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Abstract

Let Mn be a closed Riemannian manifold of diameter d. Our first
main result is that for every two (not necessarily distinct) points p, q ∈
Mn and every positive integer k there are at least k distinct geodesics
connecting p and q of length ≤ 4nk2d.

We demonstrate that all homotopy classes ofMn can be represented
by spheres swept-out by “short” loops unless the length functional
has “many” “deep” local minima of a “small” length on the space
ΩpqM

n of paths connecting p and q. For example, one of our results
implies that for every positive integer k there are two possibilities:
Either the length functional on ΩpqM

n has k distinct non-trivial local
minima with length ≤ 2kd and “depth” ≥ 2d; or for every m every
map of Sm into ΩpqM

n is homotopic to a map of Sm into the subspace

Ω
4(k+2)(m+1)d
pq Mn of ΩpqM

n that consists of all paths of length ≤ 4(k+
2)(m+ 1)d.

1 Main results.

One of the goals of this paper is to prove an effective version of a famous the-
orem published by J.P. Serre in 1951 ([Se]) that asserts that for every pair of
points on a closed Riemannian manifold there exist infinitely many distinct
geodesics connecting these points. Here and below two geodesics or geodesic
loops are regarded as distinct if they do not differ by a reparametrization.

In our paper [NR0] we have conjectured that there exists a function
f(k, n) such that for every positive integer k and every pair of points p, q
on a closed n-dimensional Riemannian manifold of diameter d there exist at
least k distinct geodesics connecting p and q of length ≤ f(k, n)d.
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In the present paper we prove this conjecture for f(k, n) = 4k2n. We
first prove it in the case of simply connected manifolds. The general case
will then easily follow.

The starting point will be a proof of Serre’s theorem by Albert Schwarz
([Sc]). In this paper Schwarz also demonstrates that the length of the kth
geodesic can be bounded above by C(Mn)k, where C(Mn) does not depend
on k but only on the Riemannian manifold Mn. (This estimate was later
improved by M. Gromov in section 1.4 of [Gr0] in the situation, when p
and q are not conjugate allong any geodesic. Gromov proved that in this
case the number of geodesics of length ≤ x connecting p and q is at least
the sum of Betti numbers bi(ΩpM

n) over i ranging from 1 to [c(Mn)x] for
an appropriate constant c(Mn). Although for some manifolds (e.g. Sn)
this still provides only a linear upper bound in k for the length of the kth
shortest geodesic between p and q, for “many” manifolds the sum of the
Betti numbers of the loop space grows exponentially in x, and one obtains
a logarithmic upper bound in k for the length of the kth shortest geodesic.)

Here is a somewhat modernized sketch of the proof of Serre’s theorem
given by A.Schwarz, where we make references to the rational homotopy
theory (that did not exist when this proof was invented). Let us consider the
space ΩpM

n of loops based at p on a closed simply-connected Riemannian
manifold Mn. One would like to show that the sum of its Betti numbers
is infinite. Then the existence of infinitely many geodesic loops based at p
would follow from a standard Morse-theoretic argument.

First, note that there exists a non-trivial even-dimensional real coho-
mology class of the loop space ΩpM

n. To prove its existence observe that
there exist a non-zero rational homotopy class of Mn of an odd dimension
N . Otherwise, the rational homotopy theory would immediately imply that
the sum of Betti numbers of Mn in infinite, which is impossible. Therefore,
there exists a non-zero rational homotopy class of ΩpM

n of even dimension
N − 1. Now, the Cartan-Serre theorem (cf. [FHT], Theorem 16.10) implies
the existence of a non-trivial real cohomology class of ΩpM

n of dimension
N − 1.

Denote a non-trivial real cohomology class of ΩpM
n of the smallest posi-

tive dimension by u. The Cartan-Serre theorem implies that the cup powers
ui are non-trivial, and therefore the sum of Betti numbers of ΩpM

n is in-
finite. Applying Morse theory one obtains a critical point of the length
functional corresponding to each power of u. If the critical points are not
distinct, i.e. there is a critical point corresponding to ui and uj for i 6= j,
the standard Lyusternik-Schnirelman argument, (see [Kl]), implies that the
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critical level that corresponds to ui contains a set of critical points of di-
mension ≥ dim u > 0, implying the existence of infinitely many geodesic
loops based at p. (Schwarz also noticed that such a degenerate situation
cannot occur at all, if dim u ≥ n, as the dimension of the set of all geodesics
between p and q cannot exceed n− 1.)

Thus, it is enough to consider the situation when the critical points are
distinct. Note also that an easy argument involving the basics of rational
homotopy theory implies that the dimension of u is not greater than ≤ 2n−2.

Now recall that the Pontryagin product in the rational homology group
of the loop space is the product induced by the geometric product ΩpM

n×
ΩpM

n −→ ΩpM
n. (By the geometric product of two loops α and β we just

mean their join α∗β.) To estimate the length of the geodesics corresponding
to ui Schwarz defines a “dual”, (meaning 〈u, c〉 = 1), homology class c of
u of the same dimension. Then he proves that for every positive i the ith
Pontryagin power of c and a rational multiple of ui are dual. So, the critical
point corresponding to ui also corresponds to ci.

One can now see that in order to estimate lengths of geodesic loops based
at p it is enough to find a representative of c that is is contained in the set
of loops based at p of length ≤ L for some L. Then ci can be represented
by a chain contained in the set of loops of length ≤ iL.

To obtain an upper bound for geodesics connecting distinct points p, q ∈
Mn, one considers an explicit homotopy equivalence h : ΩpM

n −→ Ωp,qM
n

that is constructed by fixing a minimizing geodesic between p and q and
attaching it at the end of each loop based at p. Then h∗(u

i) can be repre-
sented by a chain contained in the set of paths of length ≤ iL+ d between p
and q, whence the length of the ith shortest geodesic between p and q does
not exceed iL+ d.

It is natural to make a conjecture that the length of a “kth-shortest”
geodesic between two arbitrary points p, q on an arbitrary closed Rieman-
nian manifold Mn should not exceed kd, where d is the diameter of Mn.
Indeed, this conjecture is obviously true for round spheres. On the other end
of the spectrum the conjecture is true for closed Riemannian manifolds with
torsion-free fundamental groups (Proposition 2 in [NR0]). Yet this conjec-
ture was disproved by a recent example of F. Balacheff, C. Croke, M. Katz
([BCK]). They have proved the existence of Zoll metrics on the 2-sphere
that are arbitrarily close to the round metric and for which the length of a
shortest periodic geodesic, (and thus, trivially, a shortest non-trivial geode-
sic loop based at any point) is greater than twice the diameter of the Zoll
sphere. As a shortest non-trivial geodesic loop is a second shortest geodesic
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from its base point to itself, this example shows that the conjecture is false
even if n = k = 2, the Riemannian manifold is convex and arbitrarily close
to a round 2-sphere, and p = q is an arbitrary point of the manifold.

Our proof of the upper bound that is quadratic in k works as follows.
We demonstrate that for every l there are two classes of Riemannian met-
rics on each closed manifolds: “nice” metrics, where for every m every m-
dimensional homotopy class of the manifold can be “swept-out” by “short”
loops (of length not exceeding ∼ lmd), and “bumpy” metrics, where the
length functional on every space of all paths connecting a pair of points has
l (“deep”) local minima of a controlled length. If a Riemannian metric is
very “nice”, then one immediately obtains an upper bound for the lengths of
N distinct geodesic loops linear in lmdN from the proof of Serre’s theorem
by Schwarz. If the metric is very “bumpy”, then one immediately obtains
many short geodesic loops from the definition of “bumpiness”.

The case when our estimate becomes quadratic in k, is the case of Rie-
mannian metrics that are neither “bumpy” enough, nor “nice” enough, so
that there are approximately l = k

2 “deep” local minima of the length func-

tional on ΩpM
n with lengths ≤ 2ld. These k

2 local minima could prevent
us from sweeping-out the cycle of interest by loops of length smaller than
c(n)kd (for an appropriate c(n)). As the result the bound for the length
of the longest of remaining k

2 geodesic loops that follows from the proof of
J.-P. Serre’s becomes quadratic in k.

Although we do not have any actual examples of families of Riemannian
metrics demonstrating that the quadratic dependence of our estimate on
k is optimal, we believe that they exist - at least in dimensions > 3. So,
we think that, in general, there is no upper bound for the length of the
k shortest geodesic loop based at a prescribed point of the form f(k, n)d,
where f grows slower than a quadratic function of k. However, in [NR4] we
proved that, if n = 2, then there exists a linear in k upper bound for the
length of the kth shortest geodesic loops based at an arbitrary point. (If
Mn is diffeomorphic to S2, then our upper bound for the length of the kth
shortest non-trivial geodesic loop is 20kd. Our proof is heavily based on the
two-dimensionality of the manifold.)

Note also that even in the case of a 2-sphere one cannot hope to find a
sweep-out of the cycle c from Schwarz’s proof of Serre’s theorem by “short”
loops due to a counterexample of S. Frankel and M. Katz ([FK]), who found a
family of Riemannian metrics on the 2-disc with uniformly bounded diameter
and the length of the boundary but such that for every fixed value of τ it is
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impossible to contract boundaries of each of these 2-discs via closed curves
of length ≤ τ . Taking the doubles of these 2-discs one obtains a family of
Riemannian metrics on S2 with uniformly bounded diameter that do not
admit sweep-outs into loops with uniformly bounded lengths. This fact has
recently been proven by Y. Liokumovich ([Li]).

We will, however, demonstrate that sweep-outs by short loops can only
be obstructed by the existence of many short geodesic loops at each point
of a manifold.

To state the first of our main results denote the space of loops of length
≤ L based at p on Mn by ΩL

pM
n.

Theorem 1.1 Let Mn be a closed Riemannian manifold of dimension n
and diameter d, p a point of Mn, k a positive integer number, and ν an
aritrarily small positive real numer. Then either:

1) There exist non-trivial geodesic loops based at p with lengths in every
interval (2(i − 1)d, 2id] for i ∈ {1, 2, ..., k}. Moreover these geodesic loops
are local minima of the length functional on ΩpM

n;

or

2) For every positive integer m every map f : Sm −→ ΩpM
n is homotopic

to a map f̃ : Sm −→ Ω
((4k+2)m+(2k−3))d+ν
p Mn. Furthermore, every map

f : (Dm, ∂Dm) −→ (ΩpM
n,Ω

((4k+2)m+(2k−3))d
p Mn) is homotopic to a map

f̃ : (Dm, ∂Dm) −→ Ω
((4k+2)m+(2k−3))d+ν
p Mn relative to ∂Dm. In addition, if

for some L the image of f is contained in ΩL
pM

n, then the homotopy between

f and f̃ can be chosen so that its image is contained in Ω
L+(4k+2)md+ν
p Mn.

Also, in this case for every L every map f from S0 to ΩL
pM

n is homotopic

to a map f̃ from S0 to Ω
(2k−1)d
p Mn by a homotopy such that its image is

contained in ΩL+2d
p Mn.

If the Riemannian manifold Mn is analytic, then for each S there exists
ν(S) > 0 such that ΩS

pM
n is the deformation retract of ΩS+ν

p Mn. (Indeed,
a standard argument, where one first replaces the space of all loops by a
finite-dimensional space of piecewise geogesic loops and then uses the sub-
analiticity of the distance function implies that there is no infinite sequence
of geodesic loops based at p with lengths that strictly decrease and tend to
S.) Therefore, in the analytic case one can drop ν in the text of this theo-
rem. Moreover, if there is no positive ν such that ΩS

pM
n is the deformation

retract of ΩS+ν
p Mn , then there is an infinite sequence of distinct geodesic

loops based at p such that the sequence of their lengths converges to S.



6

From now on we would like to adopt the following convention. Instead of
saying that for some S and every positive ν there exists a map into ΩS+ν

p Mn

with some desirable for us properties, we will say that there exists a map

into Ω
S+o(1)
p Mn with the desirable properties.

The previous theorem almost immediately leads to a quadratic bound
for the lengths of geodesic loops based at p. Indeed, suppose that for some
s < k there are s − 1 non-trivial geodesic loops based at p with lengths in
the intervals (0, 2d], (2d, 4d], ..., (2(s − 2)d, 2(s − 1)d], but no geodesic loops
based at p of length in the interval (2(s−1)d, 2sd]. Then there either exists a
representation of an even-dimensional cycle c in the loop space that appears
in the proof of Serre’s theorem given by A. Schwarz by a spherical cycle
that can be formed only by loops of length at most ((8n − 6)s+ (4n− 7))d
based at p, or for each ν > 0 there exists infinitely many geodesic loops
based at p of length ≤ ((8n − 6)s + (4n − 7))d + ν. In the first case we
obtain at least s geodesic loops based at p of length ≤ 2(s − 1)d (including
the trivial loop), and either s+ 1 loops of length ≤ ((8n− 6)s+ (4n− 7))d,
s + 2 loops of length ≤ 2((8n − 6)s + (4n − 7))d,..., s + i loops of length
≤ i((8n−6)s+(4n−7))d,..., k loops of length ≤ (k−s)((8n−6)s+(4n−7))d.
This expression attains its maximum at s = ⌊k2⌋. The maximal value is
((2n − 3

2)k2 + (2n − 7
2)k − (1 − (−1)k))d. Denote this value by L(n, k, d).

Note that none of the cycles ci from the proof of Serre’s theorem by A.
Schwarz can “hang” at a local minimum of the length functional on ΩpM

n

or at the same critical point as cj for some j 6= i, unless there is a critical
level of a dimension ≥ dim c but ≤ n − 1 at this critical level. (In this last
case one of the critical points will be “lost” due to the coincidence, but we
will immediately get infinitely many distict geodesics of the same length,
which results in a much better upper bound for the length.) Therefore
wilthout any loss of generality we can assume that these geodesic loops are
distinct. Thus, we are guaranteed to have at least k distinct geodesic loops
based at a point p of length L(n, k, d). (including the trivial loop). In the
second case we will obtain even a better estimate for the lengths of the first
k geodesic loops based at p providing that k ≥ 3. Yet, if k = 2, then it
is known that there exists two distinct geodesic loops based at p of length
≤ 2nd ([R]). Thus, one obtains the following theorem in the case when Mn

is simply-connected, and p = q:

Theorem 1.2 Let Mn be a closed Riemannian n-dimensional manifold with
diameter d. Then for every point p ∈ Mn there exist at least k distinct
geodesic loops of length at most L(n, k, d) = ((2n − 1.5)k2 + (2n − 3.5)k −
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(1 − (−1)k))d < 2n(k2 + k)d. More generally, for each pair of points p, q ∈
Mn there exist at least k geodesics starting at p and ending at q of length
L(n, k, d) + (2n − 1.5)kd(p, q), if k is even, and L(n, k, d) + (2n − 1.5)(k +
1)d(p, q), if k is odd. (Here d(p, q) denotes the distance between p and q in
Mn.) In both cases this upper bound does not exceed ((2n − 1.5)k2 + (4n −
5)k + (2n − 3.5))d < 2n(k + 1)2d.

Remark. Denote the smallest odd number l such that there exists a non-
trivial rational homotopy class ofMn by l. An elementary rational homotopy
theory argument (cf. [FHT]) implies that l ≤ 2n− 1. Our proof of Theorem
1.2 implies upper bounds L( l+1

2 , k, d) = ((l−0.5)k2+(l−2.5)k−(1−(−1)k))d
for the lengths of k distinct geodesic loops based at an arbitrary point p of
Mn. Similarly for arbitrary p, q ∈Mn and arbitrary k there exist at least k
distinct geodesics of length not exceeding L( l+1

2 , k, d)+ (l−0.5)kd(p, q), if k

is even, and L( l+1
2 , k, d)+ (l−0.5)(k+1)d(p, q), if k is odd. These estimates

do not exceed ((l − 0.5)k2 + (2l − 3)k + (l − 2.5))d < l(k + 1)2d. Note that
in [NR3] we proved a version of Theorem 1.2 in the case l = 3, but with a
worse upper bound that depended factorially on k.

Note also that 2n(k + 1)2d < 4nk2d for all k ≥ 3, and that we have
a better bound 2nd(< 4nk2d), when k = 2, proven in [NR1], Therefore,
if desired, one can replace the upper bounds for the lengths of k shortest
geodesics between p and q in Mn provided by Theorem 1.2 by a simpler
looking expression 4nk2d.

To prove Theorem 1.2 in the case when Mn is simply-connected, but
p 6= q, we prove a generalization of Theorem 1.1, where ΩpM

n is replaced
by the space Ωp,qM

n (Theorem 5.3). It immediately yields Theorem 1.2
in the case when p 6= q, exactly as Theorem 1.1 implied the case p = q.

