary 4.3.2, we may write for £ € {0,1}, bounding ¢, d56¢, and d5b on

5 = = 0 by their bounds on ¥, and since on U we have ¥ = U,

_ _ — 1/2 o 14267295V 3 o
10557 o ) < ([naeniw(zo) 105003 s,y | 20 ||a§U||im(Ug)) e e,
B ~ s Tk 22 2oy 2
109l wg) < (1950l e ) + 4K [05U | ) 105U N oy ) € 7 e,

so that by Corollary 5.2.1, Proposition 5.2.1, and Proposition 5.3.1, part (i) holds for 97 = 8%, j=0,1
(assuming m > 1). Part (i) for arbitrary I then holds by induction, as follows. To simplify our work we

write @y = 0f, W1 = b. Then the first two equations (5.3.5 — 5.3.6) are of the form

92w + Py05w; + Paiw; = Py, (5.3.8)
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where Pj;, j # 0 are polynomials in {wy, 05w, 957 | ¢ < i} while Py ; is a polynomial in (letting 0y = 0Os,
81 - af) 62 = 65)

Qp,; = {we, Osp, 077 | £ < i, j < i}

(note that this contains the previous set), with coefficients which are made of constants and nonpositive
powers of k, and zero constant term. Suppose now that (i) holds for ¢ = 0 and derivative operators 9!, 9;07
with |I| < mg, some mg > 0;* note that this form of the inductive hypothesis corresponds to the base case
just proved. Since we only need to prove (i) for I satisfying |I| < m, if mg = m then we are done. Otherwise,
let J be such that 97 = §19; for some j € {0,1}, |J| < m. Applying 97 to (5.3.8), we see that after moving

lower-order derivatives of w; to the right-hand side we have
0207w, + Pr,;050"w; + Py ;0’w; =P,

where P is a polynomial in 8/ Qp,; U{d!'@;, " 8sw; | |I'| < |I|} with coefficients made of constants and non-

positive powers of k and no constant term. P will then go to zero with HVEH 75“

1 1
W2m+5,oo(202)’ W2mts,00 (52 )

for ¢« = 0, by the inductive step and Proposition 5.3.1, since in this case we have
'Qp; = {07057},

and |J| +1 < m+ 1 so Proposition 5.3.1 is applicable; since P; o and P» o are polynomials with no constant

term in the same set (in this case), they will also go to zero with |’75|| . Thus

H75|| W2m+51°°(20%)

W2m+5’°°(20%)7 H/Y,E||W2m+5,oo(zo%).
Since these are the only elements of Qp1\Qp, the same is true for 07w, and 07 05w;,. Thus the inductive

W27n+5,oo(2%)7
by Corollary 4.3.1 again, we have that 07w, 0705wy go to zero with Hﬁﬂ

step is seen to hold for ¢ and b. Note that for these two quantities we actually have that (i) holds for
derivatives of the form 858”7 with [.J| < m+1 (because we are assuming 5 5 and 7 5 bounded in W27+5:2°),
To sum up, then, we have shown that part (i) holds also for @ € {6/, b} if we require £ = 0.
We now consider the case £ = 1. We shall bound the quantities ¢, &s¢, 950¢, and 85y simultaneously. To
bound 850¢ we use the constraint equation Ry = 2’}512. In a moment we shall also need Ri2 = 27,37 4, SO
we write both out together. From the expression for the Ricci tensor derived in Section 2.2, these equations

are

b2as? 1

ac,sa,s — (b* — ac)a,ss +b 50,5 — a(2b 45 — 2a,45) + 2’ — ica752 — Q.40 — ab752 = 461%827
’ a
b%a .b ba,as bbsa
—bb % — (b% — ac)b ss + b(a,ps — bas) + o 2 2a + éa’x

1 1 1
+a(bys — Cps) +bayc s — icaysb,s + ia’sc’x + §a,vbvs =4dav,7,0-

* For clarity, we remind the reader that I is a multiindex in 5 and #; thus 950! can also be written as 9”7

for some multiindex J.
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In terms of the scaled coordinates and scaled quantities, these become

1 526§2 - 2 *2 1 2 2
+ k- ? —abs —bags | =4ak "y 5 (5.3.9)
- ;

_ JE— _ _ N 1— 1— _—
a (b,ﬁ — E,ﬁ) + k'_l [b(éaws — b’ﬁ) + ﬁb’g + b(sa,gag + 56@365 + ié&jb,g

Wagdas B.diz 1 .
% % 9 04505

— 2 i
s

20—
i k_Q |:—bb b (safbg

e = dak' 7% 37 5.(5.3.10)

}+k‘3

Equation (5.3.9) may be solved for da 73; doing this, and writing in terms of 0/, we obtain

Os Uﬁz P05 £+P0716+P0,267§+P0,0, (5311)

where Py and Py ; are polynomials in 67, 1/0,b, 605, bs, 60 7, 6( 55, bzs, and 7 z and which have coefficients
as usual and no constant terms. Note that the quantities on which P; and Py ; depend are quantities which
we have already bounded; we shall term such quantities known quantities for convenience. Similarly, for ¢

we have the equation (5.3.7):

6§E + 2k‘72b (857)26 = _4k172L8§V6ﬂ + RO,O(ay 2_175’ agg, 6ﬂa aﬂ))

where we note that the coeflicients of ¢ and 07, as well as all of the arguments of Ry, are again known
quantities. Finally, recall the version of the wave equation we used in the proof of Proposition 5.2.2 above
(equation (5.2.12)):

-2
b .
Oz07 — k™ 'e037 + k2037 + P12y + POy (5.3.12)

where P; and Pi are polynomials in 0 = Qo U 05Q0 U {0500, 0500, 0zb,6—1a} with coefficients made of
constants and nonpositive powers of k and no constant terms. More carefully, 950¢ appears only to linear

order in the term involving d57, so that we may rewrite this as

05057 = Q1057 + Q010500 + Qo 2€ + Qo,305¢ + Qo 0, (5.3.13)

where @1, Qo1 and Qoo are polynomials in known quantities. Combining equations (5.3.11 — 5.3.13), we

obtain the four by four system

050500 = P10560 + Py 1+ Py oC5 + Pop

s = —2k 2 (07)°C — 4k' T 057077 + Ro.o
5077 = Qo,10500 + Q1077 + Qo0
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which may be rewritten in matrix form as

0500 Py Py P2 0 500 Poo
c 0 0 1 0 c 0

85 65 - 0 —2k_2‘(6ﬂ)2 _4]{1_2La§7 Eg + R()70 . (5314)

o5y Qo1 Qo2 Qo3 o Oy Qoo
Since at 5 = U = 0 we have that ¢ = ¢35 = 0yy = 0, while 050/ goes to zero with qu ||W2er5 M(Z%) and
||7—HWM+O 00(20%) , Proposition 4.3.1 shows that 956/, ¢ and 07y must go to zero with H'y’v ||W2m+5m(20%)7
17 2| 1 also. Thus (i) holds with £ =0, I = & (] =0,1),w =¢, and also with £ =1, I = (0,0),

W2m+o 00(22)

@ = ¢, while (ii) holds with I = (0,0) and ¢ = 1. Now noting that the quantities on the right-hand side of
system (5.3.14) involving ¥ have at most two derivatives, and those involving §¢ and b have at most one, we
see that we may differentiate it by 07 for any .J satisfying |J| < m, and the resulting dependent variables

will still go to zero with ||WEH HﬁfH 1 . This proves (i) for @ = 6 and ¢ = 1, and

W2m+5,oc(20%)’ Flyyamts,00(52)

also for w =¢ and ¢ = 0.

To show (i) for @ = b we use equation (5.3.10). Solving for d;95b, we see that we have
95050 = S, (5.3.15)

where S is a polynomial in known quantities and involves derivatives of metric components up to order 2.
Thus we may differentiate this equation by any multiindex J with |.J| < m—2 and obtain another polynomial
in known quantities, showing that (i) holds for @ = b and ¢ = 1 also.

We may now proceed by induction. Suppose that (i) holds for 6 and b for £ < ¢y and for ¢ for £ < 4,
and that (ii) holds for ¢ < £y, where £y > 1. Then differentiating system (5.3.14) £y + 1 times with respect
to ¥, and moving the lower-order (in ¥) terms to the forcing term, we see that (i) (for @ = 6/ or @ = ¢) and
(ii) hold for J = (0,0) in this case; moreover, we may further differentiate by any J with |J| < m — 2{y — 2,
and again move the lower-order terms to the forcing term, to conclude that (i) (for @ = §f or @ = ¢) and (ii)
hold for this value of ¢ as well (with ¢ = ¢y if @ = ¢). Differentiating (5.3.15) in the same fashion allows us
to conclude that (i) holds for @ = b as well. This completes the proof. QED.

5.4. Summary

To sum up, then, the initial data for the system (3.3.5 — 3.3.8) corresponding to the choice of F|z—¢ in

equation (5.1.18) is obtained as follows. Fix some n > 4 (the same as that in Chapter 6, immediately below).

Set

bls=0 = €ls=0 = C3l5=0 = 0, (5.4.1)

as required by the gauge choice (see Proposition 1.2.1 and the preceding discussion); set (see equation
(5.1.18))

5(0,Z,7) = o - wo(T, D), (5.4.2)

where @ is given by (see equation (5.1.17))

(E

w1 (Z,7), v € [0, 671
@0 (T, D) = T € [601,kTV2 — 6Ts] (5.1.17)
WQ(f, v — (kTﬂ — 5@2)), NS [k‘T\f — 073, kT\/ﬁ]
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and w1, wy are C*° functions on R? with support contained in [0, 1] x [0, §71] and [0, 1] x [0, vs], respectively,

all of whose derivatives have L* bounds independent of k, and which also satisfy (see equation (5.1.16))

1 1
|105i]| L < 5, [10zwillL= < 5. (5.1.16)
Now solve the constraint equations

-

%ff = —2(1 + k= Y60)k' % (057)° (0.2.24)
v

O5 (1 + k160 05b) = 4(1 + k™' 60k > 05077 (0.2.25)

.
2(1+k~150) - gﬁgé = (14 k™ '50)07 ([1 + k=160 95b) + i (05D)° + 2" (3:9)%,  (0.2.26)

for §¢|5—0, b3|s=0 and 0 z|s—¢ with the conditions (see equation (5.1.19))

5=0,0=kT/v/2 — MS 5=0,0=kT/v2 — 55|§:0,E:kT/\/§ =0, (5-4~3)

szmzw/\/ﬁ = Wﬁ

and the wave equation (3.3.5) and its § derivatives, in concert with the § derivatives of the Riccati equations

(3.3.6 — 3.3.8), for 3%y on 5 = 0 as in Proposition 5.2.2, with the conditions

agﬂg:oﬂ:w/\/i =0, £=1--,n+1 (5.4.4)

(the s-differentiated Riccati equations give 6§G directly, with no need to specify any additional conditions),

and finally use this to obtain (see equations (5.3.1), (5.3.2))
Flo—0(3,T,0) = x(25) Y =-09(0,7,0). (5.4.5)

This will complete the determination of the initial data. Differentiating the wave and Riccati equations
(3.3.5 — 3.3.8) with respect to tangential derivatives (on ¥ and Up) then allows us to bound the tangential
derivatives of the quantities in (5.1.2 — 5.1.3). We then obtain the following final results.

5.4.1. PROPOSITION. Let the initial data be as specified in (5.4.1 — 5.4.5). For every € > 0 there is a § > 0,

independent of o and k, such that

o<d implies |08 ool <o |ororals| < (5.4.6)
Lo (o) L= (o)
ot otz 0t <e |obaals| <e
S T v LOO(Ug) ) S T v Lx(UOO) ’
where /1 =0,---,n+ 1, l3,f3 =0,---,n. Moreover, the quantities

01 s Als— 6 ol ols~
0507 05° Wl uugs 05 07 057 00y
are supported on the complement of (see (5.1.11))

¥ = {(O,T,@) € o ‘@ € (5@1, kT\/i— 5@2)}.
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Finally, (0.3.31 - 0.3.33) hold.
Proof. This follows from Propositions 5.2.2 and 5.3.2 by taking m sufficiently large (m = 5(n + 1) is

certainly sufficient) and noting that there is a constant C, independent of o, such that

[Follwzm+s.00 (50) + [[Vollw2m+s. oy < Co.

The second assertion follows by construction, and the third by inspection. QED.

5.4.1. COROLLARY. Proposition 5.4.1 remains valid if we replace the differential operator
01 b5 ot
051022 0°

by
0oL oo

where £ = 0,1, 41,053,053 =0,---,n,and 7 = %(54—@, E=7, (= %(E—E).
Proof. This is clear since the derivative operators span the same space, and the coordinate transforma-

tion is linear. QED.

Finally, note that since the initial data have support which is contained in the strip {Z € [0,1]} and has
measure independent of k, Proposition 5.4.1 and Corollary 5.4.1 remain valid if we replace the L* norms by
L? norms, and hence by arbitrary Sobolev norms (at the expense in the latter case, of course, of increasing
the number of derivatives of the function wy we must bound, i.e., the number m in the proof of Proposition

5.4.1).



6. EXISTENCE OF SOLUTIONS

6.1. Introduction and summary
This chapter contains the main work in partial differential equations we perform in this thesis.

We begin in Section 6.2 by defining quantities we shall use throughout this chapter, describing again
the modification of the main system (3.3.5 — 3.3.8) we shall actually solve (see our discussion after Theorem
0.3.3 above), and stating our basic bootstrap assumptions. We continue in Section 6.3 by showing how to
bound a litany of quantities we shall need later, given the bootstrap assumptions and conditions on the
initial data; as part of our work we introduce a particular algebra of C'*° functions® which lies at the core
of our arguments in deriving the energy bounds. In Section 6.4 we use a suitable energy current from a
uniformly time-like vector field to derive energy bounds for the wave v and the derivatives necessary to close
the estimates. In Section 6.5 we apply these energy inequalities to derive extension results of sorts, and in
Section 6.6 we prove existence up to a time independent of k. Finally, in Section 6.7 we prove properties of

the solution for use in comparing it with the literature.

6.2. Definitions

We fix a positive integer n > 4; we shall estimate all our quantities in H™. Recall that by the ansatz
(0.2.14) — which is justified by the bootstrap assumptions (0.3.34) and conditions (0.3.31 — 0.3.32), see also
equation (6.2.28), equation (6.2.27) and equation (6.2.29) — ‘barred’ quantities such as 6/, b, ¢, 7 etc. are
bounded — independent of k£ — in suitable function spaces, and in particular in L>°. See the footnote following

(0.2.7).

In terms of the scaled coordinates ST v, we define coordinates T7&C by

T (s+ 1), =1, ¢ (s —7); (6.2.1)

! 1
V2 V2
were our metric A the Minkowski metric these would be standard timelike-spacelike coordinates, and hence

will be so also for h an L°°-small perturbation of the Minkowski metric.

As discussed in Section 3.2 above, we have treated a, b and ¢ as scalars under the coordinate scaling, so
that the quantities @, b and ¢ are not the metric components in the scaled coordinates. A straightforward
calculation gives in fact the following result. For convenience in analysing the wave equation, we define a

LT -1 R . .
scaled metric h = kh, whence h = k~'h~!. In the 3Zv coordinate system, these have representations (for

* While we ultimately obtain existence only in the Sobolev space H" ™!, we proceed by constructing a
sequence, every element of which is C*°; thus while the algebra we use could presumably be closed off inside

some Sobolev space, there is no need to do so and we do not.

