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Abstract. Let Mn be a closed Riemannian manifold homotopy equivalent to the
product of S2 and an arbitrary (n−2)-dimensional manifold. In this paper we prove
that given an arbitrary pair of points onMn there exist at least k distinct geodesics
of length at most 20k!d between these points for every positive integer k. Here d
denotes the diameter of Mn.

Introduction and Main Results

In 1951 J.-P. Serre proved that for any pair of points on a closed Riemannian man-
ifold Mn there exist infinitely many geodesics connecting them. It is, therefore,
natural to wonder about the lengths of these geodesics. For example, in [NR1] we
made the following conjecture:

Conjecture A. There exists a function f(k, n), such that for every closed Rie-
mannian manifold Mn of diameter d and every pair of points x, y ∈Mn there exist
at least k geodesics between x and y of length at most f(k, n)d.

Example 1. For any two points on a round sphere there always exist k geodesic
segments of length ≤ kd (see Figure 1). On the other hand, F. Balacheff, C. Croke
and M. Katz [BCK] recently constructed examples of Riemannian metrics on S2

arbitrarily close to the standard round metric such that the length of the shortest
non-trivial geodesic loop based at every point is greater than 2d. These examples
show that one cannot take f(n, k) = k in Conjecture A even for n = k = 2.

Example 2. Let Mn be a closed Riemannian manifold with an infinite torsion-
free fundamental group. Then it is not difficult to see that for any pair of points
p, q ∈ Mn there exist at least k distinct geodesic segments of length ≤ kd [NR1].
More generally, if π1(M

n) is either an infinite group or a finite group with at least
k elements one can consider the universal covering space of Mn with the covering
metric. Let p̃ be a lift of the base point inMn to the universal covering. It is known
that one can choose the fundamental domain U containing p̃ such that U contains
the set S of all points x of the universal covering for which p̃ is the closest to x lifting
of p, and U is contained in the closure of S. As the distance from p̃ to any point of S
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Figure 1: Short geodesic segments on a round sphere.

does not exceed d, the diameter of U does not exceed 2d. Next consider the metric
ball B2kd(p̃) centered at p̃ of radius 2kd. In that metric ball there exist at least k
fundamental domains isometric to U and k distinct points q̃1, . . . , q̃k ∈ {π−1(q)}.
Consider k minimal geodesic segments α̃i, i = 1, . . . , k, connecting p̃ with q̃i. Each
of them is projected onto a distinct geodesic segment αi = π(α̃i) connecting the
points p and q and of length ≤ d+ 2(k − 1)d = (2k − 1)d.

If the fundamental group of Mn is finite and has cardinality ≤ k − 1, we can
consider the universal covering M̃n of Mn. Its diameter will be at most 2(k − 1)d.
If there exist k distinct geodesic of length ≤ f(n, k) diam(M̃n) between every pair
of points of M̃n, then we can project these geodesics to Mn, obtaining at least k
distinct geodesics of length ≤ 2(k − 1)f(n, k)d between every pair of points of Mn.
Therefore the general case of Conjecture A would follow from its validity for simply
connected manifolds.

Some other evidence of the validity of Conjecture A is our recent results [NR2]
and [NR3] (see also [NR1]), where we showed that on every closed Riemannian
manifold and for every pair of points of this manifold there exist at least two geodesics
connecting these points of length ≤ 2nd. We also showed that if a Riemannian
manifold M is diffeomorphic to the 2-sphere, then for every pair of points x, y ∈M
and every k there exist at least k geodesic segments joining x and y of length at
most f(k)d, where f(k) = 4k2 − 2k − 1.

In this paper we will prove the following theorem.

Theorem 0.1. LetMn be a closed Riemannian manifold which is either homotopy

equivalent to S2 × Nn−2 for an arbitrary manifold Nn−2 or is a simply connected

manifold such that for some map φ : S2 → Mn the composition φ ◦ H of φ and

the Hopf fibration H : S3 → S2 represents a non-trivial element of infinite order

in π3(Mn). Then for every pair of points p, q ∈ Mn there exist at least k distinct

geodesics starting at p and ending at q of length ≤ 20k!d. If p = q, then this upper

bound can be replaced by a better upper bound 8k!d.

Remark. Our calculations yield the upper bounds of the form (8k! + o(k!))d for
general p, q and (4k! + o(k!))d in the case, when p = q in Theorem 0.1. As we do
not believe that even these upper bounds are optimal, we decided to simplify the
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formulae for these upper bounds by choosing higher values of the constant factors
at k!d.