To obtain Theorem 1.2 in the nonsimply-connected case we will con-
sider the universal covering of Mn constructed from the space of all paths
starting at p via the standard identification and endowed with the pull back
Riemannian metric. According to the standard argument that can be found
in many textbooks on Riemannian geometry one can choose the fundamen-
tal domains in the universal covering so that their interiors are all isometric
to the complement of the cut locus of the base point p, and, therefore, their
diameter does not exceed 2d. If the cardinality of π1(M

n) is infinite or finite
but ≥ k, we will connect the base point p̃ in the universal covering M̃n of Mn

with k closest liftings of q by shortest geodesics. The projections of these
geodesics to Mn will have lengths ≤ (2k − 1)d, and the theorem follows.
If the cardinality of π1(M

n) is less than k, then we observe that M̃n is a
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simply-connected manifold of diameter d̃ ≤ 2|π1(M
n)|d (as the diameter of

each fundamental domain does not exceed 2d). Let ks denote the smallest
integer number which is not less than k

|π1(Mn)| . We are going to connect p̃
with each lifting of q by ks or ks−1 distinct geodesics, so as to obtain the re-
quired number k of distinct geodesics between p and q after projecting down
to Mn. (Obviously, if we need to connect p̃ with some points in the lifting of
q to M̃n with ks geodesics, and with some other points in the lifting of q with
ks−1 geodesics, we choose points that we connect with p̃ by ks geodesics to
be the points that are the closest to p̃.) If one knows how to prove Theorem
1.2 in the simply-connected case, then one can get a slightly worse upper
bound (but still with the leading term 2

|π1(Mn)|(2n−1.5)k2d ≤ (2n−1.5)k2d)

in the nonsimply-connected case. (Indeed, asymptotically k2 will be divided
by |π1(M

n)|2 and multiplied by 2|π1(M
n)|.) To prove a better upper bound

we will need the following:

Theorem 1.3 Let M be a closed Riemannian manifold of diameter d with a
finite fundamental group of cardinality C. The the diameter of the universal
covering space M̃ of M endowed with the pull back Riemannian metric does
not exceed Cd.

It is hard to believe that Theorem 1.3 is not known, yet we were not
able to find any mention of it in the literature. Therefore we will prove
it in Section 6 of this paper. (Remark: After we have completed the first
draft of this paper we mentioned Theorem 1.3 to Anton Petrunin. Anton
observed that our proof is valid not only for universal coverings but for all
C-fold regular coverings. He asked if this theorem can be generalized for
(not necessarily regular) finite coverings and posted this question at Math-
overflow. Soon afterwards Sergei Ivanov proved that this is, indeed, the
case. His proof is available at /mathoverflow.net/questions/7732/diameter-
of-m-fold-cover . Anton also conjectured that the factor C in the upper
bound Cd provided by Theorem 1.3 for universal coverings is, possibly,
quite far from the optimal. A discussion of this conjecture can be found
at /mathoverflow.net/questions/8534/diameter-of-universal-cover .) In sec-
tion 6 we will also present a proof the following generalization of Theorem
1.3:

Theorem 1.4 If the fundamental group of a closed Riemannian manifold
M of diameter d is either infinite or finite of order ≥ k, then for every pair
of points p, q ∈ M and every k there exist at least k geodesics connecting p
and q of length ≤ kd that represent different path homotopy classes.
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We can combine Theorem 1.3 with the described simple procedure that
allows one to reduce Theorem 1.2 for a nonsimply-connected Mn to Theo-
rem 1.2 for its universal covering M̃n. As the result, we obtain upper bounds
for the nonsimply-connected case that are not worse than the estimates in
the simply-connected case. As it was already mentioned, the verification
mostly involves checking of what happens for small values of k. We are
not going to present the details of the straightforward and elementary but
tedious calculations here.

The proof of Theorem 1.1 is based on a new curve shortening process.
This process will be introduced in the proof of the following theorem at
the beginning of section 3. Before stating this theorem recall that a path
homotopy between two curves β and γ is a homotopy that preserves the
end points. In other words, it is a family of curves ατ (t) that continuously
depends on τ ∈ [0, 1] such that α0 = β, α1 = γ, and such that for every
τ ∈ [0, 1] ατ (0) = α0(0) and ατ (1) = α0(1).

Theorem 1.5 Let Mn be a closed Riemannian manifold of diameter d, and
p, q be two arbitrary points of Mn. Let γ(t) be a curve of length L connecting
points p and q. Assume that there exists an interval (l, l + 2d], such that
there are no geodesic loops based at p on Mn of length in this interval that
provide a local minimum of the length functional on ΩpM

n. Then there
exists a curve γ̃(t) of length ≤ l+d connecting p and q and a path homotopy
between γ and γ̃ such that the lengths of all curves in this path homotopy do
not exceed L+ 2d.

Observe that this theorem immediately implies Theorem 1.1 for m = 0.
Indeed, S0 consists of two points, so, if m = 0, then f is just a set of two
loops. In the absence of k short geodesic loops providing local minima for
the length functional each of these two loops can be shortened as in Theorem
1.5.

The statement of Theorem 1.1 can be interpreted as a parametric version
of Theorem 1.5. Yet note that the curve-shortening process that will be
used to prove Theorem 1.5 does not depend on γ continuously, and there is
no obvious way to obtain a desired parametric version. The best that one
can do is to choose a sufficiently dense finite set of loops Li in f(Sm) and
to shorten them as in Theorem 1.5. Indeed, we will do that in the course
of proving Theorem 1.1. But this will leave us with all the other loops
in between that still remain long. The further idea can be very vaguely
described as follows. In the process of shortening loops Li we will create
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continuous 1-dimensional families of paths of controlled length (“rails”) that
connect p with all points on Li. The image of g(Sm) in Mn will be the union
of the image of f(Sm) in Mn and the constructed “rails”. (Recall that each
point of f(Sm) is a loop in Mn; here we are talking about the union of all
these loops.) The image of f(Sm) in Mn will be cut into very short arcs
starting and ending on curves Li. These short arcs form an m-dimensional
family A. Each of these arcs from family A will be included into a loop from
the family g(Sm). Every loop from g(Sm) will contain only a controlled
number of arcs from A, so their total contribution to the length of the loop
is negligibly small. Besides arcs from A each loop from g(Sm) will also
contain a controlled number of “rails” and arcs of the curves Li, so that its
total length will be under control.

Now we would like to give a brief review of some existing results related
to Theorem 1.2. The first curvature-free upper bounds for the length of a
shortest non-trivial geodesic loop on a closed Riemannian manifold in terms
of either diameter or the volume of the manifold were proven by S. Sabourau
in [S]. However, Sabourau considered the situation when the minimization of
the length of the geodesic loop was performed also over all possible choices
of the base point of the loop. R. Rotman ([R]) demonstrated that for every
point p on every closed n-dimensional manifold of diameter d the length
of the shortest geodesic loop based at p does not exceed 2nd. (It is easy
to see that if the base point is prescribed, then there is no upper bound
for the length of the shortest geodesic loop in terms of the volume of the
manifold, even if the manifold is diffeomorphic to the 2-sphere.) Note also
that a shortest non-trivial geodesic loop based at p is the second shortest
geodesic starting and ending at p. In [NR1] it was proven that the same
estimate 2nd holds for the length of the second shortest geodesic between two
arbitrary points p and q of an arbitrary n-dimensional Riemannian manifold
of diameter d. This is the best known upper bound in the case when k = 2
(for every simply-connected manifold Mn).

If n = 2, one can also produce better estimates than the estimates pro-
vided by Theorem 1.2. In [NR2] we proved that if n = 2 and Mn is
diffeomorphic to the 2-sphere, then two arbitrary points can be connected
by at least k distinct geodesics of length ≤ (4k2 −2k−1)d. (In the same pa-
per we have also shown that this estimate can be improved to 4k2 − 6k + 2
if these points coincide). Making an almost obvious observation that the
cycles corresponding to powers of u from the proof of A. Schwarz do not
“hang” on local minima of the length functional and, therefore, geodesics
corresponding to cup powers of u are different from the geodesics that are
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local minima of the length functional, we can immediately improve these
upper bounds for k > 2 to (k2 +3k+3)d in the case of geodesics connecting
two distinct points of M2 and (k2+k)d in the case of geodesic loops based at
any prescribed points of M2. One of these k geodesic loops can be trivial.
Also, one has linear in k bounds 20(k − 1)d for the lengths of k shortest
geodesic loops based at a prescribed point of M2 ([NR4]), and (36k − 35)d
for the lengths of k shortest geodesics connecting two points p, q ∈ M2,
where p 6= q ([NR5]). Obviously, these linear upper bounds are better for
all sufficiently large values of k. The simple argument used above to reduce
Theorem 1.2 in the non-simply conected case to its simply-connected ver-
sion (for the univeral covering) can be combined with these estimates for S2

to deduce the same upper bounds for the lengths of k shortest geodesic loops
(or, more generally, geodesic arcs connecting a prescribed pair of points) in
the case when M2 is diffeomorphic to RP 2. Note that Theorem 1.4 yields
even better upper bounds (namely, kd) when a closed two-dimensional Rie-
mannian manifold M2 is not diffeomorphic to S2 or RP 2. Thus, Theorem
1.2 should only be used in the case when n, k ≥ 3 (and |π1(M

n)| is finite
and “small”).

In section 7 we will discuss generalizations of Theorems 1.1, 1.5 and 5.3
that involve the notion of the depth of local minima of the length functional.
The formal definition of the depth will be given in section 7. Informally, the
depth of a non-trivial local minimum γ of the length functional on ΩpM

n

is the difference between the maximal length of a loop during an “optimal”
path homotopy contracting γ and the length of γ.

First, we observe that Theorem 1.5 remains valid if instead of assuming
that there are no local minima of the length functional with length in the
interval (l, l + 2d] we choose any positive S and assume that there are no
local minima of depth ≥ S with length in this interval. As a corollary, one
can strengthen Theorem 1.1 as well as Theorem 5.3 by requiring in the first
case that the geodesic loops with lengths in the intervals (2(i− 1)d, 2id] are
not only local minima of the length functional, but local minima of depth
≥ S. The “price” is a corresponding increase of the lengths of the loops that
must appear in the second case that is proportional to S.

We finish section 7 by observing that for a specific sufficiently large value
of S the first case in Theorem 1.1 cannot occur already for k = 1, and the
generalized form of the second case holds unconditionally.

As the result, we obtain a different proof of a well-known theorem first
proven by M. Gromov (see section 1.4 in [Gr0] or ch. 7 in [Gr]) that as-
serts that for every simply-connected closed Riemannian manifold Mn there
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exists a constant C such that for every m the inclusion ΩCm
p Mn ⊂ ΩpM

n

induces surjective homomorphisms of homotopy groups in all dimensions up
to m. Our proof yields a good estimate for the constant C that seems to
be better than the value that one can extract from the proof by Gromov.
The comparison between our results and the results by M. Gromov is done
in the last section of the paper.

2 A simple lemma and its multidimensional gen-

eralization.

The proof of 1.5 uses the following known lemma. To state this lemma we
are going to introduce the following notation that we will be widely using
further below in this paper. Let τ(t) be a path in Mn. We are going to
denote the “same” path travelled in the opposite direction as τ̄ . If a is a
path from x to y, and b is a path from y to z, then we will denote by a ∗ b
the join of a and b, that is, the path from x to z that first follows a from x
to y, and then b from y to z. Observe that if e1, e2 are two paths from p to
q, then e1 ∗ ē2 is a loop based at p.

Lemma 2.1 Let e1, e2 be two paths starting at q1 and ending at q2 on a
complete Riemannian manifold Mn. Denote the length of ei, i = 1, 2, by li.

If the loop α0 = e1∗ē2 can be connected to a (possibly trivial) loop α = α1,
(see Fig. 1 (a)), by a path homotopy that passes via loops ατ , τ ∈ [0, 1],
of length ≤ l1 + l2, then there is a path homotopy hτ (t), τ ∈ [0, 1], such
that h0(t) = e1(t), h1(t) = α ∗ e2(t) and the length of the paths during this
homotopy is bounded above by l1 + 2l2.

Proof. For the proof see Fig. 1. Note that e1 is path homotopic to
e1 ∗ ē2 ∗ e2 along the curves of length ≤ l1 + 2l2 ; see Fig. 1 (b,c). (We
just insert longer and longer segments of ē2 travelled twice in the opposite
directions.) Now observe that as e1 ∗ ē2 is path homotopic to α via the
curves ατ of length ≤ l1 + l2, the path e1 ∗ ē2 ∗e2 is path homotopic to α∗e2
along the curves ατ ∗ e2 of length at most l1 + 2l2; see Fig. 1 (d,e). 2

Note that the above lemma has the following higher-dimensional gen-
eralization: Let f : Sm −→ ΩL

q1,q2M
n, i = 1, 2, m ≥ 1, be a continuous

map from the m-sphere into a space of (piecewise differentiable) paths on
a complete Riemannian manifold Mn between points q1, q2 ∈ Mn of length
at most L. Let L0 = mins∈Sm length(f(s)) and s0 ∈ Sm be such that
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q
1

q2

α τ

α τ * e2

e2

q
1

q2

α

α * e2

a b c d e f

Figure 1: Illustration of the proof of Lemma 2.1.

length(f(s0)) = L0. One can define a new map F : Sm −→ ΩL+L0
q1 Mn

by the formula F (s) = f(s) ∗ f̄(s0). Assume that there exists a homotopy
Ft : Sm −→ ΩL+L0

q1 Mn contracting F . (Here t ∈ [0, 1], F0 = F , and F1 is the
constant map to the trivial loop based at q1.) Then we have the following
simple lemma:

Lemma 2.2 There exists a homotopy ft : Sm −→ ΩL+2L0
q1q2 Mn, t ∈ [0, 1],

between f = f0 and the constant map f1 of Sm identically equal to f(s0).

Proof. First note that the main point of the lemma is that for every t, ft
takes values in the space of paths of length ≤ L+ 2L0 connecting q1 and q2.
The desired homotopy is constructed in two stages. During the first stage
we connect f with f 1

2

defined by the formula f 1

2

(s) = f(s) ∗ f̄(s0) ∗ f(s0) =

F (s) ∗ f(s0). At this stage we join f(s) with longer and longer segments of
f̄(s0) travelled twice with opposite orientations.

During the second stage we contract F using the homotopy Ft, t ∈ [0, 1]
leaving intact f(s0) at the end of each loop Ft(s) ∗ f(s0). 2

In the next section we will present a proof of Theorem 1.5.

3 Curve-shortening process in the absence of geo-

desic loops.

3.1. Proof of Theorem 1.5.
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l+ d+ δ

p q

Figure 2: Curve shortening process (i).

Proof of Theorem 1.5.

Assume that there are no geodesic loops based at p with the length in the
interval (l, l+2d]. Using a standard compactness argument we observe that
there exists a positive δ0 such that there are no geodesic loops based at p
with length in the interval (l, l+2d+δ0]. Obviously, one can choose the value
of δ0 to be arbitrarily small, if desired. Without any loss of generality we
can assume that the length L of the curve γ : [0, L] −→ Mn parametrized
by its arclength is greater than l + d. Let δ = δ0, if L ≥ l + d + δ0, and
δ = L− l− d, if δ ∈ (l+ d, l+ d+ δ0). Consider the segment γ|[0,l+d+δ] of γ,
which we will denote γ11(t), and the segment γ|[l+d+δ,L] denoted γ12(t) (see
fig. 2).

l+d+δ

the length of e     is at most d1

qp

Figure 3: Curve shortening process (ii).

Let us connect points p and γ(l + d + δ) by a minimal geodesic, e1 (of
length ≤ d), (see fig. 3). Then curves γ11 and e1 form a loop γ11 ∗ ē1 of
length ≤ l + 2d+ δ based at p.

Consider a (possibly trivial) shortest loop α1 that can be connected with
γ11∗ē1 by a length non-increasing path homotopy. (Its existence follows from
the Ascoli-Arzela theorem.) Obviously, α1 is a geodesic loop based at p that
provides a local minimum for the length functional on ΩpM

n. Therefore our
assumptions imply that the length of α1 is at most l.

By Lemma 2.1, γ11 is path homotopic to the curve α1 ∗ e1 = γ̃11 along
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the length of the loop is at most l

l+d+ δ
p q

Figure 4: Curve shortening process (iii).

p q
l+d+δ

Figure 5: Curve shortening process (iv).

the curves of length at most l + 3d + δ and, thus, the original curve γ is
homotopic to a new curve γ̃11 ∗γ12 along the curves of length at most L+2d,
(see Fig. 5).

Note that the length L1 of this new curve γ1 = γ̃11 ∗ γ12 is at most
L − δ. Assuming that L1 is still greater than l + d, we repeat the process
again: We parametrize γ1 by its arclength. Now, let γ21 = γ1|[0,l+d+δ] and
γ22 = γ1|[l+d+δ,L1]. (Here, as before, if L1 < l+ d+ δ, then we use L1 − l− d
as the new value of δ, but otherwise keep the old value of δ = δ0.)

