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Abstract

According to the classical result of J.P. Serre ([S]) any two points
on a closed Riemannian manifold can be connected by infinitely many
geodesics. The length of a shortest of them trivially does not exceed the
diameter of the manifold, d. But how long are the shortest remaining
geodesics? In this paper we prove that any two points on a closed
n-dimensional Riemannian manifold can be connected by two distinct
geodesics of length ≤ 2qd ≤ 2nd, where q is the smallest value of i such
that the i-th homotopy group of the manifold is non-trivial.

1 Main result.

Here is the main result of the present paper:

Theorem 1.1 Let Mn be a closed n-dimensional Riemannian manifold,
q = mini{πi(M

n) 6= 0}, and d denote the diameter of Mn. Then for each
pair of points x, y ∈Mn there exist at least two distinct geodesics connecting
x, y of length not exceeding 2qd(≤ 2nd).

Observe, that if x = y, then the trivial geodesic is the shortest geodesic
connecting x and y. In this case our theorem asserts the existence of a
geodesic loop of length ≤ 2d based at an arbitrary point x of Mn. This
result is the main result of the paper [R] of one of the authors. Theorem 1.1
can be viewed as a generalization of this result. Our proof of Theorem 1.1 is
heavily reliant on methods of [R]. We would like also to refer the reader to
the foundational paper of M. Gromov [G] that was a source of motivation
for us and inspired some of the techniques of the present paper.
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2 Filling of cages.

Let us begin by introducing the following definitions and notations.

Definition 2.1 Let x, y be two points in Mn. An m-cage c based at x, y is
a collection of m paths c1, . . . cm from x to y. (For every i ci is a continuous
map of [0, 1] into Mn.) The space Cx,y,m of all m-cages based at x and y can
be identified with the mth power of the space of paths from x to y. For every
L let CL

x,y,m denote the space of all m-cages based at x, y such that the length

of each of the m paths forming the cage is at most L. Further, let CL,L̄
x,y,m

denote the space of all m-cages c = (c1, . . . , cm) based at x, y such that the
length of c1 does not exceed L̄, and the length of ci for every i = 2, 3, . . . ,m
does not exceed L.

Let σm = [v0, v1, . . . , vm] be the standard m-dimensional simplex with
edges of length one. (Here v0, v1, . . . vm are its vertices.) As usual, we use
the notation C(σm,Mn) for the space of continuous maps from σm to Mn.
Of course, this space can be identified with the space of continuous maps of
the m-dimensional ball into Mn.

Definition 2.2 Let x, y be two points in Mn, L, L̄ two positive numbers,
and N a positive integer. A coherent N -filling of m-cages based at x, y from
CL,L̄

x,y,m is a collection of continuous maps φm : CL,L̄
x,y,m −→ C(σm,Mn) for

all m = 1, 2, 3 . . . , N with the following properties:
1. For every m and m-cage c the map φm(c) : σm −→Mn maps the (m−1)-
dimensional face [v1, . . . , vm] of σm into y;
2. For every m and every m-cage c = (c1, . . . , cm) the map φm(c) maps each
of m one-dimensional simplices [v0, vi] by the map ci. (Here we identify
[v0, vi] with [0, 1].) In particular, v0 is mapped into x, and for every 1-cage
c we have φ1(c) = c.
3. (Coherence) For every m = 2, 3, 4, . . . , N , every m-cage c and ev-
ery i = 1, 2 . . . ,m the restriction of φm to the (m − 1)-dimensional face
[v0, . . . , vi−1, vi+1, . . . , vm] of σm coincides with φm−1(c(i)), where c(i) de-
notes the (m− 1)-cage (c1, . . . , ci−1, ci+1, . . . , cm).

To explain the meaning of conditions 1 and 2 collapse [v1, . . . , vm] into
a point. Identify this point with the North pole and v0 with the South pole
of the ball Dm. Then m edges [v0, vi] become m meridians on the sphere
bounding this ball. We can view m-cages as maps from this collection of
m meridians into Mn. The meaning of conditions 1 and 2 is that one can
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regard a coherent N -filling of a m cage as an extension of this map to a map
of the whole m-ball. This extension must depend continuously on the m-
cage. The meaning of the coherence condition is that extensions in different
dimensions are compatible.