83
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the first, see also equation (0.2.13))*

- 0 0 -1\ /0 0 0 {0 0 1\ L (kE-z I oo
hi; 0 1 0 +E 0 da b, (h H)=10 1 0 Jr% % 5—1a 0|
-1 0 0 0 b ¢ -1 0 0 0 0 0
(6.2.2)
while in the 7£( system they have the representation
T b oz
-1 0 0 2 V2 2
hij=(0 1 0|+ L & -L%L]1,
0 01 OIS
5 oL (6.2.3)
-1 0 0 2ka_ 2 Gy/2 2%ka_ 2
77 Nij _ b = b
(h, )] = 0 1 0 + - 67\/5 0~ ta o) )
0 0 1 72 7 72

c b <
2ka 2 a2 2ka 2

from this we see that h is the Minkowski metric plus a correction proportional to k~!. We let 1 denote the

Minkowski metric, and define 6h = k(h—n), h—! = k(h
system (by (6.2.2)),

—n~1); these are given by, in the 37 coordinate

(o0 0 S (FE-E koo
Shij=10 da b |, on 1= b 512 0|
0 b ¢ 0 0 0
and in the 7€¢ coordinate system (by (6.2.3)),
c b _z ¥ T b ¥ T
2 V2 2 N 2ka 2 a3 2ka 2
B L N T _ b - _b_
hiy=| L s -~ wT=| Tl
z _3b oz bz b B T
2 /3 2 2%a 2 ay2 2ka 2

We have so far worked on the region I'g constructed in Chapter 1, namely (see (1.2.3))
o= {(s,2z,v) e R¥|s€[0,59),ve[0,V)}
We now restrict attention to the subset (see (0.3.20); this is actually the set I' in (0.3.36))
P={Gz,7) cR}|0<5<2T, —00 <T <00, 0<T<kTV2, 7 <kT},

where T', T > 0 do not depend on k, but do depend on the size of the initial data through the parameter
v to be introduced below, see equation (6.2.27), equation (6.2.29), and equation (6.6.2). Recall (again, see
(0.3.20)) that we foliate I' by the timelike hypersurfaces

A, =Tn{r=0}

* Recall our convention (see Section 0.9) that in the matrix representation of a tensor the first index
represents the row and the second the column. Thus, for example, the next equation states that h(ds, d5) =

—1, h(05, 05) = kb, etc.
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T has the following four boundary sets (see Figure 6.2.1):
EozFﬂ{§:O}, UOZFQ{@:O}, Elzfﬂ{E:QT’}, Agr.

For o > 0, define v =v(o) =0 — T'/2; then we define also the three sets
Iy =I'N{(1,£,¢) € R?|(1,¢) € Do},
o={(v,& —v) eXg|v e v(o),o]} (6.2.4)
B, =T,NA,,
where D, is the triangle with sides ¥/ and A, and in the last line v € [u, 0] (see Figure 6.2.1). Note that,
in the notation of Chapter 4, B, (s) = 0Ay(0)-
We take the L? and H* norms on all of these sets using coordinate Lebesgue measure, i.e., dT dv, ds dz,
dz dv, and d§ d(, respectively.

For technical reasons, we want ¥; to be a null hypersurface; to ensure this, we modify the metric h,

and hence the wave equation (3.3.5), as follows. Define

ﬁ =X (;/) of, %: X (TS/> b, =y (;/) ¢, (6.2.5)

where Y is the cutoff introduced in 5.3 (we recall that y is in C°°(R!), with support contained in [-2,2],
and satisfies x =1 on [—1,1]). Similarly, define

T=(1+k 1002, da=k@E-1), dla=k@ ' —1). (6.2.6)

On any Sobolev space, the map f +— f - x(5/T") will clearly have a norm bounded by some power of 1/7",
which is independent of k. More carefully, let

0 _ ¢ 1
C’X—sup{x()(x)|xeR,66{0,-~-,n+1}}. (6.2.7)
Then we have, letting I here denote a multiindex in 7&C,

Yo O G/ TVl o,y < CRTTTFICY ST 10 Fllizcans (6.2.8)

[T]<n+1 |T|<n+1

where CL is some combinatorial constant arising from the product rule. (Note that C' depends on n, but n

for us is fixed.) For convenience we define (cf. (0.3.37); requiring C', > 1 is for technical convenience)
Cy = max{CrCY,1}. (6.2.9)

We define further the modified metric h = n+ k15h, h1 = n~l 4+ k‘léﬁl, where 0h and §h—1 in the

ST v coordinate system have the representations

2 =
0 0 0 ) k-2 2 o0
—~ -~ = 1J a a
Shij=(0 % b|, on 1 = = = : (6.2.10)
= 2 2 da 0O
0 b C a
0 0 0
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informally, we replace ‘barred’ quantities by ‘tilde-barred’ quantities. This leads directly to the following

modified wave equation, which is the equation we impose on - for the rest of the chapter:

— - [ 1( -~ 2 =~ 0%a 1~ 106 5
w1 (5 raozy w2y + 220wy - L (207 - 205+ P0%) oy 4 Loy - 100 5 - %% 5
k a 2 a 2 3 a
~2 -~ ~ -~ =~ = =~ ~2
1(~ 1 o 1 —~
+ k2 b:agw—- F2e04 _4b<’)i§b+ bafja S———N%agéaaﬂ — k3 —%ag(saag’_y , (6.2.11)
a 2\ @ a a 23 23

Note that a solution to equation (6.2.11) will satisfy (3.3.5) when 5§ < T”. We do not modify the equations

satisfied by the metric components, which are still
_ 1 — _ _
0250 = =20k~ (057)?,  0%b= ?kfl(agae)( D) — 4k 2057 (077 + kT 10057), (6.2.12) — (6.2.13)

b
_ - -2
Y (1) N Y = by a0 o ) a2 o
ozt =k o 2k 077 | 2057 + 2k aa;wk c+k - 05y k a(é‘;’y) (6.2.14)

Figure 6.2.1

Recall that we have defined the following quantity 1, see equation (0.3.21):

-~ = o~ 2
\/1+l(%+§)+%(66a—b)
= i Sl ; (6.2.15)
15

el

1+

note that  will be uniformly bounded in k. We also define the following quantities,* (compare (0.3.22 —

0.3.24)) which describe the deviation of the boundary integrals in the energy inequality from the correspond-

ing integrals in the Minkowski case:

On T, indices cd correspond to 7, & (:

* These quantities take the form given here with respect to the sTv and 7 & ( coordinate systems. They

do not, in general, transform as tensors to more general coordinate systems.
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1 ~/-1 0 0 ~ , 1 00
cd _ c 1 c —~ cd 1
0 0 1 0 0 1
On Yy and X4, indices ¢d correspond to T v:
ﬁ 1 0 1 = ——/0 0
A = — ( 1) +—=(1+k710l) 5 1a ( ) ; (6.2.17)
V2 \0 = 2:/2 ( ) 0 1
On Uy, indices cd correspond to 5T v:
1
A =570 i 8 . (1 + k—lﬁ) sh1”, (6.2.18)
Y 0 285 0 2v2

We note that A is identically zero on 1 because of the cutoff, but we carry it along sometimes anyway
for symmetry.* Note also that A¢? is zero if ¢ or d is 2, i.e., it only involves 3 (¢,d = 0) and T (¢,d = 1). We
define the following norms for use with these quantities: if M is a (2,0)-tensor on some Euclidean space, we

define (letting |u;|, |u’| denote the Euclidean norm)

|M]| = sup {‘M“lud‘ | |ug| = 1},

1/2
(6.2.19)

IM]gs =D (Mre)?

c,d

This gives a norm on the pointwise values of the quantities AS!, A¢, and Ag.

The initial data for the system (6.2.11 — 6.2.14) will be that constructed in Chapter 5; see equations
(5.4.1 — 5.4.5) and Proposition 5.4.1. We recall that this initial data satisfies b = ¢ = ¢35 = 0 on X,
while on ¥ the support of §¢, d50¢, Osb, and 857 (¢ =0,1,---,n+ 1) are all contained in that of 7, i.e.,
{(z,7) e R?|z,7 € [0,1]}.

We define the following sets of dependent variables (compare (0.3.25)):
L (6.2.20)

The significance of these sets will become more apparent later (see, for example, Lemma 6.3.4 and ensuing
discussion). For the moment we note that the (nonconstant) coefficients appearing in the wave equation are
precisely the elements of 6 U (%50 (5‘560 = {6%@, 85, 85%}) When convenient, we shall also consider them
as tuples, and write things like F(Q) to denote a function which depends on the elements of € (as in, for

example, Proposition 6.3.3 below).

We let I = (iy,i2) denote a multiindex, and set |I| = i1 + iz, 9 = 821 822. We shall bound the initial

* We also note that it does not seem strictly necessary to cutoff 6/, only ¢ and (probably) b. Thus keeping

A¢? on %1 may lead to some generalisations of the succeeding results.
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data by the following (cf. (0.3.26)):

melh)0) =V2 Y Y 005y,

[I|[<n—15eq

tnlh](0) = tnelh](0)
£=0

Tsolf] :/E \% [;(6‘#)2 + (f%f)ﬂ + kAL, fO4f dv dT

. (6.2.21)

Tolf) = [ s @)+ 50m0 2| + i Ao souf asas

ixael= Y, Ix[0'04]

|I|<n—1

LXn § LXnZ

where in the last two lines X denotes one of ¥y and Uy. We also define the following quantities, which are

squares of norms along lines in X, for use in applying Proposition 4.4.2 and Lemma 4.4.1:*

= Y N0 ey LWl = X 107 oy
\I|<m \I\<m
B Spra: i) =3 Y 1ok (6.2.22)
= Oweg =050
l[ Z ZITL 1851852 ( ) ll[ Z ZITL 18618@2 ( )
£1,5=0 =0 l1,65=0 i=0

where here 0y = 0;, 01 = O¢, and 0 = O;. We have clearly
t[h)(o) < iMh)(o),  I[hl(o) < I'[h](0). (6.2.23)

We note the following bounds, for use in applying Proposition 4.4.2:

1
Z Z Z ||6IaeameL2 0A,)

[I|4+£<1m=05c0

1 1
IS ||313§8?7HQLQ(QAU) < I[7]

£=0 |I|<2m=0

IN

t[h](o),
(6.2.24)

Note that, by Corollary 5.4.1, all quantities in (6.2.21 — 6.2.24) can be made as small as we like by taking
the parameter o in the definition of 7, (see equations (5.1.18 — 5.1.18), (5.4.2)) sufficiently small.

* Our use of the H! norm in I} [f] is dictated by the following considerations. As noted, the quantities
I! [f] will be used in applying Lemmas 4.4.1 — 4.4.3, so we need I [f] to bound L? norms of 8’f. For
the purposes of dealing with the so-called admissible nonlinearities we shall introduce below, we wish I ,1n [f]
itself to satisfy a multiplication inequality. The H' norm seems to be the most general choice which can
simultaneously satisfy both of these requirements. Note that the extra T derivative appearing in the H'

norm in the definition of I ,1n is no cause for concern since we are working only with initial data.
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We define energies* on the spacelike hypersurfaces A, as follows; cf. (0.3.29 — 0.3.30). Setting

elflo) = /A % [(0-1)% + (9 f)* + (O f)?] + k™" AL O fOaf dE d, (6.2.25)

we define

R0 = Y 3 o' oF0),

[I|<n—1£=0
I of—|2
B [h)(o) = Z Z ’3 8§M|L2(Aa)7 (6.2.26)
[I|<n—15eq

Eq[h)(0) =Y Enelh)(0).
£=0

These give squares of (semi-) norms of C* functions on A,, and it is effectively with respect to these that
we shall close the energy estimates for the system (6.2.11 — 6.2.14). Note that every element of Q U 950 is
bounded in H"~'(A,) by E,[h](¢)'/? (see Proposition 6.3.1 in the next section).

The notation E,[h] is used for convenience; clearly, what we are really bounding is the (scaled) metric
components 6/, b, and €. Until we introduce admissible nonlinearities in Definition 6.3.1 below, we shall only
work with a single metric. Our convention beyond that will be explained at that point.

We shall proceed via a bootstrap argument. Fix v € (0,1), assume that the initial data satisfy (see

(0.3.31))

1 1
sup in [h}(o—) < V27 ZEo,n[ﬁ] + ZUO’TL[W] < VQ; (6227)
o<kT 32 12

and make the bootstrap assumption (see (0.3.34))

(6.2.28)

Ea (o) <v?

for o € [0,¢]. At this point the dependence of ¢ on k is unknown; we will show (see Theorem 6.5.1, Theorem
6.6.1) that it is bounded below by kT
We assume that the initial data also satisfy (see (0.3.32 — 0.3.33))

1
o) < 2
1+ \@(n; 2)CEC2 (6.2.29)
') < %

T 1+V2(n+ 2)C§C§V

where Cg is the Sobolev embedding constant on R, and o € [0,<]. Note that initial data satisfying (6.2.27)
and (6.2.29) exist, by Corollary 5.4.1.

* We term the quantity E,[h](c) an energy not because of any resemblance to a physically or geometrically
significant energy but because its use in proving bounds is analogous to that of the energy for the wave 7

defined above.
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The significance of the leading constant will not become apparent until we come to prove existence at
the end of the chapter; until then, we only need the weaker conditions
dHhj(o) < 02
I'Al(o) < v

By (6.2.23), these give
th](o) < v,
(6.2.30)
IF)(o) < v
While these last bounds shall often be used in conjunction with the bootstrap assumption (6.2.28), they are

not part of it, but rather additional smallness conditions on the initial data.

6.3. Quantities bounded by the bootstrap

In this section we show how the results in Chapter 4 can be used to bound quantities appearing in the
system (6.2.11 — 6.2.14) in terms of the energies defined in (6.2.26) and the norms on the initial data in
(6.2.21) and (6.2.22). The inequalities allowing us to bound the energies in terms of integrals over the bulk
will be derived in the next section.

The bounds we prove are of two kinds. The first (through Corollary 6.3.5) follow directly from the
definitions of the energies, the bootstrap assumptions, and the smallness assumptions on the initial data,
as given in equations (6.2.26 — 6.2.30) above, and in particular make no use of the equations of motion.
These bounds are therefore independent of 7”. In the second set we apply the equations of motion, and the
resulting bounds will in general depend on T”.

We first make some additional definitions. The function

(142)~ /21 240
po(r) = x ’
( { -1 z=0

27
is continuous on (—1,00); let

Cu= sup |uo(x)] < oo,
x€[—3/4,3/4]

so that for x € [-3/4,3/4] we have
(1+2) Y2 <140,z

-1/2 _

(Geometrically — since po(z) is just the slope of a secant line on the graph of y = (1 + x) it appears

that C,, = 4/3, but the precise numerical value is not important.) Now define also
_ 15 2
a(v) = |20, + 5 Cov +15C,, (Cov)~,
A4(v) = fi(v) + 98Cov,
Ax(v) = 10Cyv, Ay (v) =17Cyv,

where Cj is the Sobolev embedding constant from Proposition 4.4.2, and assume (without loss of generality,

since none of the above quantities depend on k)

k > 20max {7i(v), Aa(v),As(v),Au(v)} . (6.3.1)
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In particular, k& > 12Cyv.
Recall that the quantities i, A4, Ay, and Ay were defined in equations (6.2.15) — (6.2.18) above.