Connect the points p and γ1(l + d + δ) by a minimal geodesic segment
e2, (see Fig. 6). Then γ21 and e2 form a geodesic loop γ21 ∗ ē2 based at p
of length at most l + 2d+ δ.

the length of e     is at most d2

l+d+δ
qp

Figure 6: Curve shortening process (v).

Again, we try to connect this loop with a shortest possible loop α2 by
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l+d+δ

the length of e     is at most d2

the length of the new loop is still at most l

p q

Figure 7: Curve shortening process (vi).

l+d+δ
p q

Figure 8: Curve shortening process (vii).

the length of this curve is at most l+d

p q

Figure 9: Curve shortening process (viii)
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means of a length non-increasing path homotopy. The existence of a mini-
mizer α2 follows from an easy compactness argument, and α2 is a geodesic
loop providing a local minimum of the length functional on ΩpM

n, (see Fig.
7). Therefore, the length of α2 is at most l.

Thus, γ21 is path-homotopic to γ̃21 = α2 ∗ σ2 along the curves of length
at most l + 3d + δ. It follows that γ1 is homotopic to γ2 = γ̃21 ∗ γ22 along
the curves of length at most L+ 2d, (see Fig. 8).

We will continue this process in the same manner. It is easy to see that
this process will terminate in a finite number of steps with a curve of length
≤ l + d, and that the number of steps will not exceed ⌊L−l−dδ0

⌋ + 1. 2

3.2. Proof of Theorem 1.5: an additional remark. Note that we
have proven a stronger statement. We have shown, assuming the hypothesis
of the theorem above, that for each path γ(t) connecting p and q there exists
an increasing but not necessary strongly increasing function τ(s) and a 1-
parameter family of curves Cγs of length ≤ l+3d+δ continuously depending
on a parameter s such that:

A. For every s, Cγs connects p with γ(τ(s)). In other words, Cγs (0) =
p, Cγs (1) = γ(τ(s)).

B. There exist two partitions: P γ = {0 = tγ0 < tγ1 < tγ2 < ... < tγkγ = 1} and
Qγ = {0 = sγ0 < sγ1 < ... < sγ2kγ = 1}, such that

(1) Cγs (1) = γ(tγi ) for s ∈ [sγ2i−1, s
γ
2i]. In particular, the endpoint of cγs

remains constant for s ∈ [sγ2i−1, s
γ
2i].

(2) For every s ∈ [sγ2i, s
γ
2i+1] C

γ
s (1) = γ(t) for some t ∈ [tγi , t

γ
i+1]. Moreover,

τ strictly increases on [s2i, s2i+1], and τ([s2i, s2i+1]) = [ti, ti+1].

(3) For all i the length of Cγ
sγ
2i

does not exceed l + d.

(4) The curve Cγ
sγ

2kγ
= Cγ1 is the final result of the application of the curve-

shortening process described in the proof of Theorem 1.5 to γ.

The curves Cγs are depicted on Fig. 6-9 as the curves connecting p with
a variable point that moves from p to q along γ. Note also that the partition
P γ can be chosen as fine as desired.

Further, notice that the constructed path homotopy Hγ between our
original path, γ, and Cγ1 can be described as follows: At each moment of
time t Hγ(t) is the path that first goes along Cγt , and then runs along γ from
Cγt (1) to γ(1). Below we will be calling curves Hγ(t) partial shortenings of
γ.

Our final observation is that when we apply the shortening procedure
from the proof of Theorem 1.5 to an initial segment of γ, γ[0,λ] for some
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λ ∈ [0, 1] we are going to obtain a subfamily of the 1-parametric family of
curves Cγ (up to the first of these curves that connects p with γ(λ)).

3.3. Case of m = 1 in Theorem 1.1. Beginning of the proof.
Next we will prove the following theorem, which together with Theorem
1.5 immediately implies Theorem 1.1 in the case of m = 1.

Theorem 3.1 Let Mn be a closed Riemannian manifold of diameter d, p
a point of Mn, and k a positive integer number. Assume that there exists a
positive integer j ≤ k such that the length of every geodesic loop that provides
a local minimum for the length functional on ΩpM

n is not in the interval
(2(j − 1)d, 2jd]. Consider a continuous map f : [0, 1] −→ ΩpM

n such that
the lengths of both f(0) and f(1) do not exceed 2(j − 1)d. Then f is path

homotopic to f̃ : [0, 1] −→ Ω
(6j−1)d+o(1)
p Mn ⊂ Ω

(6k−1)d+o(1)
p Mn. Moreover,

assume that for some L the image of f is contained in ΩL
pM

n. Then one

can choose a path homotopy between f and f̃ so that its image is contained

in Ω
L+(4j+2)d+o(1)
p Mn.

Proof. Without any loss of generality we can assume that f is Lipschitz. (If
not, we can make f Lipschitz by performing an arbitrarily small deforma-
tion.) Choose a partition of t0 = 0 < t1 < t2 < ... < tN = 1 of the interval
[0, 1], so that maximaxτ∈[0,1] length(f(t)|t∈[ti−1,ti](τ)) ≤ ε for a small ε that
will eventually approach 0, (see Fig. 10 which depicts a situation, when f(0)
and f(1) are both constant loops, but the general case is completely analo-
gous. Note that f(t)|t∈[ti, ti+1](τ) are the short “vertical” curves connecting
“horizontal” curves f(ti).)

Let us denote loops f(ti) by γi(r).We can use Theorem 1.5 to replace all
γi(r) of length greater than (2j − 1)d by the loops βi of length ≤ (2j − 1)d.
The loops that were originally shorter than (2j − 1)d will remain as they
were. Note that in this last case we will also have a family of indexed paths
C of controlled length connecting p with all points on the loop as at the end
of the proof of Theorem 1.2: namely, the initial segments of the loop.

We will now construct path homotopies between each pair βi−1, βi. These
homotopies will pass through loops of length ≤ (6j − 1)d + o(1). (Here
and below o(1) denotes terms that are bounded by a linear function of the
parameters of our shortening process, namely, δ0 (see the proof of Theorem
1.5) and ε that can be made arbitrarily small.)

Consider such a pair of consecutive curves σ = βi−1 and α = βi. Recall
that these curves were obtained from γi−1 and γi, respectively, as the final
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The distance between two consecutive curves is small.

Figure 10: Partition of the map f : S1 −→Mn into “small” intervals

result of the application of the curve shortening process. These two applica-
tions of the curve shortening process also result in two 1-parameter families
of curves Cσs , Cαs that have properties described after the proof of Theorem
1.5 (for l = (2j − 2)d).

Recall that these curves connect p with points on γi−1 and γi, that C
γi−1

1

coincides with σ, and that Cγi

1 coincides with α.

We will construct a path between σ and α in two steps. In the first step
we will consider a loop that is a join of σ and ᾱ, namely, σ ∗ ᾱ. We will
construct a homotopy that contracts this loop to a point via loops of length ≤
4jd+o(1) (when δ0+ε −→ 0). The second step will be merely an application
of Lemma 2.1. (On the second step the summand of 2(j−1)d+d = (2j−1)d
will be added to the previous upper bound 4jd+ o(1) for the length of loops
during the contracting homotopy.)

So, we need only to describe the first step to finish our construction,
namely, a homotopy that contracts σ ∗ ᾱ via loops of controlled lengths.
Note that γi−1 and γi are very close to each other, and are connected by
the continuous family of very short curves f(t)|t∈[ti−1,ti](τ), τ ∈ [0, 1]. We
will write the desired homotopy as a homotopy through loops of the form
C
γi−1
s1 ∗f(t)|t∈[ti−1,ti](τ)∗ C̄

γi
s2 . Note that in order for this curve to be defined

we must have C
γi−1
s1 (1) = f(ti−1)(τ) and Cγi

s2(1) = f(ti)(τ), or, equivalently,
τ1(s1) = τ2(s2) = τ . Here τ1(s) and τ2(s) denote the increasing functions
from [0, 1] to [0, 1] for the curves γi−1 and γi. For every z, the inverse image
τ−1
j (z) is either a point or a closed interval, and it is only an interval when
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z is a boundary point for one of the partitions P γi−1 or P γi . Without loss
of generality, we may assume that these partitions are disjoint, so that the
loops of the form C

γi−1
s1 ∗ f(t)|t∈[ti−1,ti](τ) ∗ C̄

γi
s2 form a 1-parametric family.

This family is the desired homotopy.

Furthermore, if τ1(s1) is not a boundary point of P γi−1 , then length of
C
γi−1
s1 ≤ 2(j − 1)d + d + δ0. Since P γi−1 and P γi are disjoint, if τ1(s1) =

τ = τ2(s2), then the length of C
γi−1
s1 does not exceed (2j − 1)d + δ0 and/or

length of Cγi
s2 ≤ (2j − 1)d+ δ0. Thus each curve in the homotopy consists of

a curve of length at most l + 3d+ δ = (2j + 1)d + δ0, an ε-short “vertical”
curve, and a curve of length at most (2j − 1)d + δ0.

3.3.A. Here is a more concrete description of the resulting one-
parametric family of loops that also takes into account some details of the
construction of Cγs in the proof of Theorem 1.5 above.

Let ετ = f(t)(τ), where τ is fixed and t varies in the interval [ti−1, ti].
Recall that we can ensure that the length of ετ is arbitrarily small for all
τ ∈ [0, 1] by choosing ti − ti−1 to be sufficiently small.

Let us begin with the loop σ ∗ ᾱ = Cσ1 ∗ C̄α1 that is based at the point
p. Corresponding to Cσs and Cαs consider two pairs of partitions: {P σ , Qσ}
and {Pα, Qα}. Let P σ = {0 = rσ0 < rσ1 < ... < rσkσ−1 < rσkσ

= 1} and
Pα = {0 = rα0 < rα1 < ... < rαkα−1 < rαkα

}. Also let P = P σ ∪ Pα. Without
any loss of generality, we can assume that P = {0 = rσ0 = rα0 < rα1 < rσ1 <
rα2 < rσ2 < ... < rαkα−1 < rσkσ−1 < rαkα

= rσkσ
= 1}.

We will now present a homotopy that contracts σ ∗ ᾱ to p as a loop over
short loops.

(a) Cσ1 ∗ C̄α1 is homotopic to Cσsσ
2kσ−1

∗ Cα1 over loops of length at most 4jd;

see Fig. 11.
(b) Cσsσ

2kσ−1
∗Cα1 is homotopic Cσsσ

2kσ−1
∗Cαsα

2kα−1
over the loops of length 4jd,

(see Fig. 12).

(c)Cσsσ
2kσ−1

∗Cαsα
2kα−1

is homotopic to Cσsσ
2kσ−2

∗ε̄rσ
k−1

∗C̄αsα for sα ∈ [sα2k−2, s
α
2k−1]

over the curves of length at most (4j − 2)d+ 2δ + ε, (see Fig. 13).

(d) Cσsσ
2kσ−2

∗ ε̄rσ
k−1

∗ C̄αsα is homotopic to Cσsσ
2kσ−3

∗ ε̄rσ
k−1

∗ C̄αsα over the curves

of length 4jd+ 2δ + ε, (see Fig. 14).

(e) Cσsσ
2kσ−3

∗ ε̄rσ
k−1

∗ C̄αsα is homotopic to Cσsσ ∗ ε̄rα
k−1

∗ C̄αsα
2kα−2

for sσ ∈

[sσ2kσ−3, s
σ
2kσ−4] over the curves of length at most (4j−2)d+2δ+ε, (see Fig.

15).
Proceeding in the above manner we will contract the loop to p over

curves of length at most 4jd + o(1).

3.4. Synchronization. As before, let γi = f(ti) and γi+1 = f(ti+1)



21

p

p p

Cs
σ

2k σ
Cs

σ

2k σ−1

p

homotopic to 

Figure 11: Contracting σ ∗ ᾱ as a loop (i).
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Figure 12: Contracting σ ∗ ᾱ as a loop (ii).
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Figure 13: Contracting σ ∗ ᾱ as a loop (iii).
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Figure 14: Contracting σ ∗ ᾱ as a loop (iv).
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Figure 15: Contracting σ ∗ ᾱ as a loop (v).

denote two close loops. In our proof we used and will be using loops formed
by a curve from the family Cγi that goes to f(ti)(τ) for some τ , a short
“vertical” segment in the image of f connecting f(ti)(τ) with f(ti+1)(τ) and
a curve from the family Cγi+1 that goes to f(ti+1)(τ). It would be convenient
for us to change the dependence of all curves Cγi

s on s (for all values of i)
to ensure that we could write these loops as Cγi

r ∗ f(t)|t∈[ti,ti+1](s(r)) ∗ C̄
γi+1
r

(for a new indexing of the family of curves Cγi by r and some increasing
(but not necessarily strictly increasing) function s(r)). Equivalently, this
just means that for every i the endpoint of Cγi

r is γi(s(r)). More formally,
a synchronization is a collection of strictly increasing surjective functions
ψi : [0, 1] −→ [0, 1] such that there exists an increasing (but not necessarily
strictly increasing) surjective function s : [0, 1] −→ [0, 1] with the following
property: For each i and r ∈ [0, 1] γi(s(r)) = Cγi

ψi(r)
(1). Of course, finding

such functions would be very easy if for every i and t there was exactly
one value of r such that Cγi

r (1) = γi(t). In this case we could assign to
the curve from the family Cγi that ends at γi(r) the index r. (In other
words, we would define ψi(t) = r for all i, t, and then just take s(r) = r.)
However, this situation is not typical. In the general case we can assume
without any loss of generality that for each value of r there exists at most
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one value of i such that there exists an interval I(r) of non-zero length such
that curves Cγi(z) end at the same point γi(r) for all values of z ∈ I(r).
(One can ensure this property by introducing arbitrarily small changes in the
curve-shortening process described in sections 3.1, 3.2. Namely, one needs
to introduce arbitrarily small generic perturbations in the choice of points
t
γj

i described in section 3.2, condition B (1).) Further, there are only finitely
many values of r such that there exists such an interval I(r) (for at least one
value of i). Denote this value of i (if it exists) by i(r). We are going to cut
[0, 1] at all such values of r and insert there closed intervals of length equal to
the length of I(r). In our new parametrization all curves γi will be constant
on all newly inserted intervals. (In other words, the function s(r) will be
constant on each of these intervals - or, more precisely, on the image of each
of these intervals after a reparametrization of the considered long interval
back to [0, 1] that will be described below.) Also, the curve of the family Cγi

connecting p with γi(r) will be initially indexed by r providing that r is not
one of the points where we have cut [0, 1] (and, thus, there is only one curve
from the family Cγi that ends at γi(r)). If r is one of the points where we
have cut [0, 1], then there exists a whole interval I of values of z (in the old
parametrization) such that Cγi

z (1) = γi(r). This happens only if i = i(r). In
this case there is an obvious isometry between I = I(r) and the interval that
we have inserted at r, and we will initially replace the old indices z ∈ I with
the matching numbers in the newly inserted interval. (More formally, we
have just described how to define the functions ψi, which are, however, now
defined on a very long interval instead of [0, 1].) Now the only remaining
problem is that r runs over some very long interval. This problem can be
resolved by the rescaling the domain of r linearly back to [0, 1]. We are
going to call the resulting reindexing of all families Cγi

r a synchronization.
The function s(r) will be called a synchronization function.

3.5. End of the proof of Theorem 1.1 form = 1. It remains to prove
that the constructed path f̃ in ΩpM

n is path homotopic to f . Here is the
construction of a path homotopy G between f̃ and f : G(1) = f̃ , G(0) = f .
Now define G(λ) for each λ ∈ (0, 1). The basic idea is that at the mo-
ment of time λ we do not shorten f(ti) (for all i) all the way using the
construction in the proof of Theorem 1.5, as we did above. Instead we
use the partial shortening Hi(λ) := Hf(ti)(λ) defined in section 3.2. Re-
call that for every λ ∈ [0, 1] the path Hi(λ) consists of two arcs. The first
arc is the path Cγi

λ . The second arc is the arc of γi that starts at Cγi

λ (1)
and ends at γi(1). To construct the desired path homotopy G between
f and f̃ in ΩpM

n at the moment λ we replace all long curves γi not by
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βi = Hi(1) but by Hi(λ). In other words, G(λ)(ti) = Hi(λ). Assuming
that we have already synchronized the parametrizations of different one-
parametric families C (as in section 3.4), and s(r) denotes the synchroniza-
tion function, Cγi

r (1) and C
γi−1
r (1) can be connected by a (very short) arc

f(t)|t∈[ti−1,ti](s(r)). Now we can form loops Cγi
r ∗f(t)|t∈[ti−1,ti](s(r))∗ C̄r

γi−1

for all r ≤ λ, as before. These loops provide a contracting homotopy for the
loop Cγi

λ ∗f(t)|t∈[ti−1,ti])(s(λ))∗ C̄λ
γi−1 . Let τ denote s(λ), f r1 denote the arc

f(t)|t∈[ti−1,(ti−1+ti)/2](s(r)), f
r
2 denote f(t)|t∈[(ti−1+ti)/2,ti](s(r)). Using the

proof of Lemma 2.1 we can transform this homotopy into a path homotopy
between C

γi−1

λ ∗fλ1 andCγi

λ ∗f̄λ2 . (The first of these paths plays the role of e1 in
the terminology of Lemma 2.1, and the second plays the role of e2.) Joining
all paths in this path homotopy with the arc f( ti−1+ti

2 )(r)|r∈[τ,1] that con-

nects mλ
i and p we are going to get a 1-parametric family of paths that starts

at C
γi−1

λ ∗ fλ1 ∗ f( ti−1+ti
2 )(r)|r∈[τ,1] and ends at Cγi

λ ∗ f̄λ2 ∗ f( ti−1+ti
2 )(r)|r∈[τ,1].