Proposition 2.3 Let L, L̄ be positive real numbers such that L̄ ≥ L, and N
a positive integer. Let x, y, z be any three points of Mn such that the distance
between any two of them does not exceed L. Assume that there exists exactly
one geodesic between x and y of length ≤ L̄+(2N−3)L. (If x = y, then this
geodesic is the constant geodesic.) Then there exists a coherent N -filling of
m-cages based at x, z from CL,L̄

x,z,m.

Proof. We present a proof by induction in N . Its base corresponds to the
case N = 1. In this case φ1(c) = c. (Recall that each 1-cage is, by definition,
a path in Mn, i.e. a continuous map of σ1 = [0, 1] into Mn.) The proof of
the induction step is based on the following lemma:

Lemma 2.4 Let L̄, L be positive numbers. Assume that x, y, z are three
points in Mn such that all distances between them do not exceed L. Assume
that there exists only one geodesic between x and y of length ≤ max{L̄, L}+
L. Then any two paths γ1, γ2 starting at x and ending at z such that the
length of γ1 is ≤ L̄ and the length of γ2 is ≤ L can be connected by a path
homotopy that passes only through paths of length ≤ L̄ + 2L. This path
homotopy depends continuously on γ1 and γ2.

Proof. Let σ be the unique shortest geodesic from x to y , τ be one
of the shortest geodesics from z to y (see Fig. 1). Every path from x

to y of length ≤ 2L or ≤ L̄ + L can be connected to σ by a length non-
increasing homotopy. (Otherwise, there will be a second geodesic of length
≤ max{L̄, L}+L.) Moreover, we can choose a specific length non-increasing
homotopy, e.g. the Birkhoff curve-shortening process with fixed endpoints.
(See [C] for a detailed description of the Birkhoff curve-shortening process.)
This homotopy continuously depends on the initial path. In particular, this
homotopy can be used to deform γi ∗ τ to σ, (i = 1, 2), as well as to deform
σ back to γi ∗ τ .

Let τ−1 denote the path τ traversed in the opposite direction. One
can construct the desired path homotopy from γ1 to γ2 as follows: γ1 −→
γ1∗τ∗τ

−1 −→ σ∗τ−1 −→ γ2∗τ∗τ
−1 −→ γ2. Here arrows denote homotopies.

Note that all homotopies depend continuously on γ1 and γ2, and that for



4

τ

γ 1 γ 2

x

y

z

σ

Figure 1:

each of these homotopies the length of paths during the homotopy does not
exceed the maximum of lengths of paths at its begining and its end. 2

Now assume we have constructed the maps φ1, . . . , φm−1. We will next
construct φm. Let c = (c1, c2, . . . , cm) be an m-net. We need to map
σm = [s0, . . . , sm] to Mn. Because of the coherence condition a map ψm(c)
defined as the restriction of φm to ∂σm into Mn is already prescribed. By
virtue of the induction assumption ψm is a continuous function of c. We
need only to contract the (map of the) sphere ψm(c) to a point so that
the contracting homotopy depends continuously on c. To achieve this goal
note that according to Lemma 2.4 there exists a path homotopy between
c1 and c2 that passes through paths ct, t ∈ [1, 2], of length ≤ L̃ = L̄ + 2L
only. (Here we use the fact that (2m − 3)L ≥ L for every m ≥ 2. So,
the assumption of Lemma 2.4 about the non-existence of a second short
geodesic between x and y follows from a similar assumption in Proposition
2.3.) Consider a 1-parametric family of m-cages c(t) = (ct, c2, . . . , cm). So,

c(1) = c and c(2) = (c2, c2, c3, . . . , cm). Note that c(t) ∈ CL,L̃
x,y,m for every t.