6.3.1. PROPOSITION. Suppose that €2 is such that the bootstrap assumption (6.2.28) and the bounds (6.2.30)
hold. Then (recall n > 4)

(a) (|00 grn-1(a,) < Enlh](c)/? for allw € Q, £ € {0,1}.

(b) |0¢@|| Lo a,) < 4Cov for all w € 2, where §; denotes any derivative in 7, &, or ¢ and ¢ € {0,1}.

(c) If k satisfies (6.3.1), then the following bounds hold for ¢ € [0, ¢]:

Az, < NAallzea,) <Ba), [Asliea,nzg < As@), [Avllrea,nu,) < Au (),

where the norms on the quantities A4, Ay, and Ay are as defined in equations (6.2.19) above.
Proof. (a) This is evident from the definition of E,[h](o) (see (6.2.26)).
(b) Recall (see (6.2.24)) that t[h](c) bounds the sum over Q, i and ¢ of ||8fw||§{1@140). Now let w € Q =

{00,b,¢,0500, 0500, O=b}, and suppose first that £ = 0. Then by (a) and Proposition 4.4.2, since n > 4,

@] Lo (a,) < Co [[[@]an-20a,) + @] m1(04,)]

<0y [En[h](a)l/Q ﬂ[h](a)l/ﬂ < 4Cyv.
Now if £ =1 and 0; = 0¢ or 0; = O, then
10:@ || Lo (a,) < Co [[10:@] grn-2(a,) + 10:@| 11 (8.4,)]

< Co [l ) + 2lh](0)72] < Co [Balh)(0)2 +lh)(0)"?] < 4Cow,

Since 8, = V205 — J¢, the case 0; = 0, can be handled as follows:

10781 2 (a,) < Co [10:B mrn-2(a,) + 10:T ] 11124,
< Co [V2105 ) rn-2a,) + (@l -1 a,) + elh) ()2

< [3En[h](a)1/2 ﬂ[h](o)w] < 4Cyv,

completing the proof of this part.
(c) This part is entirely straightforward, though slightly tedious. First, we note that by (a) and equation
(6.3.1) we have
160]| Lo (a,) < 4Cov,  [bllLec(a,y <4Cov,  |[elle(a,) < 4Cov,

1,— 1 1 1 1 1 (6.3.2)
k” ||L (Aa') — 127 k” HL (Aa) — 12’ k_HCHL (Ao') — 12

Moreover, we have
_ _ 1—
oa=k(a—1) =20/ <2+k6€> ,

SO

||5a||L°°(AU) < 12001/; %H(SQHLW(AU) < 17
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thus moreover

1 1 1 4
— 1 < T = o2
% — 1 1 4
a
[0~ all Lo (a,) =K H -1 =k §H5a||Loo(A ) < 16Cov,

a L (Ay) @ lpe=(A,)
1
*H5 ta|pe(a,) < 3

Since replacing barred quantities with tilde-barred ones amounts to multiplying 6/, b and ¢ by the cutoff,
which preserves the bounds in (6.3.2), the above bounds are also valid for the tilde-barred quantities. Now

we note that for € [~1,00) we have (1 + z)1/2 < 1+ x/2; by the definition of C, and the bound

B
=~ -1/2 =~
C C
1—— <1 —.
( 2k> - +O“2k

Pulling this together, we have the bound

Cllpe(a,) < 1/12, we have

[ -~ = — =2
\/1+,1c(5a+§)+2,1€2(c<5a—b)

_ <
1=

=
|
=~

<k {1 + E (1 (12Cyv 4+ 2Cyv) + 2]162 (640 ))} {1 + 20#(301/} - 1}

1 1 _
<2C O()V + = (14001/ + C()l/) +C COV(15OOV) < |:2CH + 25:| Cov + 15OM (001/)2 = 0.

N}
o

Now we wish to bound the operator norms of the matrices A 4, Ay, and Ay. We shall do this by bounding

their Hilbert-Schmidt norms and using the bound

[Al < [|Allzs:
where || - || denotes the operator norm and || - || gs the Hilbert-Schmidt norm. Noting that, from the foregoing,
-2
b 32 ., 2 z 16
< — < =C —| < 2C — | < —=C
2%ka| =3k 00 T g =T a\/i‘—?, o

and that identical bounds hold for the cutoff quantities, we see that

— 2 2 162 2
l6h=Y s, [[6h— | gs < Cov |4 (9 + 2) +4 <3> + 162 < 47Cyv,
so that ) )
184l < UAallns < (14 37) (CorvB+ 3216 s ) + 37V5
< 2(49001/) ﬁ 980()V + 1 /L AA( )

1/2
2\° 1 1
[As| < [[As|lus < 4Cov <1 + <3) > +7 <1 + 3 ) 16Cov < 10Cor = Ax(v),

1 1\ 1 1 —
[Av| < [[Avllus < 4Cov (2 + 8) +7 (1 + 2) 47Cov < 17Cov = Ay (v),
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and since these bounds are uniform, this completes the proof. QED.
We note the following bounds derived in the above proof for future reference.

6.3.1. COROLLARY. Under the conditions of Proposition 6.3.1, we have

”EHL"O(AG) < ].QC(]I/, ||5*1a||Loo(Aa) < ].6(701/7 y H(ShilnHS < 47C01/, ||(5h71||H5 < 47COV.

IS
ol

<

Proposition 6.3.1, together with Lemma 4.2.2, also allow us to bound I x[f].

6.3.2. COROLLARY. Under the conditions of Proposition 6.3.1, we have

1 —

6||f|\H3(20) <Is, [f] < I fll 2 (so)s

1 —

e 2oy <Toolf] < M1Fllsz o)
where the norms were defined in (4.4.1 — 4.4.2) above.

Proof. Given Lemma 4.2.2, this follows from Proposition 6.3.1 as well as equation (6.3.1). We show it

for I, [f]; the proof for Iy, [f] is exactly analogous. We have

Tz:(,[f]=/E % B(aff)%(aaff + ETAEO, fO4f dv dz.

Now (letting ¢ and d represent T and v)

A0 fOuf| < |Asllnsl|OcfOafllns < As()|0cf? = As(v) [(02f)* + (9£)°] |

whence
To )< [ 5 |50t + @of |+ g5 (0617 + 0u97] doatn
S/ (0z£)° + (05f)? dv dT = || |l 2 ()
3o

and similarly

Ialfl 2 /E 75 (021 +Onf)"] = o5 [(0s1)" + (90f)7] dv da
> 5 [ e+ @ur ) van
as claimed. o,

We now have the following proposition.

6.3.2. PROPOSITION. Suppose that {2 satisfies the bootstrap condition (6.2.28) and the bounds on initial
data (6.2.30).
(a) For any f € C°°(T') and any o € [0,¢],

9 2 2 11 2 2
0 [”fHHC}(A‘,) F110-fllz2a,)| < 2€lf](0) < 10 12 a,) + ”anHL?(AU)] ;
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and thus
9 2 2 ¥l 1 2 2
S Uz cany + 10 F s ] < 2BalF1(0) < o (W s cay + 10 £ s ] -
(b) If 7 satisfies the bootstrap condition (6.2.28) and the bounds on initial data (6.2.30), then for o € [0, <]
o
||az'7||Loo(Ag) < 4Cov,

where as in Proposition 6.3.1 0; denotes any of the derivatives 0,, O¢, O¢, and ¢ € {0,1}.
Proof. (a) By Proposition 6.3.1(c) and the bounds (6.3.1) on k, we have that k=1||A ()| < 1/20 for
€ [0,¢]; thus for such ¢ and any f € C°°(T") we have by Lemma 4.2.2,

L 1ASA(2)0.104f1 < 184(0)] [(0-1)7 + (e + (0:5)7]

< 55 101 + @) + @cH?):

thus
(07 1) + (0 £)* + (Oc £)?] + k™" AG D fDaf dE d¢

@) + @)+ (0c)?] dEd

and similarly

o)< [ 535 (002 + @er? + 0 ) dec.

This gives the first set of inequalities. Substituting into the definition of E,,[f](c) then gives the second set.
(b) As in Proposition 6.3.1(b), note that I[f](o) is effectively the sum over i and ¢ of \|affuip(Amzo).
By Proposition 4.4.2 and part (a), then, we have

HaZ[iHLOO(AU) S CO |:||8f7HH372(AU) + ||857||H1(A5020)i|

< G | B0 + 1()] < 4

as claimed. QED.

We wish to express Lemmata 4.4.1 — 4.4.3 in our current setting. Now technically A, is a subset of R?;
to avoid messy but inconsequential notational issues, we shall also use A, to denote the projection of this
set onto the plane 7 = 0, and when convenient consider functions on A, as functions on this projection. (In
particular, this is the sense in which statement (i) in the first lemma below is to be understood.) Then for

o € [0,<] we may apply the lemmata with A, in place of Qr; in this case, we have also (since in this context
y =)

m

D N0 flr=olmrm-ra0,) < VML [f1(0)?,

£=0

so absorbing the factor of \/m into the various constants, we have the following.



6.3] Quantities bounded by the bootstrap 95
6.3.1. LEMMA. Let o € [0,¢], let m > 0, and let ¢ € C°>°(R') have support contained in [—1,3] and satisfy
Ali—1/2,1/27 = 1. Then there is an extension map e : C(A,) — HJ'(R! x [-1,3]) such that

(i) e(f)la, =1,

(i) lle(Nlam@ixi-13y < C° [l flama, + Ly[f1(0) 2],
where C¢ is a constant depending only on m and ¢ (in particular, C¢ is independent of o and the size of the

support of f).

6.3.2. LEMMA. Let m > 2, 0 € [0,¢]. Let f1, ---, f, € H™(A,) satisfy affi € H" %(9A,), L =0,---,m,
i=1,---,p, and let I, - - -, I, be multiindices with |I; 4 - -4 I,| < m. Then there is a constant C' such that
P

J0% f1 -0 fyll g,y < €€ TT (L U2+ Uil a)) -

=1

6.3.3. LEMMA. Let m > 2, 0 € [0,¢]. There is a constant C' > 1 such that if f1, fo,---, f, € H™(A,) satisfy
aﬁfl S Hm_é(QQL)’ = 07"'7m7 1= 17"'apa

p
1 Sollamcany < € TT (U2 4 1 fillmcas) ) -

=1

Lemma 6.3.1 gives the following corollary:

6.3.3. COROLLARY. If f € Q (see (6.2.20)) or f € {8?8527\61,52 € {0,1}}, then for m <n —1

le() | zrm(foyxmrz) < C°[IIf]

Hm(A,) T V] .

Proof. This follows from the Lemma 6.3.1 and the bounds (6.2.30). QED.
Since we can bound || f||gn-1¢4,) for f as in the corollary by something like v, this shows that for us the

additive term does not fundamentally change the size of the norm.
We have also (see Lemma 4.2.4):

6.3.4. COROLLARY. Let m > 0. There is a constant C, depending on m, such that the following holds. Let
O C R? be open, let F': O — R? be C*, and suppose that fi,---, f, : A, — R! satisfy the conditions in
Lemma 6.3.2. Suppose that D = sup |07 F(x)| < co. Then

[ J|<m
x€0

p m
Hm(A,) < CDH (ll[fi]lm + Hfi“Hm(Ag))

=1

[E(fr(x), - fo(x))]

Proof. This follows from Lemma 4.2.4 and Lemma 6.3.2. QED.

Obviously this bound is far from optimal, but it will be sufficient for our purposes.

We also have the following corollary which will be needed when treating the wave equation (6.2.11).
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6.3.5. COROLLARY. If Q is such that (6.2.28) and (6.2.29) are satisfied, then for m < n — 1 there is a

combinatorial constant C?, depending only on m such that (¢ € {0,1})

7 4 %m+2 L . m
105Tal e, < C3,Car(CE)™ (3) (L0 + [0l ca,) )

Lo Tallo) < € (3) (thialle)”

In particular, there is a constant C5=— > 1 such that

1056 all o1 (a,) < C5=r3¥s I,

Proof. We have, since @ = (1 + k~16¢)2,

_ 1 950 + k=130 250+ k=150 S0 30
sla=k(=-1)= = =

e — — = — + -,
a (1+k=160)2 7 7
8:0-Ta = —kﬁff _ g OO —285;54
a (14 k—1560)3 7

Now by the product rule for differentiation, if I is any multiindex, then

o)=Y G) o' fo'n,

J<I

where (j1,j2) < (i1,42) means j; < i1, jo < i, and

((Z'17Z.2)> _ 11'22'
(J1, J2) Jil(in — 1)lja!(i2 — j2)!
Further, if g # 0, J is a multiindex and p > 1, then, by Lemma 4.2.1, letting /C denote the set of all collections

of multiindices { K } whose sum equals J, there is a collection of combinatorial constants {C’%7 Koy | {0k} € K}

such that
1 1,
J o ) Ke{Ky
9 97_ Z C{Kk} gl +p
{Kr}eK

where |{K}}| denotes the cardinality of {K}}.
If we now take f = 8§W and h =10 ", for p=1,2,3, then since 8;¢ = k~19,6¢, we see that 0! (%ﬁﬂp)
is a sum of terms of the form

kect ] ot ok, (6.3.3)

where e > 0, C' is combinatorial, P < |I|, and ) I; = I. Since the number of such terms is also combinatorial
in nature, k > 1, and the number of factors in each term is no greater than |/|, we may apply Lemma 6.3.2to

find

1|

o5
0" =5~

| 4\ (H1+p)/2 - 1/ =
; <CCy (C9)' I <3) H (l|1|[3§5f](0) 2+ HGEMHHM(AH))

L?(As)
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Since the number of multiindices with order less than or equal to m is combinatorial, the first inequality
follows by summing over all such multiindices I. The second inequality follows from (6.3.3) and the fact that
for any f, g,

L,[f9l(0) < L,[f1(0) L, [9] (o). (6.3.4)
The final set of inequalities now follows from the bootstrap assumptions (6.2.28) and (6.2.29), since v < 1.

QED.

We now define a class of nonlinearities sufficiently broad to encompass everything we will have to deal
with. (It would be quite sufficient to consider only functions polynomial in the variables; but the treatment
does not seem to be particularly more complicated for the general case. There is evidently some connection
between what we do here and jet bundles, but we do not need that machinery here.) Our terminology is
borrowed from Ringstrém [12]. In this definition, v is the quantity appearing in the bootstrap (6.2.28) and
the condition (6.2.29); in other words, it is a proxy for certain norms of the quantities involved. The spaces
are defined in terms of pairs of quadruples (@, b, ¢,7¥) to facilitate the existence proof in Section 6.6, which is

by iteration.*

6.3.1. DEFINITION. Fix some particular choice of initial data satisfying (6.2.27) and (6.2.29). Define sets X
and X as follows:

X = {(@1,b1,¢1,7;, @2, b2, C2,75) € [C(T)]® |7, solves (6.2.11) with @, b, ¢ replaced with @;,b;, ¢, i = 1,2,

o, ba, Co solve (6.2.12 — 6.2.14) with 7 replaced by 7,

(@i, bi, ¢;,7,) satisfy (6.2.28) and (6.2.29), i = 1,2,
@i, b;,¢,7,; agree on 3 =0 and v =0
with the chosen initial data},
X ={(ab,e7) e [C>D)*|@,b,¢,7,a,b,e7) € X for some (@,b,e,7) € [C=(I)]*}.
Note that the requirement (6’,5/,6’,7,6, b,¢,5) € X in the definition of X imposes restrictions on the
quadruple (E’,B,,E’,ﬁ'). An admissible nonlinearity of degree m and exponent p, where 2 < m < n — 1 and

p > 0, is a function ® : X — C°°(T") which has the following property: there exist constants C7*(®) and
Ci(®) such that for all (@,b,¢,7) € X we have

12(@,0,27) | m(a,) < CT(@WP, L [®(@b,e,7)](0) < [C5(®)*v?.