We will define G(λ) on a segment [ ti−1+ti
2 − λ ti−ti−1

2 , ti−1+ti
2 + λ ti−ti−1

2 ]
of the segment [ti−1, ti]using this 1-parametric family of paths. (These
paths will be the values of G(λ)(t) for t in the considered interval.) In
particular, G(λ)( ti−1+ti

2 − λ ti−ti−1

2 ) = C
γi−1

λ ∗ fλ1 ∗ f( ti−1+ti
2 )(r)|r∈[τ,1] and

G(λ)( ti−1+ti
2 + λ ti−ti−1

2 ) = Cγi

λ ∗ f̄λ2 ∗ f( ti−1+ti
2 )(r)|r∈[τ,1].

For reasons that will be explained below we are going to parametrize
G(λ) as follows. The arcs in the 1-parametric family of paths that starts at
C
γi−1

λ ∗ fλ1 and ends at Cγi

λ ∗ f̄λ2 will be parametrized by [0, λ + λ(1 − λ)],

and the arcs f( ti−1+ti
2 )(r)|r∈[τ,1] will be parametrized by [λ + λ(1 − λ), 1].

(The choice of the function λ(1 − λ) here is motivated by that fact that
λ(1 − λ) −→ 0 as either λ −→ 0, or λ −→ 1. Also, if λ ∈ (0, 1), then
λ+λ(1−λ) = λ(2−λ) < 1. Each time when we need to reparametrize a path
p defined on [0, 1] by an interval [a, b], we replace p(t) by pnew(t) = p( t−ab−a).
It is not difficult to verify that the considered reparametrizations do not
lead to discontinuities as λ approaches one of the endpoints of [0, 1].)

It remains to define G(λ) on two intervals [ti−1,
ti−1+ti

2 − λ ti−ti−1

2 ] and

[ ti−1+ti
2 +λ ti−ti−1

2 , ti] that can be regarded as a neighborhood of the bound-
ary of the interval [ti−1, ti]. The “thickness” of this neighborhood is vari-
able, and tends to 0, as λ −→ 1. When t ∈ [ti−1,

ti−1+ti
2 − λ ti−ti−1

2 ], all
paths start from C

γi−1

λ . Then they follow a variable path that consists
of the arc f(r)|r∈[ti−1,ti−1+

1

1−λ
(t−ti−1))](s(λ)) followed by f(ti−1 + 1

1−λ(t −

ti−1))(s(r))|r∈[λ,1]). The parametrization of the join of these three paths by
[0, 1] is the following: We use [0, λ] to parametrize C

γi−1

λ , [λ, λ + λ(1 − λ)]
to parametrize the second arc, and [λ+λ(1 − λ), 1] to parametrize the third



26

arc. It is not difficult to see that no discontinuity arises, as λ −→ 1 ( despite
the term 1

1−λ in the definition of G(λ)). Of course, it is crucial here that
f(t)(1) does not depend on t (and is equal to p in our situation, and to a
possibly diffent point q in a more general situation considered below). This
property of f ensures that all paths in the image of the restriction of G(λ)
to the considered interval become close to C

γi−1

λ as λ −→ 1.

One can define the restriction of G(λ) on [ ti−1+ti
2 + λ ti−ti−1

2 , ti] in a
completely analogous way. In particular, all paths start as Cγi

λ followed first
by a longer and longer arc of fλ2 , and then by the image under f(t) of the
segment [s(λ), 1], where a fixed for each vertical segment value of t varies
between ti−1+ti

2 and ti.

To find an upper bound for lengths of loops in the image of G we can
just add L, o(1) and the maximal length of the curves in the path homotopy
between C

γi−1

λ ∗fλ1 and Cγi

λ ∗ f̄λ2 . This last length can be naturally majorized
by (6j + 1)d + o(1), see the proof of Lemma 2.1. But we can do somewhat
better, if we note that C

γi−1

λ replaces and shortens a segment of γi−1 whose
length was counted as a part of the term L. Therefore, we can subtract
(2j − 1)d from our upper bound obtaining the upper bound L+ (4j + 2)d+
o(1).

We would like to provide the following less formal explanation (or rein-
terpretation) of the construction of the path homotopy between Hi−1(λ) and
Hi(λ). These two paths consist of curves C

γi−1

λ and Cγi

λ joined with nearly
identical “tails” that are the arcs of γi−1(τ) and γi(τ) between τ = s(λ)
and τ = 1. The “tails” form a part of one parametric family of “tails”
f(̺, s), s ∈ [τ, 1], where the parameter ̺ ranges in [ti−1, ti]. The idea was
to “fill” the “digon” formed C

γi−1

λ and Cγi

λ in exactly the same way as we
filled the digon formed by βi−1 = C

γi−1

1 and βi = Cγi

1 by a one-parametric
family of paths of controlled length, and to attach to each of these paths
the corresponding “tail” f(̺, s), s ∈ [τ, 1], for an appropriate value of ̺. Of
course, this idea required some minor corrections as C

γi−1

λ and Cγi

λ end at
very close but still different points, and were made to form a digon only
after we attached to them (very short) arcs inside f(t)|t∈[ti−1,ti](τ). After
the endpoints of these curves were made identical, we were able to add to
all these curves identical “tails”. As we will see below, this idea directly
generalizes to the situation of maps of higher dimensional spheres to ΩpM

n

(or to ΩpqM
n). 2
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4 Small spheres in the loop space.

In this section we will demonstrate that in the absence of a great number of
short geodesic loops, every homotopy class of ΩpM

n can be represented by
a sphere that passes through short loops (thus proving Theorem 1.1). We
assume that there exists k such that there are no geodesic loops based at p on
Mn with the length in the interval (2(k−1)d, 2kd] providing a local minimum
for the length functional. We are going to prove that f is homotopic to a

map f̃ with the image in Ω
L̃+o(1)
p Mn, where L̃ = ((4k + 2)m + (2k − 3))d,

and the homotopy can be chosen so that it has its image in Ω
L̄+o(1)
p , where

L̄ = L+ L̃− (2k − 1)d.

The proof of the theorem is done using a recursion with respect to m.
The case m = 1 of this theorem had been proven in the previous section.
Before presenting the proof of the general case, we will explain the proof of
the theorem in the case m = 2. (We will explain the proof in the case when
f is a map of S2. It will be clear from our explanations that the case when
f is a map of the pair (D2, ∂D2) can be treated exactly the same.) Note,
that the general case is completely analogous to the case m = 2. Yet we
decided to include a detailed explanation of the case m = 2 in this paper,
as one can better visualize and explain the geometric ideas of the proof.

4.1. From m = 1 to m = 2. A general plan. Let I = [0, 1].
Consider a map f : I × I −→ ΩpM

n, where ∂(I × I) is mapped to p.
Without any loss of generality we can assume that all paths in the image
of f are parametrized proportionally to their arclengths. Let us subdivide
I × I into squares of a very small size. (The maximal length of the image
of one of these sides under f will contribute towards o(1) term in the con-
ditions of the theorem.) Denote these squares by Rij, and their vertices by
(xi−1, yj−1), (xi−1, yj), (xi, yj−1), (xi, yj). We can consider the subdivision
of I × I into squares Rij as a cell subdivision. The vertices (xi, yj) will be
0-cells, edges of squares Rij will be 1-cells, and their interiors will be 2-cells.
Note that f maps each of 0-cells to a loop in ΩpM

n. Each of those loops
that is too long, (i.e. of length greater than (2k− 1)d) will be replaced by a
shorter one as in Theorem 1.5 via a path homotopy described in the proof
of Theorem 1.5. This yields the desired map f̃ on the 0-skeleton of the cell
subdivision.

Now we perform the synchronization (as in section 3.4) of all families

C
f(v)
λ , where v runs over the set of all vertices of all squares Rij . Recall that

the purpose of the synchronization is to find (simultaneous) parametrizations
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Figure 16: Replacing the map
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of all these families by a parameter r ∈ [0, 1] so that for each r and v the

endpoint C
f(v)
r coincides with f(v)(s(r)), where s(r) ∈ [0, 1] does not depend

on v.

Every time we apply Lemma 2.1 (directly or as a part of our proof of
Theorem 3.1) to a pair of arcs starting at p and ending at a common point
naturally associated with some two vertices of Rij , we need to consider one
of these arcs as e1 and the other as e2 (in terminology of Lemma 2.1), and
there is is an asymmetry involved in this choice. We would like to ensure
that the choice is done in a canonical way. For this purpose we enumerate all
0-cells by numbers 1, 2, . . . and agree always to choose the path associated
with the vertex with a smaller number as e1, and the path associated with
the vertex with a larger number as e2.

Afterwards, we will replace the restrictions of f to the edges that connect
these vertices as in the proof of Theorem 3.1 in the previous section (see
Fig. 16 (a)-(c)). We obtain a new map f̃ from the 1-skeleton of the cell
subdivision to ΩpM

n. All loops in the image of f̃ have a controlled length
(more precisely, the length will not exceed (6k−1)d+o(1)). Now our goal is
to “fill” the interior of every square Rij, (Fig. 16 (d)), that is, to extend f̃
from ∂Rij to Rij for all i, j. (After this is done, we will only need to verify
that f̃ and f are homotopic and that this homotopy can be chosen so that
all loops in its range are not very long.)

The restriction of f̃ to the boundary of a small squareRij can be regarded
as a map F̃ of a 2-sphere to Mn, where F̃ can be described as follows.
First, consider the 2-sphere (that is being mapped by F̃ ) as a cell complex
with the cell structure of the boundary of a parallelipiped in which two
opposite (say, the top and the bottom) faces have been collapsed to a point
mapped by F̃ into p. (Note that the two copies of p at the beginning and
the end of considered loops will be sometimes depicted on our figures as
two different points. This convention will make our figures easier to draw
and comprehend, and will also make clearer the fact that our proof can
be easily adapted to prove the generalization of the theorem where ΩpM

n

in the conclusion of the theorem is replaced by ΩpqM
n for two arbitrary

points p, q.) To describe F̃ on one of the four “large” cells of the sphere
that corresponds to an edge e of Rij with vertices v1, v2 consider loops

C
f(v1)
r ∗ f(t)|t∈e(s(r)) ∗ C̄

f(v2)
r , r ∈ [0, 1], where s(r) is the synchronization

function. The lengths of these loops do not exceed 4kd + o(1). Applying
Lemma 2.1 to this homotopy one obtains a 1-parametric family of paths

starting at C
f(v1)
1 and ending at C

f(v2)
1 . These paths are the images of
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vertical segments (perpendicular to e) of the considered face of S2 under F̃ .

The filling will be done in three steps.

Step 1. For each t denote the the center of the square Rij×{s(t)} by ct, and
F (ct) by qt. (Of course, both ct and qt depend on i, j, but we regard i and j
as fixed and suppress the dependence on i, j in our notations.) We partition
Rij into a 1-parametric family rt of boundaries of squares that are concentric
with Rij , have sides parallel to sides of Rij , and have side length equal to t×
the side length of Rij. In particular, r1 = ∂Rij, and r0 is the center of Rij .
On the first step, we are going to construct a continuous 1-parametric family

of maps S2
t from rt to Ω

(6k+1)d+o(1)
pqt Mn, such that S2

1 = f̃ |∂Rij
, and S2

0 is the
constant map to the constant path p. Here t varies in [0, 1], and a somewhat
unusual notation for the maps S2

t reflects the fact that they correspond to
the (maps of) 2-spheres in Mn. (In fact, we prefer to visualize these maps
as 2-spheres in Mn.) Note that for each t rt has four edges that correspond
to four edges of Rij . The construction of S2

t is done separately for each of
these four edges (but so that that the restrictions to the endpoints of the
adjacent edges match). We are going to describe this construction in the
next subsection.

The images of points of rt (under S2
t ) will be called vertical curves. For

each value of t the corresponding vertical curves will connect p and qt.

Note that here we changed terminology that we used in section 3.1.
The vertical curves connecting p and qt are analogs of horizontal curves
introduced in section 3.1 (especially for t = 1, when qt = p). This change
of terminology is due to the fact that these curves look as vertical lines
on Figures 16, 17, 18 (which otherwise would be less convenient to draw).
The short vertical curves from the previous section are analogous to small
“horizontal” squares depicted on Fig. 16 (c), (d), 17.

Summarizing, at the end of this step we obtain a continuous 1-parametric

family of maps S2
t : S1 = rt −→ Ω

(6k+1)d+o(1)
pqt Mn representing a homotopy

between f̃ |∂Rij
and a constant map into the constant loop based at p. These

maps can be also regarded as 2-spheresMn sliced into “short” vertical curves
connecting p and qt, where qt runs over a loop based at p.

Step 2. Each of the vertical curves connecting p and qt can be joined with
a fixed path of length ≤ (2k+ 1)d+ o(1) from qt to p to obtain a sweep-out
of each sphere S2

t by loops of length ≤ (8k+ 2)d+ o(1) based at p (or, more

presisely, a map from rt to Ω
(8k+2)d+o(1)
p Mn). This fixed path is the image of

one of the vertices v of r1 = ∂Rij under the map constructed on Step 1 but
taken with the opposite orientation. More specifically, let F be defined by
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the formula F (x, y, t) = f(x, y)(t) for all (x, y) ∈ Rij, t ∈ I. The image of v

under S2
t is the join of C

f(v)
t (from the proof of Theorem 1.5) with the image

under F of a very short straight line segment in Rij × {s(t)} that connects

the endpoint of C
f(v)
t (= f(v)(s(t))) with the center cτ of Rij × {s(t)}. Of

course, the image under F of this segment has length o(1). (In other words,
it can be made arbitrarily small by choosing a sufficiently fine subdivision
of the unit square into squares Rij.) For the reasons of continuity one needs
to consider the same vertex v for all values of t. We define v as the vertex
of Rij with the largest number in the chosen enumeration of all vertices of
all squares Rij . As the result we obtain a continuous 1-parametric family of

maps S̃2
t from S1 = rt to Ω

(8k+2)d+o(1)
p Mn (parametrized by t). Note that

all loops corresponding to a fixed value of t pass through qt.

Step 3. We apply Lemma 2.2 to obtain a 3-disc filling the original 2-
sphere, S2

1 , so that this 3-disc is swept-out by paths connecting p and q1 = p
of length at most (8k+ 2)d+ (2k − 1)d+ o(1) = (10k + 1)d+ o(1). In other
words, this lemma will produce an extension of S2

1 to a map of a 2-disc to

Ω
(10k+1)d+o(1)
p Mn (that can be also regarded as a map F̃ of a 3-disc into Mn).

More specifically, Lemma 2.2 will be applied to the map S2
1 of r1 regarded as

f in the terminology of Lemma 2.2, and to v regarded as s0. The homotopy
Ft in terminology of Lemma 2.2 is the homotopy S̃2

t supplied by Step 2. The
application of Lemma 2.2 yields the desired contraction of S2

1 via maps of S1

into the space of loops based at p that have length ≤ (10k+1)d+o(1). (Here
we would like to review the geometry behind the application of Lemma 2.2.

First, one attaches C̄
f(v)
1 ∗C

f(v)
1 to all vertical paths forming S2

1 . Of course,
one does this by means of a homotopy gradually attaching longer and longer

arcs of C
f(v)
1 travelled in both directions. At the end of this stage of the

homotopy one obtains S̃2
1 ∗C

f(v)
1 . On the second stage of the homotopy one

contracts S̃2
1 through S̃2

t to a point keeping the arc C
f(v)
1 attached at the end

of all curves in the images of S̃2
1 intact. At the end of this stage all loops in

the image of S1 are mapped into the same loop C
f(v)
1 , and our construction

ends by mapping the center of Rij (=r0) into C
f(v)
1 .)