A nice proof of Serre’s theorem can be found in a paper by Albert Schwarz [Sc].
Schwarz also proved that the length of kth geodesic can be majorized by C(Mn)k,
where C(Mn) does not depend on k but only on the Riemannian manifold Mn.
Here is a rough sketch of Schwarz’s proof in the case when Mn is simply connected.
First, he makes an observation that the Cartan–Serre theorem (cf. [FHT, Th. 16.10])
implies that there exists an even-dimensional real cohomology class u of the loop
space ΩMn such that all its cup powers ui are non-trivial. The space of paths
Ωa,b(M

n) is homotopy equivalent to ΩMn. An explicit homotopy equivalence h :
ΩMn = Ωa,a(M

n) → Ωa,bM
n can be constructed as follows: Fix a minimizing

geodesic between a and b. Attach this geodesic at the end of each loop based at a.
Now one can apply the Morse theory to produce critical points of the length

functional on Ωa,bM
n corresponding to cohomology classes h∗(ui) for i = 1, 2, . . . .

As ui = uj
⋃
ui−j , when i > j, the standard Lyusternik–Schnirelman trick (cf. [K])

implies that either h∗(ui) and h∗(uj) correspond to different critical points (i.e. to
distinct geodesics between a and b) or the critical level corresponding to h∗(uj)
contains a set of critical points of positive dimension. (In the last case there exists
an infinite set of geodesics between a and b of the same length.) So, the set of
geodesics between a and b is infinite. In order to estimate their lengths it is sufficient
to consider the case when h∗(ui) and h∗(uj) correspond to different critical points
whenever i != j.

Now recall that the Pontryagin product in the rational homology group of the
loop space is the product induced by the geometric product ΩMn ×ΩMn → ΩMn.
(By the geometric product of two loops α and β we just mean their join α∗β.) To es-
timate the length of the geodesics corresponding to ui, Schwarz defines a “dual” real
homology class c of u of the same dimension. (“Dual” means here that 〈u, c〉 = 1.)
Then he proves that for every positive i the ith Pontryagin power of c and a real
multiple of ui are dual. So, the critical point corresponding to ui also corresponds
to ci. Choose a representative of c. Let L be such that this representative is con-
tained in the set of loops of length ≤ L. Then ci can be represented by a chain
contained in the set of loops of length ≤ iL, and h∗(u

i) can be represented by a
chain contained in the set of paths of length ≤ iL+2d between a and b, whence the
length of the ith shortest geodesic between a and b does not exceed iL+ 2d.

Note that although Schwarz’s result indicates that it is natural to look for an
upper bound of the form c(n)kd for the length of the kth shortest geodesic between
a and b, it does not imply that such an upper bound exists, and, in fact, the factorial
behaviour in k of our upper bound might be optimal.

LetH : S3 → S2 denote the Hopf fibration. Assume thatMn is simply-connected
and there exists a map φ : S2 → Mn such that φ ◦H : S3 → Mn represents a non-
trivial class of infinite order in π3(Mn). Note that the Hopf fibration corresponds
to a non-trivial element χ of π2(ΩS

2), and the image µ of χ under the Hurewicz
homomorphism π2(ΩS

2) → H2(ΩS
2, R) is non-trivial. Our assumption about φ
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implies that (Ωφ)∗ maps χ into a nontrivial homotopy class of infinite order in
π2(ΩM

n). Now the Cartan–Serre theorem implies that this element corresponds to
a two-dimensional real cohomology class ν of ΩMn such that all its cup powers are
non-trivial, and any integer multiple of ν has the same property and can be used
instead of u in the proof of the existence of an infinite set of geodesics between a

and b. We can find a dual two-dimensional homology class c of u as the image of µ
under the homomorphism induced by Ωφ.

The class µ ∈ H2(ΩS
2, R) admits the following explicit description. Consider the

1-dimensional real homology class ̺ of ΩS2 defined as the image of the fundamental
homology class of S1 under a map ω : S1 → ΩS2 corresponding to the identity map
S2 → S2. The map ω admits the following explicit geometric description: For every
α ∈ S1, ω(α) is the loop based at the south pole that first goes to the north pole via
the meridian with longitude α and the returns to the south pole via the meridian
with longitude zero. The class µ is equal to the Pontryagin square of ̺ multiplied
by two (cf. [FHT, p. 234-235]). Thus, µ can be represented by a singular chain in
ΩS2 such that each loop in the image of each singular simplex in this chain consists
of four meridians of S2. In [NR3] we represented µ by another explicit chain so that
the loops in the image of each singular simplex consisted of either two meridians of
S2 or a subset of a meridian of S2 travelled in the opposite directions.