We denote the set of admissible nonlinearities of degree m by X P or simply X if the degree and exponent

are clear from the context. It is a normed vector space under the following norm:

@ = inf{C; + Co | | ®(@, b, ¢, 7)| srm(a,) < C10P, I},[®](0) < C5v? for all (@,b,c,7) € X}

~
Xm.p

* One could of course also try to prove existence using a fixed-point theorem. We considered that approach
but abandoned it as at least as complicated in the current setting since proving the necessary continuity
results involved estimates very similar to those used in Theorem 6.6.1 to show convergence of the sequence

obtained by iteration.
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We further let
Xo = {(a@,b,c,7) € [C®(D)]*|(a,b,¢c,7) satisfy (6.2.28) and (6.2.29),
@,b,C,7 agree on 3 = 0 and ¥ = 0 with the initial data

constructed in Chapter 5},

and define a restricted admissible nonlinearity of degree m and exponent p to be a ® € X™P which extends

to X and satisfies
”(I)(a757677)”Hm(Aa) < C{n(q))VP, Lln[(I)(67B767ﬁ)](J) < [Cén(q))]QV%]

for all (a, b,c, %) € Xo. We denote the set of all restricted admissible nonlinearities by X(’)n P (or, as with

X P simply X’O if the degree and exponent are clear from the context) and define the norm

IRt = inf{Cy + C2||2(@,b,e,7)| grm(a,) < C1v?, I}, [®](0) < C3v* for all (@,b,e,7) € Xo}.

Xmop
Note that, by equation (6.2.23), we have also

L, (2@ b,e.9)|(0) < (|2

S VP
Note also that, if (@,b,¢,7,@,b,¢,7) € X, then (@,b,¢,7), (@,b,c,7) € Xo.

Since we assume v < 1, we have 1P < 19 when q < p, so X"™P C X™4 and )?6"’” C )A(g”’q if ¢ < p.

We shall principally work with the case m = n — 1, but we shall have occasion to use m = n — 2 as well;
note that since n > 4 we have n — 1,n — 2 > 2. (The space X™P could clearly be defined also for m < 2,
but since some of the results below do not hold for m < 2 and we shall never need to consider X™P for
m < 2 we exclude that case altogether.) We shall also usually have p > 1. It is worth noting that ®(a, b, ¢, ¥)
denotes the image of the solution (@, b,¢,7¥) under the map ®, not any kind of functional composition. In
particular, derivative maps (e.g., (@, b,c,7) = 95y) will be admissible nonlinearities when we can prove the
appropriate bounds.

We have the following proposition.

6.3.3. PROPOSITION. (i) Under pointwise multiplication of functions, Xmp x Xma )A(mvpﬂ, and if
® e XmP T e X™4, then

([ @] ClI®|| g, 191l

X\m,p-%—q S Sg\m,p| k\m,q

for some constant C. Further, the map (i € {1,2})
0i: @~ ((@b,5,7) = 0; [2(@,b,2,7)])

maps X™P to X™ 1P (when m > 3).
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(ii) Let F: R — R! be C*°, independent of k, and satisfy F(0) = 0; then the map*

( b ) = F(§ a, Q» SQO) UB) 355, 565, v, a‘rﬁa 8577 8(7)7

which we denote by F°, is in X™1. If Q = [~16Cyv, 16Cov] x [—4Cyr, 4Cor]'6 and Cp = sup {07 F(x) |x €
Q,|J| < m}, then there is a combinatorial constant C' depending only on m such that

1F°0 %

Xm,1 S CFCOC(CECM)T”.

Proof. (i) Let ®, ¥ € X, let (@,b,2,7%) € X, and let f = ®(a,b,¢,7), g = ¥(a,b,¢7); then by Lemma
6.3.3 we have

|@(@ 5, 1)@, Dl (a,) < C L@ + 1l an | [Lulol@)2 + gl a,)

<Nl g, 112

p+q
X'nL,p‘ Xm,qy 9

while by the product rule there is clearly some combinatorial constant C” such that

L.[fg] < C"1), [ f1L},]g] < C"2[Cy(®)Cy (V)22 P HD) < 72| ®||%

2 s, e,

Xmw”
from these two inequalities the stated result follows:

2%, , < inf{C1||®(@b,e7)¥(@,b,eF)|mm(a,) < C1vPT}

Xm,p —

+inf{Cz | 1,,[(a,b,2,7)¥(a,b,c,7)] < C3v2PH0}

SNl g p ¥l gma + CONRM 2 p ¥ g = (€7 + CD 2]

mo IV

~ ~ ~ .
Xm.a Xm.a Xm.aq

The second part follows from the observation that

10:fllzrm=1any < I flamany,  Ln-al0ifl(0) < Ly [£)(0).

(ii) By the chain rule and product rule, if I is a multiindex in ¢ and ¢ with |[I| < m, then the most
stupendous quantity

81 |:F(§_1a7 Q? 85907 (955, 8567 81767 77 87’77 8{77 aCV):|

can be written as a sum of terms of the form (denoting for convenience the argument of F by X =

(571(1’ Q7 agQOa 8557 6567 6567 Wa a‘l’ia 8577 6{7))
@' F)(X)[[o" (6.3.5)

where the sum of all multiindices I’ in each product is exactly equal to I, and x denotes some element of X.
(Here a particular element of X may appear multiple times.) Now by Proposition 6.3.1(a) and 6.3.2(a), if ¥

is any component of X except 6~ la, then

Xl g ayy < 20, I [X)(0)Y2 <,

* Recall — see (6.2.20) — that [Qg| = 3 and |Q| = 9, so that F does indeed have 17 arguments. The specific

number is of course not important.
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while by Corollary 6.3.5

H@gé_la”Hm(Ad) <

<Gy, I,[05671d)(0) < C5=17,

— 6—1(1

so that for all ¥ in X we have

LX) + [1Xl 4, < 3C5—ov.

By Lemma 6.3.2, then, since there are at most |I| < m terms in the product,

o

so that we have finally that

S (CM)m(gcm)me S (3CECM)ml/,

L?(As)

|07 F(X) cMymy,

| < CrC'(3C

|L2(AU o—1a

where C’ is a combinatorial constant. Similarly, since F'(0) = 0, we may write, doing a Lipschitz estimate,
F(X)< Y Cr-Ixl, (6.3.6)
xeX
so by Proposition 6.3.1(a), Proposition 6.3.2(a), Proposition 4.4.1, and the bootstrap conditions (6.2.30), we

have for some numerical constant C"”
|1 F(X)||r2ca,) < 17CrC"v.
Thus, letting C' = max{17C",3™C"}, we see that
|F(X)|| rma,) < CFCOC(CECM)mV.

The bound on I} [F(X)] follows from (6.3.5) and (6.3.6) by using (6.2.29) and multiplicativity of I' (see
(6.3.4)). QED.
We note that our proof of the multiplicative property in (i) did not require ® and ¥ to be evaluated at
the same points in X , though as we shall only have limited use for this result we shall not take the time
to formalise it. We note further that we made no use of the equations satisfied by (@, b, ¢,7), only that the

bounds (6.2.28 — 6.2.30) were satisfied. Thus we have the following corollary:

6.3.6. COROLLARY. Proposition 6.3.3 holds for restricted admissible nonlinearities if X and X are everywhere
replaced by Xy and )?0.

Recall the second part of (6.2.26):

Enelble)= 30 310705,

|<n—1men

) (6.3.7)
Eulh](0) = 3" Enalhl(0):
£=0
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As noted after (6.2.26) above, this notation needs clarification when we are dealing with multiple metrics
simultaneously, as we do when working with admissible nonlinearities. We make the following convention.
Elements of X are always denoted by quadruples consisting of the kernel letters @, b, ¢, and 7, modified by
primes, subscripts, etc., as needed. We shall denote the corresponding 2 4+ 1 metric by performing on the
kernel letter h the same modifications; thus h; is the metric corresponding to @i, by, ¢, and so on. The
kernel letter 6¢, modified also in the same way, shall refer to the quantity k(@ — 1)'/? with @ replaced by the
appropriately modified symbol. Then E,,[h](0), with h appropriately modified, will refer to the quantity in
(6.3.7) with Q) formed from the appropriately modified 6¢, b, and ¢ This set will be denoted by the kernel

letter  modified in the same way. For example, if we have (@, b1,¢1,%;) € X, then we would define
Q= {001,b1,¢1, 05001, 05001, Ozb1 }
2
Endb(@)= 3 > 070104,

H<n—15en,
1
Eu[h)(o) =) Enelh](0).
£=0
We now produce a litany of admissible nonlinearities® which will be used in the next section to derive

energy inequalities. For simplicity, we denote maps such as (@,b,¢,7) — 02a by simply 62a (exactly as, for

example, one denotes the function z + z2 on R! by 2?).

6.3.4. LEMMA. The following are admissible nonlinearities of degree n — 1 and exponent 1:

oL, 5_1(1, b, ¢, S04, sgv 5C, 04, 500, 8557

the following are admissible nonlinearities of degree n — 1 and exponent 2:

0260, 02b, O%e, 020760, 0205

S

ol,  0305b;
all tilde-barred correspondents of the above are admissible nonlinearities of the same degree and exponent,
respectively;

the following are admissible nonlinearities of degree n — 1 and exponent 1:

e 8‘1’77 8&77 6{77 aﬂa 8§a7'77 658577 8§6C77 6271

and finally
057

* We advise the reader not to be put off by the fact that all of these quantities appear to be rather linear.
The space X, inasmuch as it involves solutions to nonlinear equations, is itself not linear, so it does not
really make sense to speak of a map from X being linear. More fundamentally, though, the quantities in the
lemma below are really the building blocks from which the elements of X™7 we shall have the most use for

later are built by multiplication.
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is an admissible nonlinearity of degree n — 2 and exponent 1.

Proof. We note first of all that all of these quantities do indeed give maps X — C*°(I"), and thus the
only question is whether the relevant bounds hold. Next, multiplying by x(5/7”) will change the norms we

use by at most 7"~ for some positive integer N, and such a factor will not impact the result.

That —1a is an admissible nonlinearity follows from Corollary 6.3.5. All other quantities in the first
two lines except 0~ La are trivially admissible nonlinearities by definition of E,[h](¢) and (6.2.28). Similarly,
and for the same reason, the quantities 7, 0,7, J¢7, and 0.7 (and hence also 057y and 9y7), as well as their 5
derivatives, are admissible nonlinearities. In fact, all of these are actually restricted admissible nonlinearities.

To deal with the other terms, let (@, b,¢,7) € X, and let (6’,51,6',7’) be such that (6’,5/76’77’76, b,¢,7) €
X. Recall that this implies that (6’,51,6’,7’ ) € Xy, and in particular the quantities @’ ,5/,6’ , % must satisfy
the bounds (6.2.28 — 6.2.30).

To deal with 0257, 92b, and 62¢, we make use of the Riccati equations:

_ _ _ 1 _ _ _
0330 = —2Uk' 1 (057)?,  02b = Sk™(530)(9D) — 4k' 705 (957 + k1 bOSY),
- -2
2
8526: Lk~ 1(852) 2k1 2L8_’Y < 7/ —|—2k’_1%8ﬂ/+k‘_1 (C—i-k'_ll;) a§7l> _ k,l—?aﬁ(aﬂ/)2.

Note that 1/a = 1+ k=16—1a. Now the function 7 need not be unique given (a,b,¢,7%), but clearly the
right-hand sides of each of the above equations must be. Now (@,b,¢,7) € Xo, and since k > 1, every
quantity on the right-hand side of these equations, considered as a function of (@, b,¢,7'), is in )?g L1 Since
multiplication maps XSL Ll X’gil’l — )?6’71’2, we see that the quantities 9257, 92b and 92¢, considered as
functions of (@,b,¢,7'), are also in )?g ~12. since these functions do not depend at all on 7', the quantities
9250, 92b, and 02¢ must be in X712 when considered as functions of (a,b,¢,7), and hence must be in

X" 12 ag claimed.

Differentiating the equation for 0/, we have by the same logic (not by applying the second part of
Proposition 6.3.3(i)!) that 020700 and 020;50¢ are admissible nonlinearities of degree n — 1 and exponent 2.

Differentiating the equation for b with respect to Z, we see that 8%855 will also be an admissible

nonlinearity of degree n — 1 and exponent 2 if 92y = (“)527 € Xn11. To show this, consider the wave

equation:

= (~205077 + 027)

+1 o~ a82770&7+2~&847 1 Sg,g%'g & 3ﬂ+~&b8ﬂ 1 Igaaﬂ—&a 07
k 2 = 3 - =

=2 o ~ =~ = == ~ ~

a 2 a a 3 2a
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This can be solved for 925 to obtain (recall that 1 + k~'§—1a = 5_1)

8%11[2&5‘;7
1 (o aLower L (20 2o+ X0 oy 1 Lodonr - Lodba,, . Osfa,
k 2 a a 2 3 a
~2 -~ ~ ~ =~ = ~ ~2
—k b~8§—;<'5 i“—4b3b+b6§6a> ;—; > 0:3adsy | + k3 %%a@aﬂ ]
a a a 3

Now since d5 = %(87 + 0¢), we see that 92y = i(&@v + 050:7) € Xn=11 By the above equation, then,
02y € X1 as well. (In fact, 927 has exponent 2 because of the overall factor of @.)

To deal with 897, we write Oy = —v/2 20¢ + Os in the wave equation and gather all terms involving (’92*
together to obtain

:'2

1~ 190
24+ —C— — = | 027 = 2V20:0.7 + 027

k- k%G

1 —_ b 1 - 2 = =~ 1 Sa
+ - —5_1a8%7+ 228;657 -3 (23§C — =0zb+ Oﬁ# ) 057 + &ba—’y &&l@f’y — @—’y)
a a

k 2 2 a

~ ~ ~ —~ ~ ~2

L g
e ( 2(‘” —4b%b+ba$‘5a>a;y— ~&5aw>+k-3 é—agaaw . (633)
« =

a

By Proposition 6.3.1 we have
~2 9
5+ 1~ 190 > 9 1 4/1 N 3 >0

k- S -2z 2

k k2 a — 3 3\3/ —2 ’
so dividing through and using this bound we have that 8%7 is also an admissible nonlinearity. Differentiating
by ¢ we see that 0. 027 is also an admissible nonlinearity of degree n —2 and exponent 1; thus differentiating
by s shows that 927 is an admissible nonlinearity of degree n — 2 and exponent 1, as claimed. QED.
We shall denote the maximum of the X norms of the above quantities by Cpp; thus if x is any of the

quantities in the foregoing except 927, we have
XN tm-1(a,y < Cprv?s L 4[Xl(0) < Cpv™

where p is the appropriate exponent.
We recognise in the above proof the use of the special algebraic structure of the equations which was

described in Section 0.4 above (see item 2).