By virtue of the induction assumption there exists a coherent filling of all

(m − 1)-subcages of c(t) obtained by removal of one of m strands c
(t)
i , and

for every t the resulting m maps of (m − 1)-dimensional simplices can be
“glued” to each other into a map ψm(c(t)) : ∂σm −→ Mn. Of course, it
is important here that L̃ + (2(m − 1) − 3)L = L̄ + (2m − 3)L, and so the
required assumption about the non-existence of a second geodesic between x
and y of length ≤ L̃+(2(m−1)−3)L holds. Thus, one obtains a homotopy
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ψm(c(t)) between ψm(c) and ψm(c(2)).
It remains to show that ψm(c(2)) is canonically and, therefore, contin-

uously contractible. (Here we are concerned about the continuity of the
contracting homotopy as a function of c.) Note that the boundary of σm

consists of (m + 1) simplices of dimension (m − 1). The maps φm−1 and,
thereby, ψm map two of these faces, namely, faces corresponding to two
copies of the (m − 1)-cage (c2, c3, . . . , cm) in an identical way. Together
these two cells form a “folded” map of Sm−1 to Mn that factors through the
projection of Sm−1 to the discDm−1. This map is obviously canonically con-
tractible. In order to construct a homotopy of ψm(c(2)) to this “folded” map
we need to “eliminate” the remaining (m− 1) maps of (m− 1)-dimensional
faces of σm. But one of these maps is constant, and the remaining (m− 2)
maps correspond to (m − 1)-cages of the form (c2, c2, . . .). Therefore each
of these maps is similarly ”folded” and can be connected by a canonical
homotopy (over its image) to a map of the corresponding face which is a
composition of the projection of the considered face to one of its codimen-
sion one faces and φm−2((c2, c3, . . . , ci−1, ci+1, . . . , cm)) for an appropriate i.
These homotopies eliminate the remaining m− 1 faces, as desired. 2

3 Filling of (m, ε)−umbrellas.

Let σm−1 = [s1, . . . , sm] denote the standard (m − 1)-dimensional simplex
such that the lenghs of all of its edges are equal to 1. Let s∗ denote the
center of σm−1.

Definition 3.1 An (m, r)−umbrella based at x, y consists of a singular (m−
1)-simplex ρ : σm−1 −→Mn, a point x ∈Mn and m paths in Mn connecting
x with images of the vertices of σm−1 under ρ so that y = ρ(s∗), the image
of ρ is contained in a metric ball of radius r in Mn centered at y, and the
length of the image of every straight line segment in σm−1 under ρ is less
than r.

This notion generalizes the notion of m-cages that can be considered
as (m, 0)−umbrellas (with a constant ρ). The goal of this section is to
generalize the notion of coherent filling for (m, r)−umbrellas and to extend
Theorem 1.1 to (m, ε)−umbrellas for small positive ε. Denote the space
of all (m, r)−umbrellas based at x, y by Um,r,x,y and its subspace formed
by all umbrellas where the length of the paths connecting x with the first
vertex of ρ does not exceed L̄, and the lengths of all paths connecting x
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Figure 2: (m, r)−umbrella

with the remaining m− 1 vertices of the singular simplex ρ do not exceed L
by UL,L̄

m,r,x,y. Each umbrella u can be represented as (c1, . . . , cm, ρ), where ci
are continuous paths from x to the vertices of the singular simplex ρ. It is
obvious that 1-umbrellas based at x, y are merely continuous paths starting
at x and ending at y.

Definition 3.2 Let N be a positive integer and L, L̄ positive real numbers.
A coherent N -filling of (m, r)−umbrellas based at x, y from UL,L̄

m,r,x,y is a

family of continuous maps φm : UL,L̄
m,r,x,y −→ C(σm,Mn) for m = 1, 2, . . . , N

such that for every (m, r)−umbrella u = (c1, c2, . . . , cm, ρ) ∈ UL,L̄
m,r,x,y the

following conditions hold:
1) The restriction of φm(u) to the (m− 1)-dimensional face [s1, s2, . . . , sm]
coincides with ρ;

2) The restrictions of φm(u) to 1-dimensional simplices [s0si] coincide with
ci for i = 1, 2 . . . ,m. In particular, φ1(u) = u for all 1-umbrellas u;
3) (Coherence) For every i = 1, 2, . . . ,m the restriction of φm(u) to (m−1)-
dimensional simplex [s0, s1, . . . , si−1, si+1, . . . , sm] coinsides with φm−1(ui),
where ui = (c1, c2, . . . , ci−1, ci+1, . . . , cm, ρi), and ρi is the restriction of ρ
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to the (m − 2)-dimensional face of the standard simplex σm−1 obtained by
exclusion of the ith vertex.