Thus, if there exists φ : S2 → Mn such that [φ ◦H] ∈ π3(M
n) is an element of

infinite order, then for every k there exist k different geodesics between a and b of
length ≤ 2kL+2d, where L is the supremum of lengths of images of meridians of S2

under φ. (More precisely, by “the length of the image of a meridian of S2” under φ
we mean here and below the measure of this meridian under the pullback measure
induced by φ. In other words, if the image of the meridian backtracks over itself, we
count the length of the backtracking piece twice.) If φ maps the north pole or the
south pole of S2 to a or to b, then the estimate can be improved to 2kL+ d. If, in
addition, a = b, then the upper bound becomes 2kL, as we do not need to use the
homotopy equivalence Ωa,aM

n → Ωa,bM
n. (However, one of the k distinct geodesic

loops in this case will be trivial.)
Thus, we obtain the following proposition:

Proposition A. LetMn be a simply connected Riemannian manifold of diameter d.

Assume that there exists a map φ : S2 → Mn such that the composition φ ◦H of

φ and the Hopf fibration H : S3 → S2 represents an element of infinite order in

π3(M
n). Assume, further, that the length of the image of every meridian of S2

under φ does not exceed L. Then for every two points a, b and for every k there

exist at least k distinct geodesics between a and b of length ≤ 2kL + 2d. If a

coincides with the image of the south pole of S2 under φ, then the lengths of k

distinct geodesics between a and b do not exceed 2kL + d. In this case there exist

at least k distinct geodesic loops based at a of length ≤ 2kL.

Note, that essentially the same argument will be true for some non-simply con-
nected manifolds. For example, it will be true for manifolds homotopy equivalent to
S2×Nn−2, where Nn−2 is an arbitrary closed manifold. In this case one can define
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φ as the composition of an inclusion S2 → S2 ×Nn−2 that sends S2 into S2 × {pt}
for some pt ∈ Nn−2 and the homotopy equivalence S2 × Nn−2 → Mn. (Of course,
as we have already mentioned above, one can always reduce the case of non-simply
connected manifolds to the simply-connected case paying the price of multiplying
the upper bound by 2(k − 1). Here we are saying that if our manifold is homotopy
equivalent to S2 × Nn−2, then we will not need to multiply the upper bound that
we are going to derive below by 2(k − 1) even if Nn−2 is not simply-connected.)

Note that even if Mn is diffeomorphic to S2 one cannot hope to find a map
φ : S2 →M2 of non-zero degree such that the images of all meridians are bounded by
const d for some constant const. It seems that a counterexample can be constructed
by attaching to 2-discs constructed in [FK] any fixed 2-disc thus obtaining a family
of 2-spheres. But we have not checked the details.

Therefore, we cannot hope to majorize the length of k shortest geodesics by
merely finding an appropriate map φ such that the lengths of images of meridians of
S2 under φ are controlled in terms of d. Our paper [NR3] dealt with the case when
Mn was diffeomorphic to S2. Our strategy there was to try to construct φ with a
control over lengths of images of meridians so that our attempt could be thwarted
only by an obstructing geodesic between a and b. Then we were making another
attempt at constructing a map φ so that the lengths of the images of meridians
were bounded by a larger constant. The second attempt could be blocked only
by a different geodesic between a and b, and so on. After k attempts we would
either obtain k distinct obstructing geodesics between a and b or a desired φ with
control over the length of images of meridians. (Of course, in the last case we would
immediately obtain the desired upper bound for an infinite set of distinct geodesics
connecting a and b).

Our strategy of constructing φ in [NR3] was based on the two-dimensionality of
the manifold, and cannot be used in the situation of the present paper. Instead, we
adopt a more complicated strategy.

Our general strategy will be to start with a map φ satisfying the condition of
a proposition. We would be trying to establish a control over the length of the
images of meridians not under φ but under the composition of φ with a map φs of
S2 into itself of degree s. The number s grows from one attempt to another. Again,
eventually we will either get k geodesics between a and b as obstructions, or will
succeed in finding a self-map of S2 φs of degree s = (k − 1)! such that the length of
the images of meridians under φ ◦ φs is controlled.