6.4. Energy inequalities
We now derive integral inequalities satisfied by the energies defined in Section 6.2. We begin by showing

how to use the divergence theorem to derive integral inequalities which will be used in the next section to
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give bounds on E,[]. We work with the metric & (see (6.2.10)); in particular, we let [] = L, denote the

wave operator for h.

On A, we have the induced metric

- e —1p
> 1 0 N 1 da N ﬁb
0 1 E\_1p ¢ ’
¥) 2

which has determinant

> 1= ¢ 1 — =2

|h| =1+ E(éa—k 5) + 53 (¢oa—b ).
Similarly, it can be shown that the determinant of the full metric is \B| = —@. On lines 5 = const, T = const

we have the induced metric @ = 1 + k~1da with volume form \/g =1+ k‘lﬁ; thus the surface elements on
Yo and X; will be (1+k~18/)dZ dv, and the normal vectors will be 95 and —d%, respectively, while the surface
element on Uy will be \/gdfdg and the normal vector will be d5. We let —t® denote the (past-directed) unit

normal vector to surfaces 7 = constant and note that in terms of 0, we have

1
t = ———=0;.

_ <
T

Now suppose that f is some function defined on the bulk. Then we define its stress-energy tensor
1~ ——ecd
Q[flab = Vaf Vo f — ihabhi1 VefVaf
1 cd 1~ cd 1 Nlcd
= vafvbf - 5%1777‘ chvdf - ﬁéhab no+ %5}"_ chvdf

= Q1 + 0@l

where )
Qo[f]ab = vafvbf - 577ab77Cchdef7

1~ 1 — cd
6Q[f]ab = _§6hab <7]Cd + %6]7/_1 > vchdf
The divergence theorem on I' applied to Q| f]abaﬁ gives (here, quantities like 82, etc., denote tangent
vectors and not differential operators)

[ aislweteidcac+ [ Quiiatosyaara - [ QiwdtosVaded - [ Qiludtosadras
Ay P 3o Uo
_ _/F B }(Q[f}baaﬁ);a\/—ﬁz\dgdgdr. (6.4.1)

A standard computation gives

(QUAEDY)., = T forf + QU™ Lo, hup = T £0,f + Qflapdy b

——ab —— ab
Now, noting that 9,h~! = k~10,0h=1 , we have

1

QUi = 1 (@Uf + ol ) 0,00
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To compute the integrals on the boundary surfaces in (6.4.1), we note the following results:

On A,:
o JE |Z| 1 T\ —~cd
Q[flan0lt m— (_72%)1/2 l(arf)2 + 3 (1 - %> h=1 3cf3df]
|Z| 9 1 c 2 2 9, L o—d
= W {(&f) +5 (1 - %) [(3Tf) + (0cf)” + (Ocf) +%5h 1 3cf3df]}
2k
h
- (1")/{; [0 + (0c P + (061"
2k
c 2 2 2 1 c o cd
- (O @+ 0t + g (1= 57 ) v s
= 2 [0 + 0 + (0c))?) + k' AY D fOur,
On EO and 212
QiladbosVa = [(c%f)z " %(afff] (1+k150)
=5 [50e0 + 0o1?| + 17 a0, 001
On UO
QLf]s0202Va = {a Jocf + 5 (ncdacfadf + 157?1“50 o f)] Va
[ ( (6Lf) > + %75771 Bcfadf} Va

- {< 72+ 5 (0x) ] + kT AFD f0u.

We note that 6h—1" 8 .fO4f only involves derivatives (9s5f)?, Os0zf, and (Ozf)?. In deriving the formula on

3o and ¥; we use b ¢ = 0 on those surfaces (these hold on ¥ by the initial conditions, and on ¥; by the

cutoff).

Substituting all of this in to equation (6.4.1), and noting that @ =1 on X; by the cutoff, we have thus
1 )
[ S L1+ e+ @cf)?] + 17 A0 f0uf de ¢
[(aLf) + (05f)*] + kA0 fOuf dvdT

[(82F)% + (85f)?] + kP AL, fOuf dv dz

|
— — —
S-Sl Sl

{(f)‘gf)2 + ;(%f)ﬂ + kTYAYD, fO.f ds dT

_ _/ {Dfan n % (Q[f]gb n ;&gmab) am?fl“b}ﬁdg dc dr. (6.4.2)
rn{r<c}

Note that the integral over A, is just €[f](o) as defined in Section 6.2 above. Note also that the second

integral on the left-hand side above is a positive contribution (since A = 0 on %) and can be dropped.
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Pulling everything together, we have the inequality

[0 )2 + (0 f)? + (O f)?] + k™' AG O fOaf dE dC

|
a2
</ L 165+ 0:)7] + K1 AZD, 10 fdidf—&—/ 1 [(&f)2+ 1((’%f)2} 4 kLAY, £O, f d5 dT
> - \/5 T v » Ue) Ud - \/§ s 2 T U Yel) Ud
—/ Lfo. f + 1 (ngb + 15Q[ﬂab> 8767F1“b Ve d¢ dr,
I'n{r<oc} k k

(6.4.3)
from which we obtain finally, noting that on the bulk \/g <vVa=|1+k"16 <4/3,

=g [ . }{IDfaffl ¥ \,16 (Ui + ocislar 676771“’)\} 46 dC dr + Ty [f) + Tuglf). (6.4.4)

The second term in the bulk integral can be bounded as follows:

6.4.1. LEMMA. If Q satisfies (6.2.28) and (6.2.30), then on T’

2

1 — a C
QU+ 0L ) 0601" | < 21130 S (01 + (06 + 0cS?]

< 47Cyv. Further, if w € O, and @ is

—cd —— cd
Proof. Recall from Corollary 6.3.1 that Héh—1 H , Héh_l ’
HS HS

the corresponding cutoff quantity, then we have

@l <@, 18,9 < @] + 10-%;

\/>
this will allow us below to determine bounds by working with the original (un-cutoff) metric components.

Since the transformation from the {9;, J¢, O; } basis to the {05, Oz, 05} basis is constant, we may work in this

latter basis. Now in this basis we have

L R R
h~ % 6~ta 0 |-

0 0 0

SO o B B
o [kt[pt Bl gz o Jag g

L S

Or0h™t" = o8 _Log 0,5 a0
0 0 0

Now we note the following bounds:

2 [ — 2
Ora = (1 + k=150)0.6¢, |0,al < k—l%coy <1

@ —— 1632
Sla=k(@'—1), 0,0 la=—k 7;, 9,0 Tal < 55 Cov < 20Cov,
a

52 ora
72

256

< fCol/ < ?Col/

‘bab
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from which we may bound the Hilbert-Schmidt norm of 8,6h~!:

_— 12 2 1 4
H6T5h—1HH5 < |:(3800V + 3600V> k1 +4Cov + 2 (36001/ + 690()V) + 2000V:|

224
< {96’01/ + 24Cyr + 73C01/k1] < 122Cyv, (6.4.5)

where we have used k£ > 1. Thus finally (recalling that we have C,, > 1)

||67(57L\j1||HS S ||x876h*1||Hs + Cx||5h71HHS § 1220()1/ + 470()I/CX S ].GQCXC()I/. (646)
Now since
o0
(Shij =10 a b1,
0 b ¢

we have clearly ||0h]/ s < 16Cov. Now we see by Lemma 4.2.2 that
— ——ab
[5as0h 1" || < 16Cov - 169C, Cov. (6.4.7)

Further,
Hn+k;—15h—1HHS <3+ k1 47Cow < 14, (6.4.8)
Using Lemma 4.2.2 again, and combining equations (6.4.5 — 6.4.8), we see that

CX
27T"\/2’

6QU1w0- 5| < - 16Cow 1690 Cop - 14+ [(0- )7 + (96 f)” + (0.1)?] -

and that

CX
27T'\/2’

N Ot

IIQ[f]OHHs<[(5Tf)2+(5sf)2+(5cf)2]~<1+3>- O _

5 ) 3 (0 1) + (0 f)? + (0c £)?] -

S

SO
CX
2T"\/2’

—ab 5
QUSR] < 1690, Cov - 2 - [0, )2 + (D) + (0cF)?]
and pulling everything together, we have finally

CX
2T"/2

QUL+ k46Q11ur) 0,577 < 169C,Cow (5 +10) (0012 + (0c)* + (00 )
2

c
<2130 [(0-1) + (0 £)* + (0c£)?]

as claimed. QED.

The particular number here is obviously not particularly important; the point is that it is possible to find a

fixed number.

Combining this with Proposition 6.3.2 and Corollary 6.3.2, we have finally the following result.
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6.4.2. LEMMA. Let f be any C* function on ' N {r < o}, o € [0,5]. Suppose that () satisfies the conditions
in (6.2.28) and (6.2.30), and that k satisfies (6.3.1). Then we have
4 2

o C
1fl(0) < / {3 /A o, f] deC+k’1'6344COV2T,)i/§€[f](T)}dT+||f||ifg(zo)+|f||ifg(Uo)~

Proof. This follows from equation (6.4.4) and Lemma 6.4.1 by noting that Proposition 6.3.2 shows that

/ (0r )2 + (Bef)? + (0 1)? dE dC < 3e[f)(0).

o

QED.

We note in passing that for f = 975 for some multiindex I with |I| < n, by Corollary 6.3.2 the initial
data norms Is,[f] and Iy, [f] will have bounds independent of k since the supports of 8/7|s, and 87|y,

are compact and independent of k and the function 7 itself is independent of k on 3y and Uy.

For the metric components 67, b, ¢, the role of the above result is played by the following much simpler

one. Here and below we define v = v(c) = o — T'V/2.

6.4.3. LEMMA. Let f be any nonnegative C°° function on I'. Then for any o € [0, s] we have
[ ragac< V3 [ gleodrarva [Cav [ joesacac
A, P v Ay
Proof. Consider the region D, in the (7, () plane which is an equilateral right triangle with hypotenuse
A, N {§ = 0}, recall the sets (equation (6.2.4), see Figure 6.2.1)

Ly =N {(1,§,¢) €' (7,¢) € Do},
¥ o={(v,&—v) € Xg|v € [v,0]},
B, :FamAvv

where v € [v, 0], and set

F(o) = /A fdedc.

Y/ is one of the boundaries of T',. The other two are the sets 7 = ¢ and T = y\/i; noting that 7 = o is

equivalent to s = 0v/2 — U, we may write

+00 0'\/5 oV2—v
/ 6gfd7'd§d§:/ df/ d@/ ds0sf
I, —co vV2 0
V2

+oo
= df dﬁ - - — 5= = 7F g)— S= dfdﬁ,
] U~ Tl = @) [ Sl

since for any nonnegative function g we have moreover

/FgngddeZ/UadT/ngdé“ng/:dU/Avgdgdg’
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this gives the estimate
Fo)<VE [ fheadrdo+ V2 [ dv [ jossldedc,
- v Ay

as desired. QED.

Note that when f € €, the integral along ¥/ is entirely determined by the initial data.
Finally, we have the following lemma.

6.4.4. LEMMA.. Let f be any C* function on I', and let o € [0,<]. Then

7 3
iy <21 [ [ joesPasicas + 5 [ iflenal? dwan
v ! A

Proof. This follows by a straightforward calculation:

2

< (o+¢)
9 B 2 _ V2 _
Faa,, = /A F(o,6,O)P de dC = /A U /0 Oof d5+ floco| de dC

o

3 %(0’4’() 2 3 2 1 -
g/ M(J+O/O |05 f| d?ddeJr\/i/E; | fls=0|” dz dv

o

Z=(0+¢) 3
A R I
s /0 /U

<o [ [ e agacas + S [ iffenal? dman
v o’ P

where we note that by definition A, = 0 for ¢’ < 0. QED.

6.5. Continuation of the bootstrap
We now show how our results from Sections 6.3 and 6.4 can be applied to derive bounds on E,[§] and

E,[h]. We have the following lemmata. Recall that the space X was defined in Definition 6.3.1 above.

6.5.1. LEMMA. Let (@,b,¢,%) € X, and suppose that the bootstrap assumption (6.2.28) and the bounds
(6.2.29) hold on an interval [0,¢]. Then there is a constant C; and a positive integer N such that for all

o € [0,5] we have

Eali)(0) < O 0%k 0 + 6 [ty n [7] + T n [7]] -
Proof. First, recall the following inequality from Lemma 6.4.2:

o 4 C2
Ao < | {3 | B dde+k1~6344CoV2T,>\‘@€[f](T)}dT+||fHg(zo)+|f||Hg(Uo)- (6.5.1)

Now let f = 81857, where |I| <n — 1. By Lemma 6.3.4, 8§7, 85875 € )A("’l, so by Proposition 6.3.2(a) we

have for o € [0,¢]

107 fllz2(a,) = 118" 05071l 2(a,) < 185077 rin-1(a,) < 3Enl7l().
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Thus, using the bootstrap (6.2.28), we obtain from (6.5.1) in this case

2

o 4 C
I ol —1 X I ol
€[0" 957 (o) S/O 3 171z a,) 107 Fll 2,y + 6344C0k VQT,\@&[8 A (v) dv

+ \\816§7||Hg(20) + ||313§7||H3(U0)
o 02
Iol= -1 X I ol
< /0 4v ||Ho %VHL?(AU) + 6344C)k V2T’\/§€[8 0] (v) dv

+ \\818§7||Hé(20) + ||8Ia§7||Hg(UO) (6.5.2).

The last two terms can be bounded in terms of the initial data, and the €[0?0%y](v) in the integral can
be bounded by the bootstrap; thus we only need to bound HD@I%WHLZ(AU). Since [y = 0, we may write
10105y = [, 0784)5. The wave operator [ is as given in (6.2.11):

= (—20505 + 32)

1 =, - b 1 2~ 1.~ 108%a sa
+ = <—5_1a8%—683+2~8§85— (2@;c Zo:b+ ai‘sa>a§+~ B - i“%)
k a a a a 2 3 a
~2 -~ ~ ~ =~ = ~ ~2
1 (=~ 1 = 1 =
Y zai“—sz%ber@jf“ s — ~—b2 Sads | — k3 f%ag(saag
a 2 a a a 23 23

Note that the leading-order terms —295095 + 02 have constant coefficients, and will therefore drop out of the
commutator [L], 78%. The remaining terms do not contain the derivative 950,b, but only the derivatives in

the set

Recalling that
=1+k 15 1q,

ISIR{N

we see that for every d € D there is a polynomial Py in the quantities in QU500 U {5~ 1a}, with no constant

term and coefficients which are constant multiples of powers of 1/k, and such that

L= [-20507 + 33] = % > Pyo.
oeD

By Proposition 6.3.3, P will be an admissible nonlinearity of order n — 1, as will its first 5 derivative. Now

by the foregoing
1

Il Il
[C.o'og) = - > [P0, 004 (6.5.3)
oeD
Further,
[P, 87047 = > Cly 1a.t1.,0,011 05 Py0202 07,

[I1]+£1>0
Iy 4Ip=1,01+bp=0

where the quantities Cr, 1, ¢, ¢, are combinatorial constants. We may split the terms in the sum up into two
sets according as £; = 0 or £; = 1. If /; = 0, then |I;] > 0, so we may write 9/t = 0119, for some index

i € {1,2}. Furthermore, |I2| <n —2. If {5 =1 (as it will if £ = 1), then we see that

0207 € {037, 03077, 0:0%7, 027, 0077, 5077} € X%,
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since Py € )?"_1, we must have 9; Py € )?"_2, and since |I; 4+ Iz| < n — 2, we have by Lemma 6.3.2 and the
definition of X2 that
0105 Py0"2 0% 67| 124,y < C11/?

for some constant C; which is independent of k.