The notion of (m, ε)-umbrellas can be regarded as a generalization of
the notion of m-cages, where one of the endpoints is being “enlarged” into
a small simplex. (If this simplex degenerates into a point, the umbrella
becomes a cage.) The next proposition asserts that there exists a general-
ization of the process of filling of cages described in the proof of Proposition
2.3 to (m, ε)-umbrellas for small ε. The idea of the proof of this generaliza-
tion is very simple: One can just shrink the small simplex ρ in the definition
of umbrellas over itself to a point, thus, obtaining a cage, which then can
be filled as in the proof of Proposition 2.3.

Proposition 3.3 Let L, L̄ be positive numbers such that L̄ ≥ L. Let x, y, z
be any three points in a closed Riemannian manifold Mn such that the dis-
tance between any two of these three points does not exceed L. Let N > 1 be
an integer. Then for every 0 < ε < injradMn

2 , where injradMn is the injec-
tivity radius of Mn the following assertion holds: Providing there exists ex-
actly one geodesic between x and y of length ≤ L̄+(2N−3)L+(2N−2)ε, there
exists a coherent N -filling of (m, ε)−umbrellas based at x, z from UL,L̄

m,ε,x,z.

Proof. The proof is inductive in N . It follows the same pattern as the proof
of Proposition 2.3. To prove the base of induction we define φ1(u) = u for
every 1-umbrella u. Assume that the theorem holds for N = m−1, (m > 1).
To prove the theorem for N = m note that conditions 1 and 3 imply that we
have no choice in construction of ψm(u) = φm(u)|∂σm : One of (m+ 1) faces
of σm of dimension (m− 1) must be mapped using the mapping ρ, whereas
the remaining m faces should be mapped using φm−1(ui). Using a part of
the induction assumption we can conclude that ψm is a continuous function
of u.

It remains only to contract ψm(u) by a homotopy that continuously
depends on u. The idea is to eliminate the simplex ρ by contracting it over
its image and then to proceed as in the proof of Proposition 2.3.

Recall that s∗ denotes the center of σm−1. Fix a contraction ht of

σm−1 = [s1, s2, . . . , sm] to {s∗}, (h0 is the identity map, h1(σ
m−1) = {s∗}),

such that all points of σm−1 move to s∗ along straight lines with a con-
stant speed. This will provide us with a homotopy of umbrellas: If
u = (c1, . . . , cm, ρ), then Ht(u) is defined as (c1t, . . . , cmt, ρ ◦ ht), where cit
is the join of ci with ρ([siht(si)]) for every i. If u is an (m, ε)−umbrella,
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the length of cit does not exceed the sum of the length of ci and ε. For
every t ∈ [0, 1] we can consider ψm(Ht(u))). The composition ψm ◦Ht will
constitute the first stage in a homotopy contracting ψm(u).

It remains to contract ψm(H1(u)). Note that H1(u) looks like an m-cage
since its (m−1)-dimensional simplex is constant. Therefore we can contract
the resulting (m − 1)-dimensional sphere repeating the corresponding step
in the proof of Proposition 2.3 almost verbatim.

Namely, we use Lemma 2.4 to construct a path homotopy c1t, (t ∈ [1, 2]),
between c11 = h1(c1) and c21 = h1(c2) such that it passes only through paths
of length ≤ L̄+2L+3ε. Let ut = (ct, c21, . . . , cm1, ρ ◦h1). The next stage of
our homotopy contracting ψm(u) will consist of (m−1)-dimensional spheres
ψm(ut), t ∈ [1, 2].