Let us make the following obvious remark: Consider a slicing (= a partition) of
S2 into circles emanating from the south pole. If one manages to establish a control
over lengths of images of the circles under a map τ , then one can establish a control
over lengths of images of meridians of the map τ ◦ λ, where λ is a self-map of S2 of
degree one that sends one meridian to the south pole and sends all meridians to the
circles from the slicing.

Therefore, in practice we will be trying to sweep-out various non-trivial spherical
2-cycles in Mn of interest to us by loops of controlled length. The existence of such
a sweep-out for φ ◦ φs would imply that φ ◦ φs ◦ λ maps meridians into loops of
controlled length emanating from the same point.
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The next section contains further ideas of the proof of the main theorem.

1 Further Ideas of the Proof of Main Theorem

Here we are going to briefly describe some key elements of the proof as well as the
proof in a very simple case. For simplicity of the exposition, we assume that Mn is
homotopy equivalent to S2 × Nn−2. (This assumption is not really necessary, but,
in our opinion, it makes the exposition more transparent.)

To simplify exposition, let us, first, deal with geodesic loops, which can be re-
garded as geodesic segments, in which the two end-points are the same. Note that
a related problem of estimating the length of a shortest geodesic loop on a closed
Riemannian manifold was first studied by S. Sabourau in [S]. (Sabourau did not
consider the base point of a geodesic loop as being fixed and minimized over the
set of all base points as well.) The upper bound 2nd for the length of the shortest
non-trivial geodesic loop at every prescribed point was first proven in [R] for an
arbitrary closed n-dimensional manifold.

1 Obstruction argument. Let us begin with a homotopy equivalence F :
S2 × Nn−2 → Mn. Consider f = F |S2×{pt} for any point pt ∈ Nn−2. Obviously, f
is noncontractible, and, moreover, f ◦ H represents an element of infinite order in
π3(M

n). (Recall that H denotes the Hopf fibration.) By virtue of the discussion
in the previous section, it would be enough to sweep-out S2 by curves connecting a
fixed pair of points (in particular, loops emanating from the same point), so that the
lengths of their images under f are controlled in terms of d. However, as we have
no information about the geometry of f , this is not possible. The next objective,
therefore, is to obtain a new map g : S2 → Mn, that can be swept-out by “short”
curves, and, which belongs to the same homotopy class as the original map f .

Let us begin by endowing S2 with a fine triangulation. We will try to extend
f : S2 →Mn to a 3-dimensional disc.

As an obstruction to this extension we hope to obtain a noncontractible map
g : S2 → Mn, naturally endowed with a sweep-out by short curves. The use of a
similar obstruction technique for the purpose of obtaining stationary objects was
originated by M. Gromov in [G]. The technique that we will use in this paper is,
however, significantly modified.

2 The extension procedure. Let D3 be triangulated as a cone over S2.
The extension will be inductive to skeleta of D3. Let us begin with the center of
the disc p̃ that will be mapped to a point p of the manifold. We will extend to the
1-skeleton, by mapping edges of the form [p̃, ṽi] to corresponding minimal geodesic
segments of the form [p, vi], where vi = f(ṽi). Next let us extend to the 2-skeleton.
Let us consider an arbitrary 2-simplex [p̃, ṽi, ṽj ]. Its boundary is mapped to a closed
curve of length ≤ 2d+δ. A length shortening process being applied to any curve with
a fixed point p either stops at a geodesic loop of a shorter length or contracts the
curve to the point p. Let us apply the Birkhoff Curve Shortening Process (BCSP)
for loops with fixed basepoint to the image of the boundary of the above simplex
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(for a detailed description of the BCSP see [C]). Assume that when we apply the
BCSP to this curve with a fixed point p, it is not terminated by a geodesic loop.
Then the curve is contracted to the point p as a loop based at p, and we can map
the 2-simplex to a surface generated by this homotopy. Let us now look at the
next skeleton. We claim that there are 3-simplices in the 3-skeleton of D3, such
that, the restrictions of the map f on their boundaries are non-contractible, and the
corresponding elements of π2(M

n) sum to the element represented by f . Also, by
virtue of Lemma 2.1 below the boundaries of these 3-simplices can be swept-out in
a natural way by curves of length ≤ 3d + δ, for some small δ that depends on the
size of the triangulation. Therefore, it follows that at each point p ∈Mn there exist
at least k geodesic loops of length bounded by k(6d + 2δ). We will eventually let δ
approach 0, and obtain the assertion of the theorem.