Now suppose that £; = 1. In this case we have ¢ = 0, so that
07 € {027, 05057, 927,059, 057, 057} € X7
by Lemma 6.3.4. Since also Py € )?”’1, we have again by Lemma 6.3.2 that
|07 0% Pyd™2 0% 07| 12 (4, ) < Cor/?

for some constant Cy which is independent of k. Pulling everything together, then, we have that there is a

constant C” such that for all I with |I| <n —1, all £ € {0,1}, and all 9 € D, we have

[P0, 03255 o ., < V2

whence by (6.5.3) we have that there is a constant C” such that for all such I, ¢, and 9,
I o0~ -1 2
H[D,@ a§]7HL2(AU) <kTC",

whence finally there is a constant C5 such that
1
> 2P0 a4,y < I
[I|<n—1£=0
Noting that by the bootstrap (6.2.28)
1 —
> D €d'oH)(0) = Enfl(o) < v
[I|<n—1£=0
equation (6.5.2) and Corollary 6.3.2 then gives

E.[llo)= Y > €0'0F(0)

[I]<n—1£=0

1 2

[eg 3 C ~ . - .

§4y/ > ZHD@I@%HL%) dv + 6344Cok 1gy22T/><ﬁ+6[L20,m]+womm];
0 |7]<n—1=0

thus
2

C
37.-1 v -1_.3_“x - -
E,[7)(0) < 4’k 0C5 + 6344Cok™ ov 2T\/3 + 6 [tx0,n [V + Two V] -

Now the constant C5 may depend on 7", but it can at any event be bounded by a multiple of T' =N for some

N > 0. There is thus a constant C; and a positive integer N such that

Ea[l(0) < O1T NPk o 4 6 [Tnyn 7] + Two,n 7]
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as desired. QED.

We have a similar result for the energies E, ¢[h](c) and E, 1[h](c). Again, recall that the set X was
defined in Definition 6.3.1 above.

6.5.2. LEMMA. Let (6’,3,6’,7’,6, b,¢,7%) € X. Then for o € [0,¢] we have
Bt [h)(0) < tna[H](0) +2V/2 / Cpit® dv = 4C LT + ina [H](0),
v(o)
3
Enolh)(0) < SV Cpr? + S1aglh)(0) + s 1) (o).

Proof. These are both very straightforward. The inequality in Lemma 6.4.3 allows us to write (recalling

that v(0) = o — T'V/2)

Epalhl(o) = Y Z||313§5H2L2<A,,)= > Z/A |0 ogw|” de d¢

[I|<n—-15eq [I|<n—15eq

<vz2 } ZV |816g?u‘2dfdf+/ / 2|0 osw] |0 62| de d( dv
[I|<n-1gcg L7 v(o) /A

<) +2v3 3 / L P P

I<n—-15eq "=

<t [h](o) + 2\/5/ Boa[hI(0)Y2 62|y ., o
v(o) Y

< tnalh)(o) +2V2 / Cprv® dv = 40 V3T + 1, 1[R)(0),
v(o)

which is the first inequality; and this together with Lemma 6.4.4 allows us to write

Enolhl@) = 3 Y08, < X Zﬂ’/a / 0" 05| d«devar%/ 0'5| dz dv
’ v Ay =

lI|<n—1zen [I<n—1zea (@)

g 3 3
<27’ /( )Eml[h](v) dv + iLmo[h](O') < 8V2T'%2Cpv° + §Ln,0[h}(o) + tn1[h](o),

the second inequality. QED.
We now have the following theorem.

6.5.1. THEOREM. Let T, 7" > 0. Let p € (0,1), assume that v € (0,1) satisfies

v< min{ L 1-p /N}
- 12877(1 +2¢/21")Cpy,” CiT — 7

where C; and N are as in in Lemma 6.5.1, and assume that the initial data satisfy

2 sup inlh] <
o€[0,q]

o0 |3

V27 6 [Zzo,n[i] =+ ZU(J,TL[W]] < pVQ-

E,.[7](0) < V2 (6.5.4)
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Proof. Set

€ =inf{o | E,[h](0) > v?, or E,[7](0) > v?}.

Then (6.5.4) must hold for o € [0,€], and moreover we must have E,[h](€) = v? or E,[7](€) = v2. In the

first case, Lemma 6.5.2 would give

V2 = E,[h(€) < 405, TV (1 + 2V2T") + 2u,[h](0) < v2 [4C5, T/ (1 + 2T'V2)w + 3}

8
1 1 1
<2242 =22
_V[S—&—J Ve,

a contradiction. Thus we must have E,[§](€) = v?; then Lemma 6.5.1 gives

1—
2 < Clz”Nl/3k*1E+p1/2 < 2 {erkle TP} 7
whence we obtain € > kT, so that equation (6.5.4) must indeed hold on [0, kT, as desired. QED.

6.6. Existence

In this penultimate section we shall show to apply the foregoing results to prove existence of solutions to
the system (6.2.11 — 6.2.14) by showing convergence of an iterative approximation in H"~1. Suppose given
some suitable (i.e., satisfying the conditions in Section 5.1) set of initial data, which we shall denote &,
0560y, by = 0, Osbg, To = 0, Os¢o = 0, and 7, (by abuse of notation, we let 7, now indicate also the initial
data on Up), and which we assume to satisfy the bounds (6.2.27), (6.2.29). The initial data shall be fixed
throughout the rest of the argument. The only real difficulty is in starting the iteration. We begin with the

metric components. We define 601, by, ¢ as follows. First we define Wll, 5/1, ¢} on X by setting
oLl = 0l5ly, O, =dly, 0% =0%, L {0,1};
we then extend to I'g by requiring 8;67/1, 8;5/1, 0s¢; to be constant in 5 on Iy, and finally define
S =xE)3, h=x@h, @ = X6

By the definition of C, (see (6.2.7), (6.2.8), (6.2.9)), as well as the conditions (6.2.29), (601, b1, ¢;) will satisfy
the bootstrap condition (see (6.2.28))
Ey[h](0) < v?

for o € [0,5]. Note that actually this holds with the L? norms in E,, replaced by L norms.
Now let 7; be the solution to (6.2.11) with ¢ = §¢;, b = by, and € = ¢, with 7, = 7, on % UUy. Then
we have the following result.

6.6.1. PROPOSITION. There is a constant C] and a positive integer N7, independent of 7", T, v, and k, such

I’Nlog2
aT

that if v < then for o € [0, kT the function 7, satisfies the bootstrap condition

En[Ti)(0) < v*.
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Proof. This is very similar to, but much simpler than, the proof of Lemma 6.5.1. First, summing
the inequality in Lemma 6.4.2 over all expressions of the form 9! 8671, [I| <n—1,¢=0,1, and applying

Corollary 6.3.2, we may write

- B o2 -
H;/ {||531&%||L2 10:0"0A, || 2 0., + F 1-63446’01/2T/’i@e[816§71](v)} v

+6 [220777’[7] + ZUOJL[WH )

where here [ ]=[1, . Now as in the proof of Lemma 6.5.1 we may write

1
[Boby, = [1,0'045, = =2 > [P20,0" 047, (6.6.1)
)
where Py, etc., are as there. Now in the present case, all derivatives 97 6§P3 are bounded in L> by 2, and
the only question is how to bound the derivatives of 7;. This may be dealt with exactly as there: briefly,

any derivative of 7; appearing in the sum in (6.6.1) will be of the form
8Ja§71 )

where |J| < n, £ <3, and |J|+ ¢ <n-+1. If |J| = n, then £ < 1, and such a derivative can be bounded by
E,[F]. If £ =2, then |J| < n — 1, so writing d5 = %(& + 0¢), we see again that such a derivative can be
bounded by E,[7], as before. Finally, if £ = 3, then solving the wave equation [ }y; = 0 for 27, as in (6.3.8),
differentiating with respect to s, and using the L> bounds on the metric components, we may reduce to the
case ¢ = 2. Thus there must be a constant C' and a positive integer N’ such that

o o . 02
Bul(0) < [ prCn+ 90T N BLRI(0) + Lo 634Co T 7)) v + 6 iy 7]+ T 7).

or combining terms, that there must be a constant C] such that

Ealil(e) < v ¢ [ Buil(0)do + 6557 + 0 31,
0

from which a routine application of Gréonwall’s Lemma (see, e.g., [2], Theorem 1.1) and the bound (6.2.27)

gives the desired result. QED.

We now proceed by induction. Assume that v satisfies the conditions in Proposition 6.6.1 (for say
p = 1/2) and Theorem 6.5.1. Suppose that for some m > 1 we have constructed 8., b, Cm,7¥,,, Such
that 7,, satisfies (6.2.11) with 6¢ = 64,,, b = b,,, € = G, and such that 6¢,,, b,,, Gn, 7,, satisfy the
bootstrap assumptions (6.2.28) on the interval [0, kT], where T is as in Proposition 6.6.1. Then we construct
Lyt 1, b1, Cmy1 by solving the Riccati equations (6.2.12 — 6.2.14) with the given initial data and 7 =7,,,,
and %,,,; by solving the wave equation (6.2.11) with the given initial data and 00 = 6lys1, b = by,
¢ = Cmt1- Then by Theorem 6.5.1, @mﬂ,gmﬂ,émﬂ,ﬁmﬂ will also satisfy the bootstrap assumptions

(6.2.28) on the interval [0, kT1.
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We claim that, after potentially shrinking 7" and 7" slightly, this sequence converges in H"~!. This
follows from a very standard argument using Lipschitz estimates and the Gronwall inequality. Specifically,

we have the following theorem.

6.6.1. THEOREM. Let T' > 0, 7/ > 1. Then there exist constants Cq,Cs > 0 and a positive integer N,
independent of T' and T, such that the following holds. Let k > Cf,
T/N
-N
T
and suppose that the initial data satisfy (6.2.27), (6.2.29). Then there is a unique solution to (6.2.11 —

6.2.14) on the set

v < Comin{T"~

2 (6.6.2)

I ={(577) cR®|5€(0,T),7€[0,kT), T < kT/V2},

and for o € [0, kT the bounds

EuM)(o) <v?
hold.

Proof. By choosing C5 appropriately we may assume that (6.6.2) implies the bounds on v in Proposition
6.6.1 and Theorem 6.5.1. Let m > 1, and consider two consecutive elements of the above approximation
sequence, (6m, by, Cm, V) and (WmH,BmH,EmH,imH). Note that since m > 1 both of these sequence

elements will be in X. Let
D = {82, 0507, 02, 05, 0, 05}

and P2, 0 € D be as in the proof of Lemma 6.5.1, where P3" is constructed with the metric components
0lm, b, and Ty,. Let also [, = [}, and let Ey, ,[7] denote the energy E,, constructed using 6¢y,, bm,

and ¢,,. Then
Derl(Werl ’Ym - k’ Z Pm+1 _Pg’b) aﬁm
0eD
We proceed as in the proof of Proposition 6.6.1. Since we now have, for I a multiindex and ¢ € {0, 1},

1
410" 05T i1 = ) = [Dint1,0"0%] Tonsr — V) + %61% Z (Py ! — Py) 07,
0eD

m m = = 1 m m
Z (Pd i _P3 )avalaé‘| (’Yerl _’Ym)—’_galaéz (Pd 1 _PB )%m»
d€D d€eD
and since 7,1 =%, on Xg U Uy, we have

Enfl,m+l[ﬁm+l ’Ym] Z /

k

[ Perl - Pc;)m) 87 818§‘| (ﬁm-i—l _ﬁm)
9eD

m<n 2 L2(Ay)
100" Fmar = T 12,
+6344Cov %ﬁkle[éﬂaﬁ(vmﬂ = V)] dv
vag [ S e = 2 97
\I\<n 2 9eD
|0-0" (T i —Vm)HLz(AU) dv.
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Since in this case we have |I| < n — 2, applying Lemma 6.3.2 and the bounds (6.2.28), and taking the

supremum over o in [0, kT, we see that there are constants Cy and Cs, and a positive integer N, such that

1B n—1,m+1Fme1 = Tl qopr)) < C1T NV Bret mtt Fonstr — Ton) ()| oo (0,57

_ 1/2 - — 1/2
+ Cov T NN By alhim 1 = b + 02 (o sz B tm 41 T = Tond 12 (07

(here E,,_1[hmi1 — hm + ] gives simply the norms of the differences 60,11 — 6€m, b1 — by Cma1 — Cm);
cancelling a factor of [|Ey,—1 m+1[Vmi1 ’ym]||1L/j o,5r)) then allows us to conclude that there is a constant

C' such that for
! N

v<C T

we will have

— . i 1
Byt ms1[Tms1 — Tml(0) < ZHEnfl[herl = hm + 0]l o 0,07

for o € [0, k1.

We may do something similar to estimate the metric coefficients. Let us define

Qm = (Wm7gm36maafﬁmvaﬁﬁmvafgm)a Fm - (aﬂm,aﬂm7aﬂm)

Then there are functions F' and G, G quadratic, which themselves do not depend on m, such that the

differentiated Riccati equations (6.2.12 — 6.2.14) can be written as (assuming ¢ > 1/2, as usual)
26 L5
Q= EF(Qm,I‘m,l) + G(Tpq).

Since each component of €, and T, is bounded in L> by v, we may apply Lemma 4.2.3 and Corollary

6.3.4 to see that there are constants Cf and C4 and a positive integer N’ such that
_ — 1 _N'T —_ _
103 (Vi1 = Q) Nrn-2(a,) < ClvgBna[Pomgs = hon + M(0)"? + Cov T N Byt [y = Tin—1(0) 2,

where we use an L' norm on vectors like Q,,, and we have used the wave equation to solve for 8%*m and
025, as in the proof of Lemma 6.3.4 (this accounts for the presence of the IPN/). Applying Lemma

x

6.4.4 in the same way we did in the proof of Lemma 6.5.2, we obtain from this

En_11[hmt1 — hm +nl(0)

Z Z ||8I&s(wm+l *wm)Hiz(A Z Z/ wm-‘rl *Wm” dEdC

11<n—25e0 1<n-2m<a” A
<v2 ¥ ZU O5(@mir — )| dTdv
[II<n—275eq 7

[ 2|0 0@ — )| 0102 @~ )| d d
v(o) J Ay

<2v2 Z Z/ H(’) O5(@mt1 — HLQ(AU)

lI|<n—25e0 u(

dv

|8 02 (@41 — HLZ(AU)
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= 2\/5/( )En*l’l[hmJrl = hm +77](U)1/2 ||a§(§m+1 _ﬁm)HH"—2(Av) du

< 2[ OIV En 1[hm+1 hm + 77](“)
v(o)

+ QCQVZ/_NIETL—LWL[WWL - Wm—l}(v)l/QEn—l,l [hm-&-l - hm + U](U)l/z dU?
En—LO[hm-i-l - hm + 77](0)

> YN @ =B, < ZQT'/( )/ Os(@n1 — )| dEdC dv

Il<n-25eq Il<n—25eq

< 2T’/ En 1 1[hm+1 h + n}( )d’U < 2T/ /( )En—l[h7n+1 - hm + 77](1)) dU,

so taking L*°([v(o),o]) norms, we find that
[ En—1,0[Pm+1 = han + 0]l Lo ([u(0).00)
< 2V2T"? || By 1 [hna1 — Ban + )| 2o ((u(o).0])
[ En—1,11hm+1 — b + 0l Lo ((u(0),0])
< 4T’C{y%||En_1[hm+1 = b + 1)l 2o (ju(0),01)
+2v2050T N Y Bt T — T 1]HL°°( (o), [ En—11lmir — hm + 77]HL°°( [v(0).0])
< 8V2T'(1+ T’Q)C{V%||En_1,1[hm+1 =l + 1)l 2o ([w(0),01)
+2V2C50 T N Bt T — T = (o0 | Ent 1 ot = o + 21172 o000

whence dividing by || En—1,1[Am+1 — Fm +7) ||1L/°§(@(o),a]) as before, and using for the first time the assumption

T’ > 1, we find that there is a constant C' and a positive integer M such that if

v < T/—M

then we will have

1, = _ _
1En—1[Pmnrr = o+ 0l orr)) < Z 10—tV = Vm—lllL=o.rr)-
Since the energy norms here are equivalent to Sobolev norms, with constants no greater than 3, this shows
that there is a constant C > 0 and a positive integer N’, independent of T" and T, such that if 77 > 1 and

T/N/

v < Cmin{T" ', T 1,

then the sequence (04,,, by, Cm,¥,,) must be Cauchy in H"~!, and hence must converge, on the set
I'={(5z7) cR*|5€[0,T], v < [0,kT]},
as claimed. QED.