This completes the construction of the filling f̃ of ∂Rij × [0, 1] for one
small square Rij . Combining these fillings for all values of i, j we obtain

a desired map f̃ : S2 −→ ΩpM
n with the image in Ω

(10k+1)d+o(1)
p Mn (or,

equivalently, a map F̃ : S3 −→ Mn with a vertical sweep-out (by paths
connecting p and q1 = p, that is, by loops based at p) of a controlled length).

After the completion of these three steps we will need to prove that the
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constructed map f̃ is homotopic to f .

4.2. From m = 1 to m = 2. A detailed description of Step 1. The
restriction of the original map f to Rij induces a map F : Rij×[0, 1] −→Mn

defined by the formula F (x, y, t) = f(x, y)(t).

Consider a slicing of Rij × I into squares Rij × {t}, t ∈ [0, 1]. We want
to ensure that the length of the image under F of each straight line segment
of Rij ×{t} is much smaller than some ε > 0, which will eventually go to 0,
(see Fig. 17(a)). This can be achieved by making the original subdivision
into the squares Rij sufficiently fine. Each of the considered slices can be
swept-out by short straight line segments as in Fig. 17 (b) in a continuous
canonical way. Namely, we connect each vertex v with all points w on the
two straight line segments connecting the midpoints of the opposite sides of
Rij × {t} such that the distance between v and w is not greater than the
distance between w and some other vertex of Rij × {t}.

f(x,y)(    )τ
f(x,y)(    )τ

S2
τ

Each f(x,y) (   ) can be continuosly partioned 
into short segments

p

p

(a) (b) (c)

Two typical loops

τ

p

p

Figure 17: Slicing.

Recall that in the course of the proof of Theorem 3.1 we have replaced
the curves corresponding to vertices of Rij by short curves (of length ≤ (2k−
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1)d + o(1)), and that we have then constructed path homotopies between
the pairs corresponding to the edges of Rij. These homotopies correspond
to the edges of Rij and generate 2-discs in Mn. For each edge e = [v1v2] of
Rij the corresponding homotopy was produced by an application of Lemma
2.1 to a certain homotopy that contracted the loop formed by joining two
paths (in fact, loops) obtained as the “shortening” of images of the vertices.
(One of these two paths was taken with the opposite orientation.) This

homotopy consisted of the loops gt = C
f(v1)
t ∗ F (e, τ) ∗ C̄

f(v2)
t of length

≤ (2k − 1)d + (2k + 1)d + o(1) = 4kd + o(1), where τ denotes s(t), s(t) is
the synchronization function, and the arc in the middle is the image under
F of the product of e with {s(t)} in Rij × [0, 1].

Observe that for every value of t ∈ [0, 1] we can restrict these homotopies,
so that they end at gt instead of g1 (and connect gt with the constant loop
g0). So, fix a value of t and consider the restricted homotopy between g0

and gt. Now extend this path homotopy by a new stage, when we change
only the small middle segement F (e, τ) of gt (where τ denotes s(t)): We
gradually replace it by images under F of broken geodesics in Rij×{τ} that
connect two endpoints of e × {τ} through varying points Mt̄(τ), t̄ ∈ [0, 1],
of the perpendicular to e × {τ} in Rij × τ that starts at the midpoint of
e× τ and ends at the center cτ of the square Rij × {τ}. Each of those new
loops consists of two arcs connecting p and F (Mt̄(τ)). Each of these two

arcs corresponds to one of the two endpoints v1, v2 of e, and starts as C
f(vi)
t

followed by the image under F of the straight line segment in Rij×{τ} that
connects (vi, τ) with Mt̄(τ). Denote these arcs by At̄vl

, l = 1, 2. When t̄ = 1,

we obtain A1
v1 = C

f(v1)
t ∗ F ([(v1, τ) ct]) and A1

v2 = C
f(v2)
t ∗ F ([(v2, τ ]) ct]).

Joining the first of these arcs with the second arc taken with the opposite
orientation, we obtain a loop αt = A1

v1 ∗ Ā1
v2 . We can proceed similarly

for all values of t̄ forming loops At̄v1 ∗ Ā
t̄
v2 . This family of loops constitutes

a homotopy between αt and gt. We can combine this homotopy with the
homotopy between gt and g0. The result will be a homotopy between αt
and g0, that is, between αt and the point p. Figure 17 (c) depict typical
loops that arise during this homotopy. Now we can apply Lemma 2.1 to
this homotopy. As the result, we will obtain a path homotopy between A1

v1
and A1

v2 that passes through paths connecting p and qτ of length less than
(6k+1)d+o(1). The map S2

t that we are constructing will map the endpoints
of the edge e in the boundary of Rij into A1

vl
, l = 1, 2, and other points of

edge e into individual paths in the just constructed path homotopy between
A1
v1 and A1

v2 . Repeating this process for all four edges of ∂Rij and gluing the



34

resulting maps of the edges into the space of paths connecting p and qτ , we
will obtain a map of the boundary of a square to ΩpqτM

n, which will be the
desired S2

t . Finally, we are going to interpret the domain of the constructed
map not as r1 = ∂Rij but as rt. This completes the construction of f̃ .

v
1

v
2

v

v
1 v

2

v

(a) (b)

Figure 18: Typical loops.

4.2.A. A description of two typical loops in the image of f̃ .
Such a loop, ω, must correspond to one of the squares Rij in the chosen fine
partition of [0, 1]× [0, 1], and, more specifically, to one of its edges e = [v1v2].
Without any loss of generality assume that v1 has a smaller number in the
chosen enumeration of the set of all vertices of the partition than v2. Denote
the vertex of Rij with the largest number among all vertices of Rij by v.
In principle, this vertex might coincide with v2. We will consider two types
of typical loops. These two types incorporate two different types of loops
arising during the homotopy contracting αt described in the previous section.
(These loops were depicted on Fig. 17 (c).) Loops ω of both types depend
on two parameters: t1 ∈ [0, 1] and t2. For loops ω of type A we will be
assuming that t2 ∈ [0, t1], for type B t2 ∈ [0, 1].

Type A. The described loop starts as C
f(v1)
t2 followed by the (very short)

image of e×s(t2) under F . Then ω follows C̄
f(v2)
t2 , that is, C

f(v2)
t2 but travelled
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in the opposite direction towards its initial point p. Further, ω follows C
f(v2)
t1

to f(v2)(s(t1)). Afterwards, ω passes through the image under F of the half-
diagonal of the square Rij×{s(t1)} that starts at (v2, s(t1)) and ends at the
center of the square, followed by the image under F of the half-diagonal
that starts at the center of the square and ends at (v, s(t1)). From there the

loop goes along C
f(v)
t1 but in the opposite direction towards its initial point

p. The final arc of ω goes all the way along C
f(v)
1 to C

f(v)
1 (1) = p.

Type B. The loop starts as C
f(v1)
t1 followed by the very short arc that

will be denoted a1(i, j, e, t1, t2): This short arc is the image under F of the
straight line segment connecting (v1, s(t1)) with a point Mt2(s(t1)) on the
segment perpendicular to e × {s(t1)} in the plane Rij × {s(t1)} that con-
nects the midpoint M0(s(t1)) of e× {s(t1)} with the center ct1 = M1(s(t1))
of the square Rij × {s(t1)}. This very short arc is then followed by an-
other very short arc that is the image under F of the straight line segment
connecting Mt2(s(t1)) and (v2, s(t1)). This second short arc will be denoted

a2(i, j, e, t1, t2). Then ω follows C̄
f(v2)
t1 , that is, C

f(v2)
t1 but travelled in the op-

posite direction towards its initial point p. Now ω returns back along C
f(v2)
t1

to f(v2)(s(t1)). Afterwards, ω passes through the image under F of the half-
diagonal of the square Rij×{s(t1)} that starts at (v2, s(t1)) and ends at the
center of the square, followed by the image under F of the half-diagonal
that starts at the center of the square and ends at (v, s(t1). From there the

loop goes along C
f(v)
t1 but in the opposite direction towards its initial point

p. The final arc of ω goes all the way along C
f(v)
1 to C

f(v)
1 (1) = p.

We would like to attract the attention of the reader to two very short
arcs a1(i, j, e, t1, t2) and a2(i, j, e, t1, t2) inside the just described loop (of
type B). The lengths of these arcs can be made arbitrarily small, as the
partion of [0, 1]2 into small squares becomes finer and finer. Yet, the arcs
al(i, j, e, t1, t2) sweep-out the whole image F ([0, 1]3), as i, j, l, e, t1, t2 vary
over their respective domains. This was precisely the goal of our construc-
tion. We wanted to divide the domain of F into arbitrarily small pieces and
to distribute them among loops that form a continuous 2-parametric family,
so that the lengths of the remaining parts of the loops remain controlled.
Below we are going to generalize this construction for an arbitrary m. In
this case the image of the constructed family of loops will contain the image
of F (which is, in general, (m + 1)-dimensional) thanks to the images of
similar very short arcs which, however, will be contributing only o(1) sum-
mands to lengths of the individual loops in the image of f̃ . On the other
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hand, the union over the whole family of loops of their remaining (“service”)

parts (made out of curves C
f(v)
t for various vertices v) will have image of

dimension ≤ 2 in Mn. This contrasts with the fact that for each of these
loops the length of the complement to the “service” part will be negligibly
small.

The typical loops of Types A and B are shown on Figure 18.

4.3. From m = 1 to m = 2. Construction of the homotopy
between f and f̃ . Denote the desired homotopy by G and its parameter
by λ. We construct G first over the vertices and the edges of the considered
cell subdivision of [0, 1] × [0, 1] into 2-cells Rij. This construction is done
exactly as in section 3.5. Now it remains to extend G from the boundary
of each square Rij to its interior (or, more precisely, from ∂Rij × [0, 1] to
Rij × [0, 1]). We are going to assume that i, j are fixed, and will describe
G(λ)|Rij

: Rij −→ ΩpM
n for each value of λ.

The informal idea of our construction is that at each moment of time λ we
would like to define a map F̃λ on Rij× [0, s(λ)] exactly as we constructed the
map F̃ of Rij×[0, 1]. (Recall that F̃ coincides with f̃ when it is regarded as a
map from Rij × [0, 1] into Mn, i.e. F̃ (x, y, t) = f̃(x, y)(t).) In particular, we
want F̃1 to coincide with F̃ . On the other hand, we would like the restriction
of F̃λ on Rij× [s(λ), 1] to coincide with F . (So, F̃0 = F.) The map G(λ) will
then coincide with F̃λ, when F̃λ is regarded as a map from Rij to ΩpM

n.

Yet this plan encounters an obvious (minor) technical problem due to
the fact that F |Rij×{s(λ)} is not a constant map if s(λ) 6= 1. However, it
is not difficult to make the necessary alterations of this idea using short
segments in F |Rij×{s(λ)} similarly to how it was done in section 3.5. Here
is one possible idea. Recall that for each edge of Rij and each moment of
time r the homotopy between the restrictions of f and f̃ to this edge at
the moment r consists of a “bottom” part formed by the images under F̃ of
arcs of curves in ∂Rij × [0, s(λ)] and “tails” that are curves f(̺, τ)|τ∈[s(λ),1]

for some ̺ ∈ ∂Rij . The extension of the homotopy between f and f̃ to the
interior of Rij is done in two stages. The first stage consitutes an extension
of the homotopy from ∂Rij to the collar of ∂Rij in Rij ; the second stage
extends the homotopy to the remaining (inner) part of Rij. The thickness
of the collar depends on λ. The collar becomes very thin as λ −→ 1 and
becomes almost the whole square Rij as λ −→ 0. During the first stage we
gradually move ̺ towards the center of the square Rij until it reaches the
center. We also connect the endpoints of paths in the “bottom” part with
the new initial points of “tails” by (short) horizontal curves in F (Rij , s(λ)).
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(One can call this stage “squeezing the tails”.) At the “end” of this stage all
tails become identical, and all curves from the “bottom” part meet at the
same point. Therefore the mentioned technical difficulty disappears, and we
can perform the second stage of the homotopy by contracting the “bottom”
2-sphere in Mn (or, equivalently, a circle in ΩpM

n) proceeding exactly as it
was described in sections 4.1, 4.2 but for S2

λ instead of S2
1 (and keeping the

“tails” fixed).

To more formally describe this construction let λ be in (0, 1), Divide Rij
into nine rectangles by four straight line segments inside Rij parallel to four
sides of Rij . Each of these four segments is located at the distance equal to
1−λ

2 × the side length of Rij from the corresponding side. Define G(λ) on the

boundary of the middle square Sij as S̃2
λ (defined on Step 2; see section 4.1).

As it had been already mentioned, in order to define G(λ) on the interior of
Sij we proceed exactly as in sections 4.1, 4.2 but for S2

λ instead of S2
1 . As the

result, we will obtain a map w of Sij into Ωp,qλM
n, and then we will form a

join of every path in the image of w with F (cλ, ̺)|̺∈[s(λ),1], thus obtaining the
desired extension of G(λ) to Sij. When forming this join we parametrize
a path in the image of this map by [0, λ(2 − λ)] and F (cλ, ̺)|̺∈[s(λ),1] by
[λ(2−λ), 1] (as we have done in a similar situation described in section 3.5).

To explain “proceed exactly as in sections 4.1, 4.2 but for S2
λ instead

of S2
1” note that we can use the spheres S2

t , t ∈ [0, λ], as Step 1 of the
construction. (Of course, one would need to perform a reparametrization
from [0, λ] to [0, 1]). The paths in each of these spheres end at qt. Again, let
v be the vertex of Rij with the maximal number. We are going to use paths
S2
t (v) on Step 2 as before. (We attach S2

t (v) with the opposite orientation
at the end of each path in the image of S2

t .) Step 3 involves an application
of Lemma 2.2 for s0 = v and f0 (in terminolgy of Lemma 2.2) equal to S2

λ.
After performing all three steps we will obtain a map from Sij to ΩpqλM

n.
(Recall, that one needs to attach F (cλ, ̺)|̺∈[s(λ),1] to all paths in the image
of this map to obtain a restriction of G(λ) to Sij.)

It remains to define G(λ) on Rij \ Sij that can be viewed as a collar of
∂Rij . Recall that this collar consists of 4 squares adjacent to the vertices of
Rij and 4 rectangles adjacent to sides of Rij . We are going to first explain
how to define G(λ) on a square adjacent to one of the vertices, say v1, of
the square Rij, and then how to define it on a square adjacent to the middle
segment of some edge e1 = [v1v2]. The construction for other vertices/edges
will be completely analogous.

Let Tij be a small square adjacent to v1. Denote another edge of Rij
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adjacent to v1 by e2. Two sides of the square Tij are segments of the edges
e1, e2 that are adjacent to v1. Denote the square with one of the vertices at
v1, and sides that are the halves of the sides of Rij adjacent to v1 by Uij .
Consider the rescaling map Φ : Tij −→ Uij such that Φ(v1) = v1. We are
going to define G(λ) at a point x ∈ Tij as follows: It will be the path that

first follows C
f(v1)
λ , then follows the image under F (∗, s(λ)) of the straight

line segment in Uij ⊂ Rij between v1 and Φ(x), and, finally, follows the
arc F (Φ(x), t)|t∈[s(λ),1]. One can verify that this slice of the homotopy G
coinsides with the slices of similar homotopies constructed in section 3.5 for
two sides of Tij adjacent to v1. It is not difficult to verify that the value of
G(λ) at the vertex of Tij opposite to v1 coincides with the previously defined
value of G(λ) at this vertex regarded as a vertex of the “middle” square Sij.

Let Wij denote the rectangle in the considered subdivision of Rij that
is adjacent to e1. We can assume that e1 is parallel to the X-axis of the
plane of Rij. (The case when e1 is parallel to the Y-axis can be treated in
exactly the same way.) Denote the side of Wij which lies on e1 by e0. In
section 3.5 we have defined G(λ) on e1, and therefore on e0. On the other
hand G(λ) has already been defined on the side of Wij opposite to e0, as
it shares this side with Sij. Finally, it had already been defined on two
sides perpendicular to e0 as Wij shares these sides with Tij and a similar
square adjacent to v2. We are going to describe an extension of G(λ) to Wij

compatible with the already defined G(λ)|∂Wij
.

Let w denote a point ofWij, x(w), y(w) denote its coordinates, Ψ0 denote
a rescaling map of Wij into a rectangle W̃ij that shares side e0 with Wij ,
has the second side of length equal to the half of the side length of Rij , and
is located inside Rij . We also require that the restriction of Ψ0 on e0 is the
identical map. Further, let Pr denote the orthogonal projection of W̃ij onto
Y-axis, and Ψ denotes the composition of Pr with Ψ0.