3 How to extend to the 2-skeleton in the presence of “short” geodesic

loops. Of course, the assumption made in order to extend to the 2-skeleton is
rarely satisfied. In general, we cannot hope that we can extend to the 2-skeleton
as above, because the curves can get stuck on geodesic loops of length ≤ 2d + δ.
In fact, even one “small” geodesic loop can obstruct the extension, and makes it
unclear how to continue. Therefore, let us look again at extension to the 1-skeleton
and try to modify that as follows: Consider a simplex [p̃, ṽi1 , ṽi2 ]. Its boundary is
mapped to a closed curve [vi1 , vi2 ] ∗ [vi2 , p] ∗ [p, vi1 ] (see Figure 2(a)). Let us denote
the edges that connect p with vij by ej and the edges that connect p̃ with ṽij by
ẽj respectively, where j = 1, 2. Next suppose the curve e1 ∗ [vi1 , vi2 ] ∗ −e2 gets
stuck on a geodesic loop li1,i2 of length ≤ 2d + δ. We will change our extension
to 1-skeleton as follows: the extension will stay the same on ẽ1, but on ẽ2 it will
become li1,i2 ∗ e2. Now, indeed, we can extend to the 2-simplex [p̃, ṽi1 , ṽi2 ], as the
curve e1 ∗ [vi1 , vi2 ] ∗ −e2 ∗ −li1,i2 is homotopic to the point p (see Figure 2(b)). We
will map the 2-simplex to the disc generated by this homotopy. Now, if we only had
to extend to this one 2-simplex, we would be done, but, of course, in general it is
impossible to extend to the whole 2-skeleton in this way for the following reason:
Consider a simple 1-cycle in the 1-skeleton of the triangulation of S2 (see Fig-

ure 3).
Let us denote the vertices of this graph by ṽi1, ṽi2 , . . . , ṽik , let vij = f(ṽij),

j = 1, . . . , k. Next, let us denote the segments that connect p̃ with ṽij and p with vij
by ẽj and ej respectively. Suppose, we want to change the extension on 1-skeleton
along this cycle, in such a way that will enable us to extend to 2-skeleton. Let us
begin with the 2-simplex [p̃, ṽi1 , ṽi2 ]. Suppose that the image of the boundary of this
simplex contracts to a geodesic loop li1,i2. We then modify an extension, so that ẽ2
is mapped to li1,i2 ∗ e2. Next, let us consider [p̃, ṽi2 , ṽi3 ]. Its boundary is mapped
to a closed curve li1,i2 ∗ e2 ∗ [vi2 , vi3 ] ∗ −e3. Suppose that when we try to contract
this curve it gets stuck on the same geodesic loop li1,i2. Then, we have to change an
extension on ẽ3 to be mapped to li1,i2 ∗ e3. It can so happen, that when we continue
in such a way, we will have to change an extension on ẽk and next on ẽ1, ẽ2 and so,
this process will not terminate, and the desired extension to the 2-skeleton will still
be prevented by a single loop.
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Figure 2: Modified extension.

4 Partial modified extension. It is, thus, clear that the idea described in
subsection 1 cannot always work, but we would like to get something out of it. That
is, if we cannot construct an extension to the whole 2-skeleton in such a way, we
would at least try to extend it to a part of it. In fact, we would like to extend to
at least one face of every 3-simplex in the 3-skeleton of D3. (Our reasons for doing
so will become apparent at the end of section 2; cf. Remark 2.4.) It is not difficult
to see that we can use the idea in the previous section to extend our map to the
cone over any tree in the 1-skeleton of a considered triangulation of S2 (after an
appropriate modification of the already constructed extension to the 1-skeleton of
this cone). So, the following lemma will be helpful for our purposes:

Lemma 1.1. Given δ > 0, there exists a triangulation of the 2-sphere, such
that each simplex of the triangulation has a diameter < δ and satisfies the following

property: There exist two nonintersecting trees in the 1-skeleton of the triangulation,
such that any 2-simplex has an edge in one of the trees.

Proof. A triangulation satisfying the required properties will be constructed from
the standard triangulation of the round 2- sphere as the boundary of a 3-simplex
by successively performing any necessary number of operations of one of three types
described below. It will be clear from the description of these operations that we
can use an appropriate sequence of such operations to make the diameter of any
2-simplex less than δ for any positive δ.
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Figure 3: Why we cannot always extend.