6.7. Norms of initial data
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In this short section we produce a few results concerning norms of initial data corresponding to the
solutions constructed in Theorem 6.6.1, in particular for comparing our results to those in the literature, see
Proposition 0.4.1. Let (@, b,¢,7) be a solution constructed as per Theorem 6.6.1. Then we recall (see (0.2.1),
(0.2.8)) that the metric given in the sxvy coordinate system by

0 0 o —e:%’“jz 0
3 0 (14 k~150)2e=26""/"7  p=1/2pe=2671"7 ¢ 671
9i = | _ -2k L 1/20 -2k 1?5 Zo—2k 1y (6.7.1)
0 0 0 2k

will satisfy the Einstein vacuum equations. Now the function 7 on the hypersurface ¥ is supported either

on the square [0, 1] x [0, 1] or the square [0, 1] x [k¥Tv/2 — 1,kT+/2], which in terms of the coordinates szvy

is the set
{(0,2,0,9) |z € [0,k7%), v € [0,k7"], y € R}
or
{(0,2,0,9) & € [0,k7/?], v € [TV2 - k™, TV2], y € R},
respectively.

We first compute the second fundamental form of the hypersurface s = 0 for the metric g. In coordinates,
this is

1
Xij = Vi(0u); = 9jrVi(0)* = Thgjr = 5 (9ij,2 + 924, — Giz,j) -

We want the projection of this on the zy plane, and thus take 7,5 € {1,3}. Now g;;» = 0 if any of 4, j, or k
equals 3, unless i = j = 3, k # 3; thus

1 1 _ _ 1
X1 =3 (9112 + 9211 — g12.1) = iav (e 27(s,w,v)a(5’x’v)) =e <2ava - 031;7)
X13 = x31 =0

1
X33 = B} bgss = Oyye™.

With respect to the orthonormal frame X = eYa~1/29,, Y = e~ 70y, x has the matrix representation

_(i(30a—adyy) O
X= 0 0wy )’

which has trace
Opa
2a

try =

Thus, letting 1 denote the 2 x 2 identity matrix, the traceless part of x is

—Dpy + % 0 )

0 oy — %

1
X=X— gtrxl = ( (6.7.2)

We note that since 9,7 = 0 and a = 1 outside the support of v, we have also ¥ = 0 there. In terms of k,
(0ya)/(4a) is of order 1 on its support, while 9,7 is of order k'~* on its support; for us, « = 1/2, and thus ¥
is of order £/ in L*°. Off the support of 7|(s—o}, ¥ = 0.
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We have also the following result on 7. Recall (see (0.2.22)) that °S is the surface corresponding to ¥

in the unscaled picture.

6.7.1. PROPOSITION. Suppose that y|oy, is specified as in (5.4.2). Then there are constants C1, Ca, depending

on £, m, and wq but not on k, such that
1050 | oo (omg) = CLR ™27, 19507yl p2(omy) = CokTm /247574,

Proof. By (5.4.2) and (3.3.3), it clearly suffices to show these results for k~*cwg(k'/?2, kv), which is easy:
since (using 97 and J; to denote differentiation with respect to the first and second variables, respectively,

of wy) 3ﬁ8glwo(k1/2g;, kv) = k“m/Q(@gwo)(kl/Qx, kv), we have
10507 w0 (k' 22, kv) | oo 055) = K772(|0507 @0 | 1< (529) = C1kT™2,

taking C = [|0507"w@o|| o= (5)- This is of the desired form. Similarly,

+oo pTV2 2
||658;”w0(k1/2x,kv)||%z(ozo) = ky"'m/ / ’(856{”w0)(k1/2x,kv)‘ dvdzx
—oo JO

= g / (0507 w0) (X, )| dT dv = C2R> T3/,
o

taking Cy = ||a§a;ﬂw0||m(zo). Again, this is of the desired form, establishing the result. QED.

In particular, this shows that the L? norm of 92 on % is of size k3/% as previously claimed.
As noted in Section 0.4, because the L? norm used here is in 2 + 1 dimensions, the L> norm is the
more appropriate one to use for comparisons with the results in 3 + 1 dimensions such as Christodoulou [3],

Klainerman and Rodnianski [6], and Luk and Rodnianski [9].



7. GAUSSIAN BEAM SOLUTIONS

7.1. Introduction

In this, final, chapter, we apply the results of Chapters 5 and 6 to give a solution (a,b,¢,~) to (1.2.9 —
1.2.11), (1.3.1), depending, in addition to k, on a parameter r, and satisfying the following property: there
is a function J5 5 (the formal Gaussian beam) which is supported on a neighbourhood of size 1/4 around a

null geodesic T = Ty, U = 7y, and a constant C,; > 0, independent of r, such that for all » sufficiently large,

17 = Vel @) <Ol
Fepllarey ~ 7

We shall do this by applying Gaussian beam techniques. It is not our intention to provide an introduction
to or general treatment of Gaussian beams, for which we refer the reader elsewhere, e.g., [13]. We only note
one peculiarity in our current situation. A Gaussian beam depends on the wave operator for which it is
derived. In our case, we wish the Gaussian beam to be part of the solution to (1.2.9 — 1.2.11), (1.3.1),
which determines the metric and hence the wave operator; in other words, the wave operator depends on the
Gaussian beam, so we cannot, as in the usual treatment, simply determine the Gaussian beam for a given,
fixed metric. We shall see, however, that we can specify Gaussian-beam initial data for (1.2.9 — 1.2.11),
(1.3.1); and assuming that it can be made to satisfy the conditions in Theorem 6.6.1 — which is the case —
the resulting function v will, a posteriori, be a Gaussian beam for the resulting metric. Since any solution
with initial data satisfying the conditions in Theorem 6.6.1 will satisfy the bounds (6.2.28), we may assume
that those bounds (and, hence, all of the bounds derived in Section 6.3) hold for the metric components @,
b, ¢ with respect to which we derive the Gaussian beam.

We anticipate that the results obtained here can be refined in various directions.

7.2. Construction of the formal Gaussian beam

Let r > 0; in the following, we assume all quantities to be independent of r unless otherwise stated. We
shall work with initial data supported near 7 = kTV/2, i.e., at the upper boundary of ¥ rather than the
lower one. Thus, let Ty € (1/4,3/4), Dy € (kTv/2—3/4,kT+/2—1/4). Let ¢ be any C* function on R? which
is supported on the disk By /4 of radius 1/4 centred at the origin, and satisfies ¢(xz,y) = 1 if 2?2 +9? < 1/64.

For convenience, define the function p: I' = R by

p(3,7,7) = \/(E —T0)” + (T — 7).

For 5 € [0,T"], define
S5 = ({5} x R%) N1,
i.e., ¥z are the planes in I' of constant 5. Since p does not depend on 5, we occasionally drop the s variable
and simply write p(T,v) for notational simplicity.
When taking square roots of complex numbers, we use the branch with a cut along the negative imaginary

axis and argument in (—m, 7).

120



7.2] Construction of the formal Gaussian beam 121
We have the following results.

7.2.1. LEMMA. Let f : By /4 — C satisfy |f(7,7)| < Cp? for some constant C' and some ¢ > 0. Then for any

r>0

< mT'(q) 1/2070—%(11-1-1)
L2(Byya) [ 2201 ’

o )

where
o0
IN@)! :/ ule™™ du
0
is the gamma function.

Proof. This is entirely straightforward:

2 0o 2 o]
‘e‘”’Zf(f, @)‘ dz dv < 27C> pzqe_%pzpdp = 2nC p(ath) ule™ du
Bi/a 0 4at1 0

= [22?1:1 F(Q)} CQT_(q+1)7

from which the result follows immediately. QED.
7.2.2. LEMMA. Let 0y, By, Bo, D, r € R, By, D, r > 0. Then

2
1 o
sin (mo” QTB1x2) e~ 37(B2T+DV?)

L2(R2)
B, —-1/2 B, —-1/2 52
1 s 1 s - /2D
( + zB2> + 232 e 0 )

L2(R2)

™
=—— {122
2(BQD)1/2T {
2

cos (r@ov—i- ;TB1962> e~ 37(B2Z°+DV?)

™
=T 1422
2(3217)1/%{ +

Proof. We recall the Gaussian integral
+oo 1/2
/ e~ dy = (E) .
oo a

This is true for all @ > 0, and we see that by analytic continuation it can be continued to all complex a with

Ra > 0. Similarly, for A;, A3 € R, A3 >0,

+oo +o00 a2 A2 1/2
/ eidru—gAzu® g o / ¢ 342 O du = e=41/(242) (27r .
Az

— 00 — 00

Thus we may write

sin <7"907J + ;rBloﬂ) o~ 37 (B2T+D7?)

L2(R?)

1 o,
= / [1 — cos(2r0yv + rB17%)] e (BT DY) 1 i
R2

2
1 —_ p—
"2 {(Bg)l/2 - / [cos 2r0T cos rB1T? — sin 2rfgTsinr By 72] ¢~ (P27 +D7) da:@}
2 r R2
o T e 1/2 7T92/(2D) T 1/2 1 ) 71/2 . 71/2
"~ 2(ByD)V2r (w) ¢ (;) '3 [<Bz +iB1) "2+ (By —iB) ]

By e By e —r92/2D
<1—|—ng> + 1—23—2 e 0 ,

™
= 1-2!/?
2(B,D)1/2r {
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as claimed. The other integral follows in exactly the same way but using the formula cos? v = % (1 + cos2u).

QED.

7.2.1. COROLLARY. Let L € R, L > 0. Under the conditions of Lemma 7.2.2, we have (letting By A D
denote the minimum of By and D)

2

sin (7"9004- 17"31952) o~ 3T(B2T D)
i L2(BL(0))

m 1/2 By e B, e 62/2D T (BaAD)L?
> ———<1-2 14+i— 1—i— —% — e "2
= 2(B,D)/2r ( J”Bg) + ( ZBQ) ¢ r(BsAD)¢ ’

2
1 e
cos <T90U+ ,,,le2> e—ir(Bza:2+Dv2)
: L2(B1(0))

m 1/2 By e By e 62/2D 0 (ByAD)L?
>————— <142 14+i1— 1—i— "% — e "2
Z W BD) o | ( +’Bg> * < ZBQ> ¢ r(Bs AD)° ’

where as usual B, (0) denotes the disk of radius L centred at the origin in the Zv plane.

Proof. We note that, transforming to polar coordinates and using P as the radial coordinate,

2
/ sin (r&ov + er1m2> e~ 3T (BT 4DV | g g < / e~ T(BAD)@4T?) g 155
R?\BL(0) 2 R2\ By (0)
—9 Pe-T(B2AD)P? gp m —r(ByAD)L?
i /L ¢ r(ByAD)© ’
from which the result readily follows. QED.

7.2.2. COROLLARY. Under the conditions of Corollary 7.2.1, for every ¢ > 0 there is an Ry > 0, depending
on € and the parameters of the problem, such that for » > Ry we have

2
™

> (L =€)
L2(BL(0)) 2(BQD)1/2T
2

1 P
sin (7"9011 + 27“31352) e~ 37(B2Z°+DV?)

™

> ————7—(1+e).
L2(BL(0)) 2(BQD)1/2T

1 _ _
cos (r@ov + QTleQ) ¢~ 2T (B2E +D77)

Proof. This is clear because of the exponential decay of the error terms in Corollary 7.2.1. QED.

7.2.1. PROPOSITION. Under the conditions of Corollary 7.2.1, we have

1 | o
sin ( 7000 + TBlsc2> e~ z7(B2Z"+DT7) < —
< 2 L2(BL(0)) (ByD)Y/2y
2
2T

1 AP
cos <r901)+ 27"B1x2> ¢~ 3T(B27+D7?)

< ——775-
L2(B(0) (B2D)Y/2r
Proof. This follows from the standard Gaussian integral. QED.

From the foregoing we obtain the following result. We take the branch of the square root function

corresponding to the argument interval (—m, ), i.e., with a branch cut along the negative real axis.
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7.2.3. LEMMA. Let h be any Lorentzian metric on ' of the form (6.2.2). Let A;, B, D, 6 € R satisfy*
1/2<D<2,1<B<2,0<A; <1,6y>0. Let

. 1 (s 1
iB =55 fo @(o,30,00) do

0.(5) = e - (7.2.1)
B? + {% Jo Tomemy do
—1/4(= = —
As) = A2 2 _5:T0.T0) (7.2.2)

a1/4(07 EOa @0) .
Then there is a constant Cgp 1 > 1 depending on B and T” and constants Cgp 2, Cap,s > 0, depending on

Ai, B, D, 6y, and T', Cgp a1, CaB,2, Cap,s independent of r, such that if 8y > Cgp 1 the function
1
Top = 2R {W — T, T — To) A()exp [ir [Oov +5 (91 (3)(7 — To)> + iD(T — UO)2)” } (7.2.3)
satisfies

1¥esllmiss) 2 Cab.e, HDﬂGBHL2(Z?) < Capar V2 (7.2.4)

Proof. In the following, we use letters C', C’, etc., to denote constants whose values may change from

line to line. We first note that, since (see Corollary 6.3.1) @' <4/3 on I, we have

s 1
/777 —— do < 4T"/3;
o a(o,Zo, o)

thus if
0o > 74T/
° 7 3(B - B?)2)
(note that 1 < B < 2 implies B — B?/2 > 0) then
30, > 1/2. (7.2.5)

We take

47’
= —1
Coms = {575 1}

so that for 6y > Cgp,1 the bound (7.2.5) holds. We may also put upper and lower bounds on the modulus

of 8¢, as follows. We note first that 6; satisfies the differential equation

1

Bs01 = 00—@9?; (7.2.6)
thus also
2603
0201 = — 5. (7.2.7)
a’62

* These bounds are, for the most part, a matter of convenience in working out the proof below, and simply
requiring the relevant values to be nonzero would often be sufficient. For our purposes it would actually
suffice to take a particular choice of the parameters, say D = 1, B = 3/2, A; = 1/2; but we carry them

along to show that there is quite a bit of flexibility in the final answer.
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Since a~! < 4/3 on T, we have

B <

1T/2 1/2
§[32+6 ] < BV?2,

1 (%1
—iB—— | Zd
! eo/oa 7 962

so (recalling B > 1)
1

— < 64| £ 1. 7.2.8
BV S |61] < (7.2.8)
In particular, 6, is never zero. Note that (7.2.8) implies also that (applying (7.2.7))
4 4 32
01| < == < — 20, < —. 2.
‘(% 1|—3B290—3327 |a? l|—gB (7 9)

We may also derive bounds on A. It is straightforward to see that A satisfies the differential equation

20, 4a

(7.2.10)

6)§A:A<3§91 3§a>.