For each y, we will define G(λ) on the segment Sy ⊂ Wij with Y -
coordinate y. Denote the midpoint of this segment by my and its endpoints
by s1, s2. Here we are denoting the endpoint that is closer to v1 than to
v2 by s1, and the other one by s2. Observe that we have already defined
G(λ) at the endpoints of this segment. Both these values are loops that
start from certain (different) arcs connecting p with F (x(my),Ψ(my), s(λ)).
We are going to call these two arcs initial arcs. In both cases the corre-
sponding initial arc is then followed by the image under F of the vertical
curve (x(my),Ψ(my), t), where t varies beteen s(λ) and 1. Consider loop
γy obtained as the join of the initial arcs of G(λ)(s1) and G(λ)(s2). In the



39

next paragraph we are going to describe a specific path homotopy of this
loop to the constant loop. Then we will apply Lemma 2.1 to construct a
path homotopy between the initial arc of G(λ)(s1) and the initial arc of
G(λ)(s2). (Here, as elsewhere, we use the numbers of vertices in the nu-
meration of all vertices of all squares to determine which of these arcs is e1,
and which is e2 in terminology of Lemma 2.1. The initial arc of G(λ)(s1)
corresponds to the vertex v1, and G(λ)(s2) to v2.) Then we attach the arc
F (x(my),Ψ(my), t)|t∈[s(λ),1] to all paths in this path homotopy. The result-
ing 1-parametric family of paths will constitute the set of values of G(λ) on
Sy.

It remains to describe the path homotopy contracting γy. It consists of
two stages. On the first stage we construct a homotopy between γy and

C
f(v1)
λ ∗ f(t)|t∈e1(s(λ)) ∗ C̄

f(v2)
λ through loops that also start as C

f(v1)
λ and

end as C
f(v2)
λ taken with the opposite orientation. The middle sections

of each intermediate loop in this homotopy is the image under f of the
broken line in Rij × {s(λ)} made of two straight line segments. These
two straight line segments connect (v1, s(λ)) and (v2, s(λ)) with a vari-
able point moving along the straight line segment connecting the center
of Rij × {s(λ)} with the midpoint of its edge e1 × {s(λ)}. On the second

stage we contract C
f(v1)
λ ∗ f(x, ye1)|x∈[x(v1),x(v2)](s(λ))∗ C̄

f(v2)
λ through loops

C
f(v1)
r ∗ f(x, ye1)|x∈[x(v1),x(v2)](s(r)) ∗ C̄

f(v2)
r , where r decreases from λ to

0, and ye1 denotes the common value of the Y -coordinate for all points of
e ⊂ Rij . (Recall, that we assumed that e1 is parallel to the X-axis.)

As in section 3.5, the lengths of the loops in the image of this homotopy
can be bounded by L + (10k + 3)d + o(1) − (2k − 1)d. Here we subtract
(2k−1)d, because one of the segments of curves C shortens a segment whose
length is counted as a part of the term L.

4.4. Proof in the general case (m is arbitrary): Construction
of f̃ .

Proof. We will present a proof only in the case when f is a map of Sm.
The proof in the case when f is a map of the pair (Dm, ∂Dm) is completely
analogous.

Let f : Im −→ ΩpM
n be a continuous map such that ∂Im is

mapped to p. In this section we are going to construct f̃ : Im −→

Ω
((4k+2)m+(2k−3))d+o(1)
p Mn. In the next section we will prove that f̃ and

f are homotopic.

We are going to consider a map F : Im+1 −→Mn defined as f(u)(t) for
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each u ∈ Im, where Im corresponds to the first m coordinates of Im+1. We
can partition Im into m-cubes Ri1,...,im, so that for each t the image of each
straight line in Ri1,...,im × {t} under F has an arbitrarily small length. We
enumerate the set of all vertices of all cubes Ri1,...im by consecutive natural
numbers. We are going to consider shortenings and partial shortenings of all
paths f(v), where v runs over the set of all vertices of all cubes Ri1,...,im . We
are going to perform the synchronization of all these paths as in section 3.4,

and for each vertex v define f̃(v) as C
f(v)
1 . Now we are going to extend f̃ to

cells of higher and higher dimension of the considered cell subdivision of Im.
We are going to describe this construction for faces of one cube Ri1,...,im. Of
course, the extension on each face E of this cube should be independent on
a particular choice of the ambient cube Ri1,...,im that contains E as its face.

We will need the following definitions. Let E be a face of Ri1,...,im ,
t ∈ [0, 1]. We are going to call E × {s(t)} ⊂ Im+1 the t − E-slice of Im+1.
(Here s(t) denotes the synchronization function.) Given E and t the set of
points x ∈ Ri1,...im × {s(t)} such that all the distances from x to different
vertices of the t− E-slice are equal is called the median of the t− E-slices.
Equivalently, a point of Ri1,...,im × {s(t)} is in the median of the t−E-slice
if and only if it projects to the center of t − E-slice under the orthogonal
projection on the t− E-slice. A reduced median, MtE , of the t− E slice is,
by definition, the subset of the median of the t − E-slice that consists of
all points x with the following property:The distance from x to any vertex
of the t − E-slice is less than or equal to the distance from x to any other
vertex of Rij × {t}. For each face E of Ri1,...,im , t ∈ [0, 1], each point
o ∈ MtE and each vertex v of E the v − t− o-vertical curve is formed as a
join of C

f(v)
t and the image under F of the straight line segment connecting

(v, s(t)) ∈ Ri1,...,im × {s(t)} and o. It starts at p = F (v, 0) and ends at
F (o). The collection of v − t− o-vertical curves for all vertices v of E (and
some fixed t and o ∈ MtE) is called the E − t− o-umbrella. (We call these
objects umbrellas because v − t − o-vertical curves remind us of umbrella
ribs. Further, we will later define the process of “filling of an umbrella”. The
main step of this process reminds us of attaching of an umbrella canopy to
its frame.) In this definition we are assuming that all v−t−o-vertical curves
forming the E− t− o-umbrella are indexed by the corresponding vertices of
E. Equivalently, each E− t− o-umbrella u is, by definition, endowed with a
map Zu from the set V (E) of all vertices of E to the set of all vertical curves
that form the umbrella, where Zu maps each vertex to the corresponding
vertical curve. If E1 ⊂ E is a subface of E, we can consider the restriction
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of Zu to V (E1) ⊂ V (E). We will call the resulting umbrella a face of u.
We denote the union of the sets of all E−t−o-umbrellas over all t ∈ [0, 1]

and o ∈MtE by UE . Note that for every E, t and each point o ∈MtE there
is a unique E − t− o-umbrella. So, we can introduce the map Y = YE from
the set PE of all pairs (t, o), where t ∈ [0, 1], o ∈MtE to UE . One can endow
UE by a C0-topology. In this case Y becomes a continuous map.

Further, we define the canonical path from a point (t, o) ∈ PE as the
broken line that consists of two straight line segments: The value of t is
constant on the first straight line segment. The second coordinate varies
along the straight line segment that connects o with the center of the t−E-
slice. If o is the center of the t−E-slice then the first straight line segment
will be reduced to just one point. The second straight line segment starts at
the center of the t−E-slice and passes through the centers of all r−E-slices,
where r decreases from t to 0, and ends at the center of the 0−E-slice. The
composition of Y and the canonical path is called the canonical homotopy
of E-umbrellas. For each E, t, o ∈MtE the canonical homotopy is a path in
UE that starts at the E − t − o-umbrella Y (t, o) and ends at the constant
E-umbrella, where all verical curves are constant curves equal to p.

Let o be a point in ME . A filling of E − t − o-umbrella Y (t, o) is a
continuous map from E to ΩpoM

n that coincides with Zu on V (E) ⊂ E.
Now we are going to define the canonical filling of all E− t−o-umbrellas for
all faces E of Ri1,...,im (including Ri1,...,im), all t and all o ∈ ME. Our goal
is to define a filling that for every E will depend continuously on umbrellas
in UE , and will have the following coherence property: If E1 is a subface
of E, then the restriction of the canonical filling defined for E to E1 must
coincide with the canonical filling defined for E1. Here is a more detailed
explanation of coherence. One can regard a canonical filling as a system of
functions defined for all faces E of Ri1,...,im . For each E the corresponding
function maps each triple x, t, o, where x ∈ E, t ∈ [0, 1], o ∈MtE to a path
connecting p and o in Mn. The coherence means that if E1 is a subface of
E2, then the restriction of the function defined for E2 to the set of triples
{(x, t, o)|x ∈ E1, t ∈ [0, 1], o ∈MtE2

(⊂ MtE1
)} coincides with the restriction

of the function defined for E1 to ther same set of triples.
Our construction of the canonical filling will be recursive with respect

to the dimension of the considered faces. After defining the canonical filling
for all faces with the next value of dimension we will need to verify the
continuity and coherence properties of the constructed canonical filling. If
dim E = 0 (i.e. E consists of just one vertex of Ri1,...,im), then the canonical
filling of an E − t − o-umbrella coincides with this E − t − o-umbrella. If



42

dim E = 1, and E = [v1, v2] for some two vertices v1, v2 of Ri1,...im , and
u is a E − t − o-umbrella, then the canonical filling is defined as follows:
Consider the canonical homotopy between u and the trivial umbrella. All
the umbrellas in the image of this homotopy consist of two vertical curves,
and one can consider this homotopy as a contraction of the loop formed by
two vertical curves forming u. One can use Lemma 2.1 to obtain a path
homotopy between two vertical curves forming u. As before, we denote the
vertical curve corresponding to one of the vertices v1, v2 that has a smaller
number is the chosen enumeration of all vertices by e1 (in terminology of
Lemma 1.2), and the other by e2. The filling of u provided by this path
homotopy is, by definition, the canonical filling of u. The coherence of
the canonical filling can be immediately seen from the construction. The
continuity follows from the continuity of the dependance on t of all paths

C
f(vi)
t , i = 1, 2.

Assume that the canonical filling has been already defined for all faces
up to a dimension l − 1, where l ≥ 2. We are going to define it for a l-
dimensional face E. Let u be a E − t − o-umbrella, where o ∈ MtE for
some t ∈ [0, 1]. Consider the canonical homotopy ur of u, where r ∈ [0, 1],
u0 = u, u1 is the trivial umbrella. For each value of r consider the canonical
fillings of all (l − 1)-dimensional faces of ur. The result will be a collection
of maps of all (l − 1)-dimensional faces of E into ΩporM

n, where or is the
common endpoint of all vertical curves forming ur. The coherence property
for the canonical fillings of all (l − 1)-faces implies that the constructed
maps of the (l − 1)-faces match on the intersections of these faces and can
be considered as a map Slr of the boundary of a l-cube (or, topologically, of
a (l − 1)-dimensional sphere). The unusual notation reflects the fact that
these maps can be also regarded as maps of l-dimensional spheres into Mn.
A reader is invited to check that the just described part of the construction
corresponds to “Step 1” introduced in section 4.1 and described in section
4.2. Now we are going to proceed similarly to Steps 2 and 3 described
in section 4.1. Namely, we first choose the vertex v of Ri1,...,im with the
maximal number in the choosen enumeration of all vertices of all cubes and
attach the vertical curve corresponding to v in YE(r, or) at the end of all
paths in the image of Slr. We attach this vertical curve with the opposite
orientation. Now all curves in the image of this new 1-parametric family S̃lr
of maps of (l − 1)-dimensional spheres end not at or but at p, and become
loops based at p. This is the analog of Step 2. Finally, we apply Lemma 2.2
(as on Step 3 described in section 4.2). The family S̃lr, r ∈ [0, 1] plays the
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role of the homotopy Ft in the terminology of Lemma 2.2, and the vertical
curve in u corresponding to the vertex v with the largest number plays the
role of f(s0). Lemma 2.2 will yield the desired canonical filling of u. The
continuity and the coherence of the just constructed canonical fillings can
be easily seen from the construction.

To estimate the length of paths in the canonical filling note that when one
disregards o(1) terms, the increase of the length happens on “Steps 2 and 3”
of the just described construction. Each time we add not more than (2k+1)d
to our estimate for the length resulting in the extra (4k+ 2)d when we pass
from the dimension (l−1) to the dimension l (of the face E). (Recall, that our

estimate for lengths of vertical curves C
f(v)
t is (2k + 1)d. In some cases this

estimate improves to (2k−1)d, for example, if t = 1.) Thus, it seems that the
total length of paths in the image of the canonical filling of u is bounded by
(2k+1)d+ l(4k+2)d+o(1). However, we can slightly improve this estimate,
if we notice that as the result of the synchronization the lengths of all but one
vertical curves forming u are bounded by (2k− 1)d+ o(1), and the length of
the remaining vertical curve is bounded by (2k+1)d+o(1). As a corollary, in
the worst case scenario our upper bound becomes (2k−1)d+l(4k+2)d+o(1).
A further improvement can be achieved if u is E − 1 − o-umbrella (that is,
t = 1). In this case we can shave an extra 2d from our estimate on Step 3
resulting in the upper bound (4k+ 2)ld+ (2k− 3)d+ o(1) that appears (for
l = m) in the text of Theorem 1.1.

Now we can finally define f̃ on Ri1,...,m. We define f̃ as the canonical
filling of the E − t− o-umbrella u0, where t = 1, E = Ri1,...im , and o is the
center of Ri1,...im × {1}.

Observe that our construction of f̃ form = 1 coincides with the construc-
tion described in section 3.3, and for m = 2 coincides with the construction
described in sections 4.1, 4.2.

4.5. Proof in the general case (m is arbitrary): Construction
of a homotopy between f and f̃ .

Denote the desired homotopy by G. For each cube Ri1,...,im the construction
will be inductive with respect to the dimension of the considered faces of
Ri1,...,im. It can be defined at all vertices v as partial shortenings Hf(v)(t)
introduced in section 3.2. At each induction step corresponding to a value
of the dimension l between 1 and m we construct G over all l-dimensional
faces of all cubes Ri1,...,im assuming that it had already been constructed
over all (l − 1)-faces. For every l-face E = Ri1,...il G is supposed to map
Ri1,...,il × [0, 1] to ΩpM

n. Denote the restriction of G to Ri1,...,il × {λ} by
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G(λ) for each λ ∈ [0, 1]. We need G(0) to coincide with the restriction of f
to E = Ri1,...,il and G(1) to coincide with the restriction of f̃ . We will need
to define G(λ) for every λ ∈ (0, 1).

The basic idea will be the same as the idea previously used in sections
3.2, 3.5, 4.3: We would like to perform a partial shortening of all paths in
the image of f up to parameter λ, and then attach the unchanged remaining
part of the path for t between λ and 1. As before, this plan encounters a
difficulty: We can shorten only a disc in the space of paths that end at the
same point. Yet if we cut all paths in f(E) at some value of t 6= 1, they will
end at sufficiently close points but not at the same point. Therefore we will
first need to “squeeze” the “tails” a bit, so that they would end at the same
point. We use a collar of the boundary of E to do that. The width of this
collar decreases to 0 as λ −→ 1. Then we define a map of the square at the
center of E into ΩpM

n exactly as we have defined f̃ , only for the initial arcs
of f (followed by some short arcs to make them end at the same point). The
restriction of G(λ) to this central square will then be defined by attaching
to all paths in the image of this map the segments identical to the “tail”
defined as the arc of the image of the center of E under F for t ∈ [s(λ), 1].

Here are the details. Divide E by 2l (l−1)-dimensional planes parallel to
faces of E into 3l parallelipipeds. Each of these new hyperplanes corresponds
to exactly one of 2l (l − 1)-dimensional faces of E and is located at the
distance equal to 1−λ

2 × the side length of E from the corresponding (l −
1)-dimensional face. Let S denote the central l-dimensional cube of this
partition of E, T denote one of the corner cubes adjacent to a vertex v1
of E, and W denotes one of the parallelipipeds forming the collar that is
not adjacent to a vertex. We are going to explain the construction of the
restrictions of G(λ) to S, T and W .

To define G(λ) on S we observe that each vertex s is the closest to

exactly one vertex, vs of E. Consider a vertical curve C
f(vs)
λ followed by the

image under F of the straight line segment in E ×{s(λ)} that connects the

endpoint of C
f(vs)
λ with the center cλ of E × {s(λ)}. When we combine all

these vertical curves for all vertices of S, we obtain a E − λ− cλ-umbrella.
Consider the canonical filling of this umbrella. Reparametrize all paths
in this canonical filling by the interval [0, λ(2 − λ)] and attach at the end
the arc f(cλ)(t)|t∈[s(λ),1] reparametrized by the interval [λ(2 − λ), 1]. (By
definition, if a path p is defined for t ∈ [0, 1], then p( t−ab−a) is regarded as
a reparametrization of p by [a, b].) We define G(λ)|S as the rescaling of
the resulting map from E to ΩpM

n to S. (In other words, we take the
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composition of this map with the affine map S −→ E that sends each vertex
s of S to vs.)

To define G(λ) on T we proceed as follows. First, define an affine map
Φ that rescales T into a larger cube with the same vertex v1 and the side
length equal to the half of the side length of E. Let b be a point of T .