Let a, b, c, d be the vertices of the standard triangulation of the boundary of a
3-simplex. In such a triangulation there exist two trees denoted T1 and T2 satisfying
the conclusion of the lemma. We can simply let T1 consist of one edge [b, d] and T2

consist also of one edge [a, c], (see Figure 5(a)). Note also that each 2-simplex of
this triangulation satisfies the following property.

Opposite vertex property. The vertex of a simplex that is opposite to the edge
that belongs to one of the trees, is in the different tree.

To make this triangulation finer, but still satisfying the same properties, we can
perform the following three operations:

1. Subdivide an edge of a tree into two equal segments and join the middle
with the opposite vertex in each of two 2-simplices adjacent to the edge (see
Figure 5(b)). In this case, obviously, the triangulation satisfies the required
properties, because the subdivided edge of the tree simply becomes two edges
instead. The opposite vertex property will also not be violated by this opera-
tion.
To subdivide further, we will need to simultaneously subdivide pairs of sim-
plices that share an edge which is not in one of the trees. There are two
possibilities: either these simplices contain two edges that belong to the same
tree as in Figure 4(a), in which case the edges will share a vertex, or they
contain two edges that belong to different trees, as in Figure 4(b), in that
case edges will be “opposite”. This observation follows from the opposite ver-
tex property. These two cases will be discussed separately and result in two
different subdivisions.

2. Consider two 2-simplices with a common edge not in one of the trees, as
depicted in Figure 4(a). Let us denote them [a, c, x] and [c, x, d] respectively.
Suppose edges [a, x] and [x, d] are both in T1 and the vertex c is in T2. Then
we can subdivide the common edge [c, x] into two equal segments, connect the
middle with vertices a and d, and add the edge obtained by subdividing [c, x]
and containing c to T2 (see also Figure 5(c)).
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3. Consider two 2-simplices with a common edge not in one of the trees, as
depicted in Figure 4(b). Let us denote them as [a, x, d] and [a, y, d] respectively.
Suppose now that [y, d] is an edge in T1 and [a, x] is an edge in T2. We can
subdivide the common edge into three equal segments. Denote the points
of subdivision by w, z respectively, connect vertices x, y with w, z and add
the edge [y,w] to T1 and the edge [x, z] to T2 (see Figure 4(b) as well as
Figure 5(d)).

Note that none of the original specified properties of the triangulation including
the opposite vertex property are violated by these operations.

Performing the three operations allows one to make the diameter of simplicies of
a triangulation as small as desired, while the desired properties remain satisfied.

da

x

y

da

x

y

w z

a

c

x

d a

c

x

d

(a)

(b)

Figure 4: Simplicial subdivisions

Figure 5 illustrates the three operations performed in a row starting from the
original triangulation of a sphere as the boundary of a tetrahedron.

Now, we can triangulate D3 as the cone over a sufficiently fine triangulation
of S2 obtained using Lemma 1.1. Then we can extend to the 1-skeleton of this
triangulation D3. Now we would like to use the idea explained in section 1.3 to
extend to a subcomplex of the 2-skeleton in such a way that each 3-simplex has
a face that belongs to this subcomplex. Of course, this extension will require a
modification of our map on some 1-simplices of the triangulation of D3 that are not
in the triangulation of S2.
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Figure 5: Constructing triangulation of S2

Lemma 1.2. Let S2 be triangulated as in Lemma 1.1. Let D3 be triangulated

as a cone over the chosen triangulation of S2. Furthermore, let f : S2 → Mn be

a map from S2 to a closed Riemannian manifold Mn. Let p be the image of the

center of D3. Then there exists a subcomplex K of a 2-skeleton of D3, satisfying the

property that at least one 2-face of each 3-simplex of D3 lies in K and the following

additional property: For every positive integer N either there exist N non-trivial

geodesic loops in Mn based at p of length ≤ N(2d + δ) or f can be continuously

extended to K so that f maps each 2-simplex σ ∈ K to a disc generated by a 1-
parameter family of loops of length ≤ (N + 1)(2d + δ) based at p constituting a

homotopy contracting the restriction of f to the boundary of σ to a constant map.

Proof. First, let us extend to the 0, 1-skeleta of D3 as described in the introduction.
We will now modify the extension to the 1-skeleton as follows.