Then, since @ < 2 and @ > 3/4 by Corollary 6.3.1 and (6.3.1), we will have for all 5 € [0,7"], writing
Ag = A1571/4(0,fo,@0)7

1 4 3 8
<a'/t <2, 5A1 < A < gAl, gA1 < Aga'/*(3,To, 7o) < §A1. (7.2.11)

NI

Applying (7.2.8), (7.2.9), and (7.2.11), as well as Proposition 6.3.1, Proposition 6.3.2, and (again) (6.3.1),

we thus have the bounds

8 1 8 8 1 2 1 8 40
A< Sl g < Sl 1064l < 1A ( +)s3|A1|, 0241 < DAl (1212)

B1/2 = 3 B2 \3B " 3

Define on I’

1 S
0(5.7.7) = 007 + 5 (0:(5)T — 70)* +iD(T — 70)°)

(note that this is the coefficient of ir in the exponential in (7.2.3)). We are now in a position to derive
the second inequality in (7.2.4). By Lemma 7.2.1, it suffices to ensure that the quantity multiplying ¢"®
in LE74p vanishes to a sufficiently high order at (5,7o,Tp). This is the key observation underlying the
technique of Gaussian beams.

We first note that all derivatives of ¢(ZT — Zo,T — Tg) vanish to arbitrarily high order at (Zg,7o). More
precisely, let n, N be positive integers; then there is a constant C, depending on n and N, such that for all

multiindices I in T and v with |I] <n,
|67 (T — T, v — Vo) HLOO(RQ) < Cp(z,v) V. (7.2.13)

By the product rule, this means that any terms in [ 755 involving derivatives of ¢ will satisfy the bound

in (7.2.4) for any «, and hence can be disregarded. Thus it suffices to bound

[m® (A(g)e"@@@) 122 (5} By - (7.2.14)
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A straightforward calculation gives
O (A(g)e"gﬁ—foﬁ—%)) = O 00) (A + ir ALE-O + 2irh'0; 40,0 — r*h*9,00;0] . (7.2.15)
We take these terms in turn, starting with the last one. We have

h'0;00;0 = —20;0050 + % (8:0)° + % <k1

1
= —3501(T — To)* (0 + 02(T — Tp)) + 595(5 —T)”

1 b’ 1 15
+ (kla - c> 1 (8501)% (z — Tp)" — 010501 (7 — To)®. (7.2.16)

By (7.2.6), the lowest-order (in T — T, T — Tp) term in (7.2.16) must vanish. Substituting (7.2.1) back in to

equation (7.2.16), we see that there is a constant Cy > 0 such that on the support of ¢(Z — T, 7 — Tp)
i 4D
|h70;00,0] < —p + C’lp (7.2.17)
By Lemma 7.2.1, then, there is a constant C, independent of 5, such that

< COr 2,
L2({3}xB1/4)

eir@(f—fo U—=70) hij 5168] C] ‘

We may similarly treat the other terms in (7.2.15). We first recall the following expression for the wave

operator LI, see (3.3.5):

(~20:05-+32) + 1 (220005 208 —577ae2 (02— Loab+ 220 ) 0.+ (Sob— 57 ) 0 - %00 )
k a a /¢ a Y4
—2 — — - 90—
G (B (P \Bag), WO\ 1B,
k: a ¢ a a kK a

From this, it is evident that there are constants C; such that (letting F denote the Christoffel symbol for
h)

R4l < (k‘lb )62A BT 00| < & (Cul024] + C3lorA)) (r2.18)
277 0,49,6 + 6|
-2
b AN S WA
< |- &A(00+920)+2 A 2a91$+2k k E—C o0 T

(ol

1 1
Al—-601+ —
a1+k

—2
1
<k‘_1l; —C) 585291 + —0:0101T ]

—ij o 1 —ij sa
~h Jrgjéagelﬁ —h'T}6,7 — (90 + 60,7)

Q

&a

. i
< ‘-2@#190 +A (a91 ) ‘ + ’28§A62v + %m
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—ij 1
S

+A %3

el

901> — ﬁijrlljglf — 2?921)]

1
< ’—2851490 + A (91 - =
a

1 1, 1, 1
00|+ 9D 0wl + 0+ 1 {14101+ (001 +1) (Cogar? + Cago) .

(7.2.19)

As before, equation (7.2.10) shows that the term of lowest order in T — Ty and U — Ty must vanish. From
this and the bounds on A derived in (7.2.11) and (7.2.12) we see that there is a new set of constants C; such
that

—ij 1
[2779,40;0 + 56| < pD (i + Cs|As]) + 1. [CalArl? + (14| 4a]) (Cap? + Cip)]
Recalling that 0 < A; < 1, D < 2, we have (yet another family of) constants C; such that
1 —ij 1
IChAl < ZC1lA], ‘Qh ’9,40,0 +Eh@‘ < pD(Cr+ CofAr) + £p(Cs + CalAu]).
Thus, by Lemma 7.2.1 again, there is a constant C' such that

< Oor
L2({3}xBi/4)
(7.2.20)

From equations (7.2.15), (7.2.17), and (7.2.20), we obtain finally that there are constants Cy, Co such that

H[%eiTG(E—EO ,F—EO)A‘

<C,
L2({5}xBi/4)

O (909,400 + (40|

1
< Cy + =Cy;
L2({5}xB1/4) k

H[% (A(g)eir@(ffio,ifﬁg)) ’

as noted above (see our discussion around (7.2.13) and (7.2.14)), there are (potentially slightly different
constants) C7 and Cy such that

1
(S PSR {Cl * kCJ P12

which establishes the second inequality in (7.2.4) since k > 1.

To complete the proof we must compute || 7ol g1 (s-), or at least give a lower bound. We note first that
by construction $6; and 6y will have opposite signs for all 5 € (0, 7] (when § = 0, of course, 61(35) = i/B so
R6O1(0) = 0); since Oy > 0, we have Rf; < 0 and (since I¢; > 0) the argument of 6, will lie in the interval

(m/2,7). By our choice of branch, then, 9%/2 will have argument in (7/4,7/2), so

0 < RO)/? < 30172, (7.2.21)

1/4

since @/* > 0 and A; > 0, this gives

RA < IA (7.2.22)
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for all 5 € (0,7"], with equality holding at § = 0. (This relied on the requirements 6y > 0, A; > 0.) Now

R |:A(§)eir®(§,5—50 ,E—UO)] — %A%eir@ _ %Ageir@

s 1
1 ?dg
= RA|cos ’1"90(@ 7@0) _ ﬁr(fi EO)Z fO a(!zo,vo) ;
0 1 [S 1
B+ |35 Iy woim o]
1 B
o | o7 = 2@~ 70)° + D - 50 1
1 s 1
B+ 5 s wtas 40
s 1
! oo 0
—SA(sin | ry(v —v9) — ﬁ“f_fo)z fo (77 0,00) .
0 1 S 1
B+ (35 Jo iy 40

1 B
-exp | —=r — 2(5—50)2 —&-D(f—@of ]
1 s 1
B2+ [% I st da}

a(o,zo,0

If we differentiate just the exponential terms and take an L? norm, we effectively multiply both parts by
rD(U —0y), so by Lemma 7.2.1 the result will have a uniform upper bound in r. On the other hand, if we
differentiate the trigonometric functions, use the fact that R4 < JA, and apply Corollary 7.2.2, we find
that for r sufficiently large the difference of the L? norms is bounded below by C;7/2 for some constant C;.
Putting all of this together, we find that there is a constant C’ > 0, depending on the parameters A;, B, D,

and 6y (and hence, indirectly, on T”), such that for r sufficiently large

from which the first inequality in (7.2.4) follows. QED.

> C'rt/2,
L2({5}x B1,4(T0,70))

O [ A(3) iTO(E,FTo j—ﬂo)] ‘

The condition RA < FA in (7.2.22) is not needed in treatments such as that in [13] since one is able to
use the full compler Gaussian beam. We are not able to do that here. There are of course other ways of
obtaining the same result, but the most straightforward one — noting that |z| > C implies that at least one
of |Rz| and |Jz| must be greater than C/v/2 — does not work well for us since the phase of the complex

number A is a function of s. Thus we opt for the method above.

7.3. Energy-focussed solutions
From this we can finally prove the result announced in Section 1 above. We note first of all that when

s =0 we have
12l

\/§ )

both of which are independent of the metric h; thus (see (7.2.3)) Fog|s, is independent of h. Let (a,b,c,7)

6,(0) =iB™ 1, A(0) = A, B~

be the solution given by Theorem 6.6.1 with initial data that constructed in Chapter 5 from

Flso = () Vaalsos
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where €(r) > 0 is sufficiently small (depending on r) that the resulting initial data satisfies the assumptions
in Theorem 6.6.1. (¢(r) can clearly be taken to be nonincreasing with r, and we shall do so in the following.
A careful examination of the construction in Chapter 5 suggests that o < r~"7 for some exponent 7, but
determining 7 is not straightforward and is also not important for what we wish to do here.) Note that,
since Jopx, is supported on {v > kT+/2 — 1}, the solution 7 will be Minkowskian for & < kTv/2 — 1. We

have the following theorem.
7.3.1. THEOREM. There is a constant C; > 0, independent of r, such that for r sufficiently large

17 - 5(i)7GB [ZER) <o,
||5(T)’YGB||H1(F)

Proof. Let op, = €(r)7gp- We note first that
Ven.ollm@) 2 1057a8,0llL2r) = Cap2Te(r) (7.3.1)
where the last inequality follows from Lemma 7.2.3. Again by Lemma 7.2.3,
IE5:YeB oll2 @y < CapaT'r™'2(r).

Now applying Lemma 6.4.2; together with the bootstrap (6.2.28), we have that there are constants C; such
that for any o € [0, kT (recall that the seminorm e was defined in (6.2.25)),

_ 74 _ L 1= —
€Y —Vap.ol(o) S/O gHDmaB,on(AU)IIaT(W—WGB,O)IILQ(AU)+Cvk Y[y — Vap.o) dv. (7.3.2)

Since the support of 755 , and (by domain of dependence arguments) 7 is contained in the region {(5,7,7v) €
['|7 > kT+/2 -1}, the integrand in (7.3.2) will vanish except for v € [kT —1/v/2, KT}, so taking a supremum
over all o € [0, kT] and recalling that (see Proposition 6.3.2)

10-(F = Fap.o)llz2a,) < 2€[7 — 7G3,0]1/2(U)7

we find additional constants such that

_ _ _ 1 _,v _
sup 6[’7 - W’GB,O](U) <C sup Eh’ - ’YGB,O]l/Q(J)HDE’YGB,o L2(r) + EC/F sup 6[7 - VGB,O](U)-
o€[0,kT] o€[0,kT] o€[0,kT)

Now integrating the second inequality in (7.2.4) in § from 0 to T” gives
”DEWGB,OHLQ(F) < CGB,ngl/QT_l/Q,

so we obtain for yet another set of constants

sup  €[Y —Ygp,0l(0)
o€[0,kT]
1 _,v _
r2(r) + EC T UGS[‘L;’IZT] €Y —VeB,0l(0).

< CT/l/ZT_l/Q sup 6[7 - WGB,O]l/2 (U) HDﬂGB,o|
o€[0,kT]
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Taking k sufficiently large (or, alternatively, taking v sufficiently small, and then increasing r if necessary),

we find that there is a constant C such that

sup E[i - WGB,O]l/Z(O') S CT71/2€(T)5
o€[0,kT]

whence (again since the supports of 7 and 75 , are contained in {(5,7,7) € I'|7 > kETVv2 —1})

¥ = Fapollmrary < C'r~12e(r),

and the result follows from (7.3.1). QED.
The same result is true in the unscaled coordinates. We reformulate it slightly, as follows.

7.3.1. COROLLARY. Let J,p, €(r) and 7 be as above, and set
YaB.o(s,x,v) = k7Y 2e(r)Fgp(s, kY 2, kv), v(s,z,v) = k™Y %7(s, kY 2z, kv).

Then for r sufficiently large,
17 = v6B,0llm
Il HHl(OF)

) < o0,r1/2, (7.3.3)

where C; is the constant in Theorem 7.3.1.
Proof. With v in the denominator replaced by vgp,o, this follows from Theorem 7.3.1 by noting the

inequalities
£ (s, kY22, ko) ory < B4 £ (5.2, ) ey

_ k,l/4

&Y 2765 0/l o) > K2 (10076 8,0/l L2 0r) 105Y 6B oll2(r)-

Now if we let r > 4C?, then (7.3.3) follows from the observation that

[Vl ory > Ve B.ollmreory = 1Y — Y6B.ol veBoll 1 (or).-

DN =

mery > ||[veB,oll 51 (o) [1 — CgT_1/2] >

QED.

—1/2

Taking r = € gives the result in Theorem 0.3.1. In other words, noting that, because of the cutoff

function ¢, the support of yap,, in all of I' is contained in the set
N ={(77) el |zec(0,1],7 € [kTV2-1,kTV?2]}

(this is the neighbourhood around a null geodesic mentioned in Section 7.1), the result in Corollary 7.3.1
can be stated in words as follows. For every € > 0 and every k sufficiently large, there is a solution to the
Einstein vacuum equations of the form (0.2.1), such that the fraction 1 — € of the H! norm of (s, z,v) is

contained in the set

{(s,z,0) e R¥|s € [0, 7], z € [0,k~ Y2, v e [TV2— k™1, TV2]}.
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The time T', as well as the time 7" implicit in the solution, are independent of k, though they may depend

on e.

Finally, we note that the proof of Theorem 7.3.1 almost works for initial data supported near v = 0,
i.e., with Ty € (1/4,3/4) instead of 5y € (kT2 — 3/4,kT+/2 — 1/4). There are two added complications
that come into play here: the initial data for the solution 7 will not vanish on ¥ = 0, unlike the initial data
for the Gaussian beam; and we have no a priori control on the size of the support of 7, hence of ¥ — F4 5.
Preliminary investigations of these issues suggest that the first issue is not really a problem as the initial
data for 7 along v = 0 can apparently be chosen to be exponentially small in r. There does not appear to
be any ready way of overcoming the second issue without going beyond our current framework (for example,
defining energies over hypersurfaces other than A,). On the other hand, since as shown above €[¥ —J-5](0)
is small relative to ||[Jgpllm1(ry for all o € [0,kT], one suspects that it represents only some kind of ‘tail’
which does not really detract from the focussed nature of the solution; for example, that perhaps the result
in Lemma 7.2.3 might hold in W1,

Note that were we able to produce suitably bounded initial data supported on a set in the middle of
Yo (see our discussion at the end of Section 0.2 above), the above techniques would presumably allow us
to show the existence of a solution with energy concentrated along a geodesic through the point z = 1/2,

v="T/2.
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