The curve G(λ)(b) will consist of three arcs. The first arc will be C
f(v1)
λ

reparametrized by [0, λ]. The second arc will be the image under F of the
straight line segment connecting (v1, s(λ)) with (Φ(b), s(λ)). This arc will
be parametrized by [λ, λ(2 − λ)]. Finally, we attach F (Φ(b), t)|t∈[s(λ),1] that
will be reparametrized by [λ(2 − λ), 1].

It remains to define G(λ) on W . For each of l cartesian cooordinates
of E consider the projection of W onto one of sides of E parallel to the
corresponding coordinate axis. Denote this side of E by si. The result can
be a segment of length equal to 1−λ

2 × the side length of E adjacent to one
of the vertices of si. Collect all such coordinates in a linear space P1. Or,
alternatively, the result will be a segment of length λ× the side length of
Ri1,...,il in the interior of si. Collect all such coordinates in a linear space
P2. The direct sum of P1 and P2 will be the whole space Rl parallel to
E. Let Oi, i = 1, 2 denote the orthogonal projections of Rl onto Pi. We
can slice W into isometric copies of O2(W ), namely O2(W ) + p1, where p1

varies over O1(W ). We are going to define G(λ) on each of these copies
of O2(W ) separately (but so that the resulting map G(λ) on W will also
depend continuously on p1). Note that A = O2(W ) is a face of E = Ri1,...,il .
Denote the center of the cube A by mA. Consider the affine rescaling Ψ of W
that preserves P2-coordinates, fixes W

⋂
∂Ri1,...,il and maps the (l− 1)-face

of W opposite to W
⋂
∂Ri1,...,il to the affine subspace of Rl, where the values

of all P1-coordinates are equal to those of the center of the cube Ri1,...,il .
Define mλ(p1) as mA + Ψ(p1), and oλ(p1) as (mλ(p1), s(λ)). Consider the
(A − λ − oλ(p1))-umbrella u = YA(λ, oλ(p1)). Now consider the canonical
filling of u. Reparametrize each curve in the image of the canonical filling
of u by [0, λ(2−λ)] and then extend it by the image under F of the straight
line segment in Ri1,...,il × [0, 1] connecting oλ(p1) and (mλ(p1), 1). This last
arc should be reparametrized by [λ(2 − λ), 1]. Take the composition of the
resulting map A −→ ΩpM

n with the translation A+ p1 −→ A. Now define
G(λ) on A+ p1 as the resulting map.

This completes our construction of G. 2
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5 Short geodesic segments connecting pairs of

points

In this section we will prove that for each pair of points on a closed Rie-
mannian manifold there exist “many” “short” geodesic segments that join
the points. This fact follows directly from the following lemmas, which are
restatements of the similar lemmas for geodesic loops.
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Figure 19: Short path homotopy

Lemma 5.1 Let Mn be a closed Riemannian manifold of diameter d. Let
e1, e2 be segments of lengths l1, l2 respectively, where e1 connects a point p
with a point r and e2 connects the point r to a point q, (see Fig. 19 (a)).
Consider the join e1 ∗ e2. Assume that it is path homotopic to a path e3 of
length l3 ≤ l1 + l2 via a length non-increasing path homotopy, (see Fig. 19
(b)).

Then there exists a path homotopy between e1 and e3 ∗ ē2, (Fig. 19 (c))
that passes through curves of length at most l1 + 2l2.

Proof. The proof is essentially demonstrated by Fig. 19 (d)-(f). We begin
with e1, (Fig. 19 (d)), which is homotopic to e1 ∗ e2 ∗ ē2 over the curves of
length l1 + 2l2, (Fig. 19 (e)). Since e1 ∗ e2 is path homotopic to e3, and the
path homotopy does not increase the length, we can attach ē2 to all paths
in this path homotopy to obtain a homotopy between e1 ∗ e2 ∗ ē2 and e3 ∗ ē2,
(see Fig. 19 (f)). 2
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Figure 20: Modified length shortening process

Theorem 5.2 Let Mn be a closed Riemannian manifold, p, q, x points of
Mn. Let γ(t) be a curve of length L starting at p and ending at x. Then, if
there exists an interval (l, l + 2d], such that there is no geodesic connecting
p and q on Mn of length in this interval providing a local minimum of the
length functional on ΩpqM

n, then there is a path-homotopy between γ(t) and
a path γ̃(t) of length at most l + d passing through curves of length at most
L+ 2d.

Proof. The proof relies on the previous lemma, but is otherwise analogous
to the proof of Theorem 1.5, (see Fig. 20).

For example, here is an adaptation of the first step of the curve shortening
process described in our proof of Theorem 1.5. By compactness there exists
a small δ, such that there are no short geodesics connecting p and q of
length in the interval (l, l + 2d + δ]. Consider a segment e1 of the original
curve of length l + d + δ connecting p with some point r. Let us denote
a minimizing geodesic connecting the point r with the point q by e2. The
curve e1 ∗ e2 is path homotopic to e3 of length at most l. (Here we define
e3 as a shortest path which is path homotopic to e1 ∗ e2 via a length non-
increasing homotopy.) Therefore, by the previous lemma there is a path
homotopy between e1 and e3 ∗ ē2 of length at most l + d over the curves of
length at most l + 2d.

2

The above result has the following corollaries.

Theorem 5.3 Let Mn be a closed Riemannian manifold of diameter d,
p, q, x be points of Mn. Assume that there exists k ∈ N such that
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there is no geodesic of length in the interval in the interval (dist(p, q) +
(2k − 2)d, dist(p, q) + 2kd] joining p and q that is a local minimum of the
length functional on ΩpqM

n. Then for every positive integer m every map

f : Sm −→ ΩpxM
n is homotopic to a map f̃ : Sm −→ Ω

L+o(1)
px Mn, where

L = ((4k + 2)m + (2k − 3))d + (2m + 1)dist(p, q). Furthermore, every
map f : (Dm, ∂Dm) −→ (ΩpxM

n,ΩL
pxM

n) is homotopic to a map f̃ :

(Dm, ∂Dm) −→ Ω
L+o(1)
px Mn relative to ∂Dm. In addition, if for some R the

image of f is contained in ΩR
pxM

n, then the homotopy between f and f̃ can be

chosen so that its image is contained in Ω
R+(4k+2)md+(2m+1)dist(p,q)+o(1)
px Mn.

Also, in this case for every R > 0 every map f : S0 −→ ΩR
pxM

n is homo-

topic to a map f̃ : S0 −→ Ω
(2k−1)d+dist(p,q)
px by means of a homotopy with the

image inside ΩR+2d
px Mn.

This theorem can be proven exactly as Theorem 1.1 but using the previ-
ous theorem instead of Theorem 1.5 on the very first step of induction (from
m = 1 to m = 2). As before, o(1) denotes an arbitrarily small positive sum-
mand, and all o(1) terms can be omitted, if Mn is an analytic Riemannian
manifold.

Corollary 5.4 Let Mn be a closed (m−1)-connected Riemannian manifold
of diameter d with a non-trivial mth homotopy group. Then if for some pair
of points p, q there exists k ∈ N , such that no geodesic connecting p and q
has the length in the interval (2(k − 1)d+ dist(p, q), 2kd + dist(p, q)] and is
a local minimum of the length functional on ΩpqM

n, then the length of a
shortest non-trivial periodic geodesic on Mn is at most ((4k + 2)m+ (2k −
3))d + (2m+ 1)dist(p, q) ≤ (4km + 2k + 4m− 2)d.

Proof. By Theorem 5.3 we can construct a non-contractible sphere of
dimension m in the space of loops based at p that is swept-out by closed
curves of length at most ((4k+2)m+(2k−3))d+(2m+1)dist(p, q)+o(1). Now
the standard proof of the Lyusternik-Fet theorem establishing the existence
of a non-trivial periodic geodesic on every closed manifold (cf. [Kl]) will
yield the desired upper bound for the length of a shortest periodic geodesic.

2

This corollary vastly generalizes previous results by F. Balacheff ([B])
and R. Rotman ([R2]) in some directions. These previous results correspond
to the cases k = 1, p = q and m = 1 ([B]) and k = 1, p = q and m = 2
([R2]). Yet the upper bound for the length of a shortest non-trivial periodic
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geodesic provided by the corollary in these two cases is somewhat worse
than the corresponding bounds in the quoted papers (5d versus 4d in [B],
and 11d versus 6d in [R2]).

6 Non-simply connected case

Here we prove Theorem 1.3, which is required to complete the proof of
Theorem 1.2 in the non-simply connected case, as well as its generalization
Theorem 1.4.

First, recall a result of Gromov ([Gr]) asserting that for every closed
Riemannian manifold M of diameter d and every point p ∈ M there exists
a finite presentation of π1(M

n) such that all its generators can be realized
by geodesic loops of length ≤ 2d based at p. This result will be repeatedly
used in this section.

Definition 6.1 Let G be a finitely presented group. A word in generators
of G and their inverses is called minimal if the element of G presented by
this word cannot be presented by a word of smaller length. The complexity
of an element of G with respect to the considered finite presentation is the
length of a minimal word representing this element. The complexity of the
trivial element is, by definition, zero.

Proposition 6.2 Let G be a finitely presented group. Assume that there
exists an element h ∈ G of complexity m ≥ 1. Then G has at least 2m
elements: the trivial element e, h, and at least two elements of complexity i
for every i = 1, 2, . . . ,m− 1.

This proposition has the following immediate corollary:

Corollary 6.3 Assume that G is a finitely presented finite group of order
l. Then the complexities of elements of G do not exceed l

2 . If there exists

an element of complexity l
2 , then it is unique.

Proof of Proposition 6.2. We will start from the following observation
that will be repeatedly used in our proof: Any subword of a minimal word
is minimal.

Now assume that h can be represented by a minimal word starting with
a positive power of a generator a. Among all minimal words representing
h and starting with aj for some j choose a word w for which j is maximal
possible.
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Case 1. If w = am, then for every i between 1 and m− 1, the words ai and
a−i are minimal and represent different words of complexity i. (Indeed, if
ar = a−s for r, s ∈ {−(m − 1), . . . ,m − 1}, r 6= −s, then ar+s = a−(r+s) =
a|r+s| = e. As |r + s| ≤ 2m − 2, am can be represented by a shorter word
am−|r+s|, which contradicts the minimality of am.)

Case 2. w = akbl1 . . . lm−k−1, where b, l1, . . . , lm−k−1 are generators of G
or their inverses. Moreover, we can assume that b is not equal to a power of
a.

Now we can consider 2k words ai, a−i for i = 1, . . . , k − 1. We have two
distinct words of complexity i for each considered value of i in this set.

For every value of i ∈ {k, . . . m − 1} consider the initial subword of
w of length i, and the subword of w of length i starting from the second
letter. For example, for i = k we will be considering ak and ak−1b, for
i = k+ 1 akb and ak−1bl1. These words are minimal and represent elements
of G of complexity i. We need only to verify that they are not equal to
each other. But if ak−1bl1 . . . li−k = akbli . . . li−k−1, then we can replace
the subword ak−1bl1 . . . li−k by akbli . . . li−k−1 in w and obtain the word
ak+1bl1 . . . li−k−1li−k+1 . . . lm−k−1 of length m representing h but starting
from a higher power of a than w. This contradicts the definition of w. 2

Proof of Theorem 1.3. Let p̃, q̃ be two points of the universal covering M̃
of M . We know that M̃ can be tiled by isometric connected fundamental
domains of radius d centered at points p̃i that project to the same point
p ∈ M as p̃. The interiors of these domains are Voronoi cells of p̃i, i.e. sets
of points x of M̃ for which p̃i is the (unique) closest point to x in the inverse
image of p.

Observe that every point s in a connected fundamental domain S ⊂ M̃
is within distance d of the boundary of S. Indeed, let y be a point in P (∂S),
where P denotes the universal covering map M̃ −→M . There exists a curve
γ of length ≤ d connecting P (s) and y in M . This curve lifts to a curve
γ̃ between s and a lift ỹ of y. If ỹ ∈ S, then ỹ ∈ ∂S, and we are done.
Otherwise, ỹ 6∈ S, and so γ̃ must at some point cross the boundary of S.
This point is a point of ∂S within the distance d of s. (This proof of the
observation stated at the beginning of this paragraph was suggested to us
by an anonymous referee of this paper. We would like to thank the referee
for this suggestion.)

We can assume that p̃ = p̃1 is the base point of M̃ . The number of these
fundamental domains is equal to the cardinality C of π1(M). Correspond-
ingly, each of these fundamental domains contains a point q̃i that projects
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to the same point of M as q̃. Assume that q̃ = q̃j for some j ∈ {1, . . . C}.
Note that for every j p̃j corresponds to an element gj of π1(M). Vice

versa for every element g ∈ G we can define the corresponding p̃j by lifting
a loop representing g; p̃j will be the endpoint of the lifted loop and will
not depend on the choice of a loop representing g. If a finite presentation
of π1(M) is chosen, all of its generators are represented by loops in M
of length ≤ 2d based at p, and gj is represented by a word v of length
l in the generators of M and their inverses, then the distance between p̃
and p̃j cannot exceed 2dl, as p̃j is the endpoint of the result of lifting to
M̃ of a join of l loops in M representing generators of π1(M) and their
inverses combined exactly as the corresponding letters in v. Let u be the
maximal complexity of an element of π1(M) with respect to the chosen
finite presentation of π1(M). Corollary 6.3 implies that either u < C

2 ,
and, therefore, u ≤ C−1

2 , or u = C
2 , but there is only one element of this

complexity, and the complexity of the other elements does not exceed C
2 −

1. In the first case, dist(p̃1, p̃j) ≤ 2d(C−1
2 ) ≤ d(C − 1), and dist(p̃, q̃) =

dist(p̃1, q̃j) ≤ dist(p̃1, p̃j) + dist(p̃j , q̃j) ≤ d(C − 1) + d = Cd. In the second
case, dist(p̃, q̃) ≤ Cd by the same argument unless the element of π1(M

n)
corresponding to p̃j has complexity C

2 .
In this last case, we are first going to recall that the distance from a point

z in a fundamental domain to the boundary of this domain is at most d. Now
denote one of the points closest to q̃j in the boundary of its fundamental
domain by ̺. The distance between q̃j and ̺ does not exceed d. The point
̺ must be in the closure of another fundamental domain centered at p̃m for
some m 6= j. Now we can write

dist(p̃, q̃) = dist(p̃1, q̃j) ≤ dist(p̃1, p̃m) + dist(p̃m, ̺) + dist(̺, q̃j) ≤

≤ 2d(
C

2
− 1) + d+ d = Cd.

2

Corollary 6.4 Let G be a (finite or infinite) finitely presented group, and
k an integer number greater than 2. Assume that G has at least k elements.
Then either
(1) There exist at least k elements of G with complexity strictly less than k

2 ;
or
(2) The number k is even. There is at least one element of complexity k

2 ,

and there exist exactly k − 1 elements of complexity ≤ k
2 − 1. Moreover, in

this case G is isomorphic to one of the following groups: Z, ZN for some
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N ≥ k, Z2 ∗ Z2, or Z2 ∗ Z2/{(ab)
N} for some N ≥ k

2 , where a, b are the
non-trivial elements in the two copies of Z2.

Proof. If not all of the elements of G have complexity < k
2 , then there

exists an element of complexity k
2 , if k is even, or k+1

2 , if k is odd. Arguing
as in the proof of Proposition 6.2 we see that in the second case G has k
elements of complexity ≤ k−1

2 . Assume now that k is even, and there exists

an element of complexity k
2 . Again, arguing as in the proof of Proposition

6.2 we see that there are at least k − 1 elements of complexity ≤ k
2 − 1.

Assume that all of the elements of G of complexity ≤ k
2 −1 are among these

k−1 elements constructed in the proof of Proposition 6.2. Then we see that
either (a) the element of complexity k

2 is a power of a generator a, each other
generator of G is equal to a or a−1, and, therefore G is cyclic; or (b) the
element of complexity k

2 is represented by a word of the form aib . . ., where
b 6= a or a−1. In case (b) every other generator c must be equal to a, b or
their inverses. Furthermore, as there are exactly two elements of complexity
one a−1 must be equal to a, and b−1 to b. Therefore G is isomorphic either
Z2 ∗ Z2 or to some its quotient. It is easy to see that if G is a quotient of
Z2 ∗ Z2, then this quotient must be isomorphic to < Z2 ∗ Z2|(ab)

N = e >
for N ≥ k

2 . 2

Proof of Theorem 1.4. Let p̃ be a fixed lifting of p to the universal covering
M̃ ofM . TileM by connected fundamental domains such that their interiors
are the Voronoi cells of points in the inverse image of p under the covering
map. These fundamental domains have radius ≤ d. All of them correspond
to different elements of G that act as a group of covering transformations. If
p̃i corresponds to an element of G of a complexity l, then dist(p̃, p̃i) ≤ 2dl,
and if q̃i is the lifting of q that lies in the fundamental domain centered at p̃i,
then dist(p̃, q̃i) ≤ dist(p̃, p̃i)+dist(p̃i, q̃i) ≤ 2ld+d = (2l+1)d. Assume that
there exist k elements of G of complexity ≤ k−1

2 . Then we can connect p̃

with k liftings of q into M̃ at distances ≤ kd from p̃ by geodesics. Projecting
these geodesics to M we will obtain k distinct geodesics between p and q of
length ≤ kd, which are not even pairwise path homotopic.