Let T1, T2 be the two trees of Lemma 1.1. Let us begin with the root of T1 that
we will denote by ṽ0. Let ṽi1, i1 = 1, . . . , k1 be the neighboring vertices of ṽ0, where
k1 denotes their number.

Consider all the edges g̃i1 , i1 = 1, . . . , k1, that connect ṽ0 with the corresponding
vertices ṽi1.

Those edges correspond in a natural way to two-simplices that are obtained by
coning an edge with p̃. Suppose we try to extend to the 2-simplex corresponding
to g̃i1 . Its boundary is mapped to a closed curve of length ≤ 2d + δ. Assume that
when we try to contract the boundary by the BCSP, it gets stuck at a geodesic
loop αi1 . We will then modify an extension to the edge ẽi1 that connects the vertex
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p̃ with the vertex ṽi1 , to be αi1 ∗ ei1 , where ei1 denotes the image of ẽi1 under the
original extension. Let us once again consider the 2-simplex [p̃, ṽ0, ṽi1 ]. Under the
new extension its boundary is mapped to a closed curve e0 ∗ [v0, vi1 ] ∗ −ei1 ∗ −αi1

of length ≤ 4d + δ (see Figure 6(a)). This curve is contractible as a loop over
the curves of length ≤ 4d + δ. Also, note that e0 ∗ [v0, vi1 ] is path homotopic to
αi1 ∗ ei1 via curves of length ≤ 5d + 3δ. See Figure 6(b) below. Indeed, one can
see that e0 ∗ [v0, vi1 ] is path-homotopic to αi1 ∗ −αi1 ∗ e0 ∗ [v0, vi1 ] over the curves
of length ≤ 5d + 3δ. The above curve is, in its turn, path-homotopic to the curve
αi1 ∗ ei1 ∗ [vi1 , v0] ∗ −e0 ∗ e0 ∗ [v0, vi1 ] also over the curves of length ≤ 5d+3δ, which
finally is path-homotopic to αi1 ∗ ei1 .
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Figure 6: New extension to the 2-skeleton.

Now suppose, we have modified our extension on all edges ẽij , j = 1, . . . , s,
ij ∈ {1, . . . , ks}, where ẽij are edges joining p̃ with vertices ṽij , that are located
at a distance ≤ s from ṽ0 in the tree, and ks denotes the number of such vertices.
Suppose, in the process we were obstructed by at most N distinct geodesic loops of
length ≤ N(2d + δ). Suppose also that we have extended to all of the 2-simplices
of the form [p̃, ṽij−1

, ṽij ], where j = 1, . . . , s. We now would like to extend to all of
the edges of the form ẽis+1

and all of the 2-simplices of the form [p̃, ṽis , ṽis+1
]. Let

us consider the image of the boundary. By the induction assumption, it is mapped
to a curve of length ≤ (N + 1)(2d + δ). Let us apply the BCSP with a fixed point
p to this curve . If there are no geodesic loops of length ≤ (N + 1)(2d + δ), then
the boundary is contractible to p without the length increase and, therefore, we will
not modify the image of ẽis+1

. Suppose, it does get stuck on a loop. Let us denote
it αis+1

. If it does get stuck on the loop of length > N(2d + δ) then this loop is
distinct from the N loops we obtained during the previous steps of the induction
and we will have (N +1) loops of length (N +1)(2d+ δ). On the other hand, if the
loop is one of the previous loops, its length must be ≤ N(2d+ δ). In any of the two
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latter cases we will modify the extension on ẽis+1 to be αis+1 ∗ eis+1 . We continue in
the following manner, until we have modified an extension on all of the ẽij and all
of the [p̃, ṽij , ṽij+1 ].
Now we can repeat the same process for the tree T2.

2 The Proof of Theorem 0.1 for Loops

To prove Theorem 0.1 one will need the following simple lemma.

Lemma 2.1. Let Mn be a Riemannian manifold.

Let γ1(t), γ2(t) be two curves connecting the points p, q ∈ Mn of lengths l1, l2
respectively. Consider a (not geodesic) loop γ1 ∗ −γ2 based at p that is a product
of γ1 and −γ2. Let us apply the BCSP to this loop, that keeps the point p fixed.
Suppose also that it converges to a geodesic loop α based at p.

Then there is a path homotopy Hτ (t), τ ∈ [0, 1], such that H0(t) = γ1(t),H1(t) =
α∗γ2(t) and the length of curves during this homotopy is bounded above by 3l1+2l2.