Finally, note that u2 = (c21, c21, . . . , cm1, ρ ◦ h1), so that φm(u2) will be
a “folded” (m − 1)-dimensional sphere that can be canonically contracted
over itself exactly as this had been done in the proof of Proposition 2.3. 2

4 Proof of Theorem 1.1.

Proof. We are going to prove the theorem by contradiction. Assume that
there exists exactly one geodesic between x and y of length ≤ 2qd. Therefore
there exists δ > 0 such that there exists exactly one geodesic between x and
y of length ≤ 2qd+δ. (Indeed, otherwise there will be a sequence of geodesics
between x and y with lengths strictly decreasing to 2qd. The Ascoli-Arzela
theorem implies that a subsequence of this sequence converges to a geodesic
between x and y of length 2qd ≥ 2d > d. Therefore, this geodesic cannot be
minimizing and, therefore, is the second geodesic between x and y of length
≤ 2qd, which contradicts to our assumption.) Let ε = min{ δ

2n
,

inj(Mn)
2 },

where inj(Mn) denotes the injectivity radius of Mn. Let f : Sq −→Mn be
a non-contractible map of the q-dimensional sphere into Mn.

We are going to extend f to a map of the (q+ 1)-dimensional disc Dq+1

thereby reaching the desired contradiction. First, choose a fine smooth tri-
angulation of Sq such that that for every singular simplex τ : σi −→ Sq+1,
(i ∈ {1, . . . , q + 1}), the image under f ◦ τ of σi is contained in an ε-ball
centered at the image of the center of σi under f ◦ τ , and the length of the
image of every straight line segment in σi under f ◦ τ is less than ε.

Triangulate Dq+1 as the cone over the chosen triangulation of Sq+1.
Extend f to the 1-skeleton of the triangulation of Dq+1 by mapping the
center of Dq+1 to x, and every new 1-dimensional simplices into a minimal
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geodesic between the images of the endpoints of the 1-simplex. (Here one
can choose any minimal geodesic, if there is more than one.)

We are going to continue the extension process inductively. Assume that
we have already extended f to the i-skeleton of the triangulation of Dq+1.
In order to extend it to the (i+ 1)-skeleton observe that every new (i+ 1)-
dimensional simplex is a cone over a i-dimensional simplex τ of the chosen
triangulation of Sq. Consider a (i+1, ε)−umbrella based at x and the image
of the center of τ under f , such that ρ = f ◦ τ . Take L̄ = L = d. Apply
Proposition 3.3 to fill this umbrella. The coherence condition implies that
the resulting map of the (i + 1)-dimensional simplex of the triangulation
of Dq+1 extends maps of its faces constructed on the previous steps of the
induction.

Once f is extended to the (q+1)-skeleton of Dq+1, the extension process
becomes complete, and we obtain the desired contradiction. 2

5 Concluding remarks.

In [NR1] we made the following conjecture:

Conjecture 5.1 There exists a function f(n, k) such that for every positive
integer k, every closed Riemannian manifold Mn and every pair of points
x, y ∈ Mn there exist k distinct geodesics between x and y in Mn of length
≤ f(n, k)d, where d denotes the diameter of Mn.

In fact, we made even a stronger conjecture that there exist k distinct
geodesics of length ≤ kd. This stronger conjecture holds for round spheres
and for all closed Riemannian manifolds with infinite torsion-free fundamen-
tal groups. Yet, F. Balacheff, C. Croke and M. Katz recently constructed
Riemannian metrics on S2 arbitrarily close to round metrics such that the
length of the shortest geodesic loop at every point is strictly greater than
2d ([BCK]). Thus, this stronger conjecture is not true even when n = k = 2
and x = y.

In the present paper we proved our conjecture for k = 2 for an arbitrary
Mn and arbitrary x, y ∈ Mn. Thus, we demonstrated that one can take
f(n, 2) = 2n. Our paper [NR2] contains another result in this direction:
If n = 2 and Mn is diffeomorphic to S2, then for every k and every pair
of points x, y in the Riemannian manifold there exist k distinct geodesics
between x and y of length ≤ (4k2 − 2k − 1)d. Therefore, one can take
f(2, k) = 4k2 − 2k − 1.
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Our most recent result in this direction establishes the conjecture for
all Riemannian manifolds homotopy equivalent to the product of S2 and an
arbitrary closed manifold. In this case for every pair of points x, y there
exist at least k distinct geodesics between x and y of length ≤ 20k!d (see
[NR3]).
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