Corollary 6.4 implies that it only remains to consider the cases when G
is a cyclic group of infinite order or of order ≥ k, or when G is either Z2 ∗Z2

or its quotient < a, b|a2 = e, b2 = e, (ab)N = e >, N ≥ k
2 .

The proof of Proposition 2 in [NR0] implies the existence of k pairwise
non path-homotopic geodesics of length ≤ kd connecting p and q in the case
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when G is Z or ZN , N > k. Theorem 1.3 implies the desired assertion when

G = Zk or, when G =< a, b|a2 = b2 = (ab)
k
2 = e >. It remains to consider

the cases when G = Z2 ∗ Z2 or Z2 ∗ Z2/{(ab)
N}, N > k

2 . This can be done
using the method of the proof of Proposition 2 in [NR0] as follows:

To complete the proof in these remaining cases first note that there
are exactly k − 1 elements of G of complexity ≤ k

2 − 1, namely

e, a, b, ab, ba, . . . , (ab)
k
2
−1a, (ba)

k
2
−1b. If we consider the liftings of q into

the corresponding fundamental domains, connect them with p̃ by a minimal
geodesics, and project these geodesics back to M , the result will be k−1 dis-
tinct geodesics in M between p and q of length ≤ (k2 −1)(2d)+d = (k−1)d.
It remains to construct one more geodesic between p and q of length ≤ kd.
We will prove that p̃ and the lifting of q in either the fundamental domain

corresponding to (ab)
k
2
−1a or to (ba)

k
2
−1b can be connected by a geodesic of

length ≤ kd. Note, that we are immediately guaranteed a geodesic between
these points (for either of these two domains) of length ≤ k

2 (2d)+d = (k+1)d,
but we want to improve one of these two upper bounds by d. Of course, we
will immediately obtain the desired improvement if there exists a geodesic
between p̃ and a lifting of q in one of the fundamental domains corresponding
to elements of G of complexity between 2 and k

2 − 1 of length ≤ 2d. Indeed,
in this case we can connect p̃ and the center of this fundamental domain by
a path of length ≤ 3d (instead of at least 4d), and at least one of these two
upper bounds improves by d, as desired.

Therefore, we assume that the distances from p̃ to all liftings of q to
fundamental domains corresponding to elements of G of complexity between
2 and k

2 −1 are greater than 2d. Now realize a and b by geodesic loops la and
lb of length ≤ 2d based at p. Denote the midpoint of la by A. Connect A
and q by a minimizing geodesic γa. Denote two halves of l regarded as paths
between p and A by l1a, l2a. Consider paths l1a ∗ γa and l2a ∗ γa between
p and q. Apply a length non-increasing curve shortening process to both of
these paths. At the end we will obtain two geodesics between p and q of
length ≤ 2d. The liftings of these geodesics to M̃ can connect p̃ only with
liftings of q in the fundamental domains corresponding to e, a or b, as our
assumption implies that they are too short to reach liftings of q to other
fundamental domains. As the join of l1a ∗γa and γ̄a ∗ l̄2a is a loop homotopic
to a, the lifting of one of these two paths connects p̃ with the lifting of q
to the fundamental domain centered at p̃ and corresponding to e, and the
other, say l2a∗γa connects p̃ with the lifting of q into the fundamental domain

corresponding to a. Now consider the path (la∗lb)
k
2
−1∗l2a∗γa between p and
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q. Its length does not exceed (2d)(k2 − 1) + d+ d = kd. This path lifts to a

geodesic between p̃ and the lifting of q corresponding to (ab)
k
2
−1a. Applying

to this path a curve-shortening process we will obtain the desired geodesic
between p̃ and the lifting of q to the fundamental domain corresponding to

(ab)
k
2
−1a of length ≤ kd. 2

7 Depth of local minima

We will start from the following definition:

Definition 7.1 Let γ be a path connecting two (not necessarily distinct)
points p and q in Mn. Assume that γ is a local minimum of the length
functional on ΩpqM

n. Assume, further, that γ is NOT a global minimum of
the length functional on the connected component of ΩpqM

n that contains γ
(and all paths path homotopic to γ). For every path homotopy F : [0, 1] −→
ΩpqM

n between γ and a path of length that is strictly smaller than the length
of γ define the level of F as the maximum of lengths of paths F (t) for
t ∈ [0, 1]. Define the level of γ as the infimum of levels of all path homotopies
between γ and a path of a smaller length. Define the depth of γ as the
difference between its level and length.

If γ is a global minimum of the length functional on its connected com-
ponent of ΩpqM

n, then we say that the level and the depth of γ are infinite.

We are going to present the following generalizations of Theorems 1.5,
1.1, 5.3:

Theorem 7.2 Let Mn be a closed Riemannian manifold of diameter d. Let
p and q be points in Mn, and S a non-negative real number. Let γ(t) be a
curve of length L connecting points p and q. Assume that there exists an
interval (l, l + 2d], such that there is no geodesic loop based at p on Mn of
length in this interval that provides a local minimum of the length functional
on ΩpM

n of depth > S. Then there exists a curve γ̃(t) of length ≤ l + d
connecting p and q and a path homotopy between γ and γ̃ such that the
lengths of all curves in this path homotopy do not exceed L+ (S + 2d).

Proof:. The proof is essentially the same as the proof of Theorem 1.5 with
the following modification: If we get stuck at a geodesic loop of length in the
interval (l, l + 2d+ δ] which is a local minimum of the length functional on
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ΩpM
n of depth ≤ S, we contract this loop to a point or to a geodesic loop

of length ≤ l by a path homotopy paying the price that the length of curves
during the general path homotopy increases by a summand ≤ S + 2d. 2

Using Theorem 7.2 in the proof of Theorem 1.1 instead of Theorem
1.5 we obtain:

Theorem 7.3 Let Mn be a closed Riemannian manifold of diameter d,
p, q, x be points of Mn, S ≥ 0 a real number. Assume that there exists k ∈ N
such that there is no geodesic of length in the interval (dist(p, q) + (2k −
2)d, dist(p, q) + 2kd] joining p and q which is a local minimum of the length
functional on ΩpqM

n of depth > S. Then for every positive integer m every

map f : Sm −→ ΩpxM
n is homotopic to a map f̃ : Sm −→ Ω

L+o(1)
px Mn,

where L = ((4k + 2)m + (2k − 3))d + (2m + 1)dist(p, q) + (2m − 1)S.
Furthermore, every map f : (Dm, ∂Dm) −→ (ΩpxM

n,ΩL
pxM

n) is homo-

topic to a map f̃ : (Dm, ∂Dm) −→ Ω
L+o(1)
px Mn relative to ∂Dm. In

addition, if for some R the image of f is contained in ΩR
pxM

n, then

one can choose the homotopy between f and f̃ so that its image is con-

tained in Ω
R+2mS+(4k+2)md+(2m+1)dist(p,q)+o(1)
px Mn. Also, in this case for

every R every map f : S0 −→ ΩR
pxM

n is homotopic to a map f̃ :

S0 −→ Ω
(2k−1)d+dist(p,q)
px via a homotopy passing through curves of length

≤ R+ S + 2d+ o(1) connecting p and x.

As before, o(1) denotes a summand that can be replaced by an arbitrarily
small positive number ν. If Mn is an analytic Riemannian manifold, then
all these o(1) summands are not necessary. Also, observe that if x = q = p,
then all the path spaces in Theorem 7.3 become the spaces of loops based
at p.

Definition 7.4 Let Mn be a closed simply-connected Riemannian manifold,
and Sp(M

n) denote the maximal depth of a non-trivial local minimum of the
length functional on Ω2d

p M
n. (The maximum exists as the set of all loops of

length ≤ 2d on Mn parametrized by the arclength is compact.) Equivalently,
we can define Sp(M

n) as the infimum of S such that each loop λ based at p
of length ≤ 2d is contractible via a path homotopy passing through loops of
length ≤ length(λ) + S. We will call Sp(M

n) the depth of (Mn, p).

Apply Theorem 7.3 to S = Sp(M
n), x = q = p and k = 1. By definition

of Sp(M
n) there are no local minima of the length functional on ΩpM

n with
length in the interval (0, 2d] and depth > Sp(M

n). Therefore,
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Theorem 7.5 Let Mn be a closed simply-connected Riemannian manifold
with diameter d, p a point of Mn, S the depth of (Mn, p), and m a pos-
itive integer number. Then every map f : Sm −→ ΩpM

n is homotopic

to a map f̃ : Sm −→ Ω
(6m−1)d+(2m−1)S+o(1)
p Mn. Furthermore, every map

f : (Dm, ∂Dm) −→ (ΩpM
n,Ω

(6m−1)d+(2m−1)S
p Mn) is homotopic to a map

f̃ : (Dm, ∂Dm) −→ Ω
(6m−1)d+(2m−1)S+o(1)
p Mn relative to ∂Dm. In addi-

tion, if for some R the image of f is contained in ΩR
pM

n, then one can

choose the homotopy between f and f̃ so that its image is contained in

Ω
R+2mS+6md+o(1)
p Mn. Also, for every R > 0 every map f : S0 −→ ΩR

pM
n

is contractible by a homotopy with the image inside Ω
R+S+2d+o(1)
p Mn.

8 Quantitative Morse theory on loop spaces.

The quantitative Morse theory on loop spaces was initiated in [Gr0] (see also
ch. 7 of [Gr]). It studies injectivity and surjectivity properties of homomor-
phisms in homology induced by the inclusions of sublevel sets of the length
functional on a loop space into the loop space. Here is the main result which
is a part of Theorem 7.3 in [Gr]:

Theorem 8.1 (M. Gromov) For every closed simply-connected Rieman-
nian manifold Mn and a point p ∈Mn there exists a constant C such that for
every positive integer m the inclusion ΩCm

p Mn into ΩpM
n induces surjective

homomorphisms Hi(Ω
Cm
p Mn) −→ Hi(ΩpM

n) for all i ∈ {0, 1, . . . ,m}.

In other words, for every m ≥ 1 all m-dimensional homology classes of
ΩpM

n can be realized by cycles “made” out of loops of length ≤ Cm based
at p. To prove this theorem Gromov demonstrated that there exists C such
that for every m there exists an explicit finite dimensional CW-subcomplex
Xm ⊂ ΩCm

p ⊂ ΩpM
n such that every map of every m-dimensional CW-

complex Y into ΩpM
n is homotopic to a map of Y into Xm.

He did not estimate C in his proof. Yet it is easy to see that his proof
yields an upper bound for C in terms of the following quantity that we will
denote Wp(M

n): This quantity is defined as the infimum of w such that
every loop of length ≤ 2d based at p can be contracted to p by a path
homotopy H such that the length of the trajectory H(x, t), t ∈ [0, 1], of
every point x ∈ γ during H does not exceed w.

In other words, denote the infimum of all values of T such that the
inclusion homomorphisms πi(Ω

T
pM

n) −→ πi(ΩpM
n) are surjective for all
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i ∈ {0, 1, . . . ,m} by TMn,p(m). (Whether to use the homology or the ho-
motopy groups in this definition is a matter of taste; the resulting values
of TMn,p(m) will be the same.) Then the original proof of Gromov implies
that TMn,p(m) ≤ Cm, and one can use his proof to get an explicit upper
bound for C that linearly depends on Wp(M

n). (Gromov also notes that
TMn,p(m) ≥ cm for some c > 0.)

On the other hand our Theorem 7.5 has the following immediate corol-
lary:

Theorem 8.2 Let Mn be a closed simply-connected Riemannian manifold
of diameter d, p a point of Mn, and S the depth of (Mn, p) (see Definition
7.4). Then
A. For every positive integer m the inclusion homo-

morphisms πi(Ω
(6m−1)d+(2m−1)S+o(1)
p Mn) −→ πi(ΩpM

n) are surjective for
all i ∈ {0, 1, . . . ,m}. Equivalently, for every (arbitrarily small) positive ν
every map of a m-dimensional polyhedron X to ΩpM

n is homotopic to a

map of X into Ω
(6m−1)d+(2m−1)S+ν
p Mn.

B. Let m be any positive integer number, R > 0 a real number. If a
map f : Sm −→ ΩR

pM
n is contractible, then it can be contracted within

Ω
max{R,5d+S}+2mS+6md+o(1)
p Mn ⊂ Ω

R+(6m+5)d+(2m+1)S
p Mn.

Proof:. Part A can be proven by a straightforward application of The-
orem 7.3. To prove part B we first apply Theorem 7.3 to homotop

f to a (contractible) map f̃ of Sm into Ω
(6m−1)d+(2m−1)S+o(1)
p Mn inside

Ω
R+2mS+6md+o(1)
p Mn.If R ≤ (6m− 1)d + (2m− 1)S,we just take f̃ = f .

Then we consider a homotopy F that contracts f̃ . We regard F as

a map of (Dm+1, ∂Dm+1) −→ (ΩpM
n,Ω

(6m−1)d+(2m−1)S+o(1)
p Mn).Now we

again apply Theorem 7.3 to replace F by a homotopy F̃ with the image

inside Ω
(6(m+1)−1)d+(2(m+1)−1)S+o(1)
p Mn = Ω

(6m+5)d+(2m+1)S+o(1)
p Mn. Now

we see that the combination of the homotopies from f to f̃ and the con-

tracting homotopy F̃ takes place in Ω
R̃+o(1)
p Mn, where R̃ = max{R+2mS+

6md, (6m + 5)d+ (2m+ 1)S} = max{R, 5d + S} + 2mS + 6md. 2

Note, that for every m ≥ 1 we have (6m−1)d+(2m−1)S ≤ 2m(S+3d).
Therefore, Theorem 8.2 implies that TMn,p(m) ≤ 2(Sp(M

n) + 3d)m. Thus,
we obtain the following corollary:

Theorem 8.3
TMn,p(m) ≤ 2(Sp(M

n) + 3d)m.
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To compare our upper bound for TMn,p(m) with the upper bound that
follows from the original proof of Theorem 8.1 given by Gromov (see ch. 7
of [Gr]) observe, that a trick from [NR] can be used to show that Sp(M

n) ≤
2Wp(M

n) + 2d, and, as Wp(M
n) is, obviously, greater than or equal to d

2 ,
2Sp(M

n) + 6d ≤ 24Wp(M
n). (The inequality Sp(M

n) ≤ 2Wp(M
n) + 2d

immediately follows from the fact that any homotopy contracting a curve
γ of length L to a point p, such that the length of the trajectory of every
point does not exceed W , can be converted into a homotopy where the
length of curves does not exceed 2W + l. The idea is very simple: One first
moves only a very small interval of γ, so that only its central part reaches
p. Then we gradually expand the “tooth”. At every stage only a very
short interval of γ is being homotoped towards p.) On the other hand, it is
not difficult to construct examples that demonstrate that Wp(M

n) cannot
be majorized by any function of Sp(M

n). All known upper bounds for
Wp(M

n) in terms of Sp(M
n) involve also the injectivity radius of Mn (or

the contractibility radius, or, at least, the simply connectedness radius of

Mn) - and are also exponential in
Sp(Mn)
inj(Mn) (see [NR]). Also, although we

did not check the details, the examples constructed in the proof of Theorem
1.2 of [P] seem to demonstrate that Wp(M

n) can, indeed, be exponentially
larger than Sp(M

n) even in situations when the simply-connectedness radius

is ∼ 1. Thus, our upper bound 2Sp(M
n)+6d for supm

TMn,p(m)
m in Theorem

8.3 seems to be qualitatively better than an upper bound following from the
original proof.
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Sémin. Théor. Spectr. Géom., 22, Univ. Grenoble I, Saint-Martin-d’Hères,
2004, MR2136136.

[BCK] F Balacheff, C.B. Croke, M. Katz A Zoll counterexample to a
geodesic length conjecture, Geom. Funct. Anal. 19(2009), 1-10.

[C] C. B. Croke, Area and the length of the shortest closed geodesic, J.
Diff. Geom. 27 (1988), 1-21.

[FHT] Y. Felix, S. Halperin, J.-C. Thomas, Rational Homotopy Theory,
Springer-Verlag, NY, 2001.

[FK] S. Frankel, M. Katz, The Morse landscape of a Riemannian disc,
Ann. Inst. Fourier (Grenoble) 43(2)(1993), 503-507.

[Gr] M. Gromov, Metric structures for Riemannian and non-Riemannian
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