Proof. Let h̃τ (t) denote a homotopy that connects γ1 ∗ −γ2 with a geodesic loop α

(see Figure 2(a) and (b)). Then below is a path homotopy between γ1 and α ∗ γ2

satisfying the required properties (see Figure 7(a)–(g)):

γ1 → α ∗ −α ∗ γ1 → α ∗ h̃1−τ ∗ γ1 → α ∗ γ2 ∗ −γ1 ∗ γ1 → α ∗ γ2

The length of curves during this homotopy is ≤ 3l1 + 2l2.

γ  (    )t
2

γ  (    )t
1

p

q

α∗γ
2

h  (  )t
~

τ

p

q

α

γ  ∗ − γ
1 2

γ
1

(a) (b)

(c) (d) (e) (f) (g)

Figure 7: Illustration of the proof of Lemma 2.1.

This lemma generalizes a similar statement in [R]. Also a similar argument is
used by Croke to prove Lemma 3.1 in [C].
Before stating the proof of Theorem 0.1 let us describe the idea behind it. Let

us begin, as in the introduction, with the map f : S2 →Mn. Let S2 be triangulated
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as in Lemma 1.1, and let us start with the modified extension from D3 to Mn as
in Lemma 1.2 for N = k − 1. We will now attempt to extend to the rest of the
2-skeleton of D3. So, let us consider a 2-simplex [p̃, ṽi1 , ṽi2 ] to which we did not
previously extend our map. From Lemma 1.2 we know that its boundary is mapped
to a closed loop of length ≤ k(2d + δ), or there will be k distinct geodesic loops of
length ≤ (k − 1)(2d + δ) (including the trivial one), and we are done. Let us apply
the BCSP with fixed endpoints to this loop. The process, can possibly converge
to a geodesic loop α of length ≤ k(2d + δ), not allowing us to proceed further. If
this loop happens to be a periodic geodesic, then we are done, as we can regard
its iterates as distinct geodesic loops. Suppose, therefore, that this loop is not a
periodic geodesic. Consider a (definitely not geodesic) loop based at p that consists
of going twice around the geodesic loop obtained on a previous step. When we try to
contract this loop using the BCSP with fixed endpoints one of the following things
can happen:

(1) This double loop contracts to a point;
(2) This double loop contracts to the same loop α as the original loop;
(3) This double loop contracts to a different non-trivial loop.

Case (3) results in a new “short” loop (of length at most twice the length of
the original loop). In this case we can try to proceed in the above manner, i.e. by
tracing the original loop three, four, etc., times and applying the BCSP to these
curves hopefully obtaining new geodesic loops. Therefore, let us examine cases (1)
and (2). The case (1) allows us to construct the desired extension. In the case (2)
we use the following lemma;

Lemma 2.2. Let Mn be a Riemannian manifold. Let α : [0, 1] → Mn be a

geodesic loop based at p ∈ Mn. Suppose α ∗ α is contractible to the loop α by a

path homotopy without the length increase. Then the loop α is contractible to p by

a path homotopy passing via curves of length ≤ 3 length(α).

Proof. Let αt = α|[0,t], γ = α ∗ α and γτ denote curves in the path homotopy that
connects γ with α. We will now describe a path homotopy between α and p that
passes through “short” curves:

1. α → −αt ∗ αt ∗ α → −α ∗ α ∗ α; the length of curves during this homotopy,
obviously, does not exceed 3 length(α) (see Figure 8(a)–(c)).

2. −α ∗ α ∗ α → −α ∗ γτ → −α ∗ α; the length of curves during this homotopy
is bounded by 3 length(α), since the length of γ does not increase during the
homotopy, (see Figure 8(d), (e)).

3. Finally, −α ∗ α can be contracted to p along itself, (see Figure 8 (f)).

The above lemma is a particular and most obvious case of the following situation:
Suppose, we consider a sequence of curves obtained from α(t) by going an integer
number of times around α(t), i.e. going twice, three times, four times, etc., K times.
Then either this sequence of curves results in K distinct “short” geodesic loops,
after an application of the Birkhoff curve-shortening process to each curve of the
sequence, or there exists an integer r < K, such that a curve obtained from the
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Figure 8: Double loop homotopy.

original loop by tracing it r times is contractible to p along “short” loops based
at p.

Lemma 2.3. Let Mn be a Riemannian manifold, K be a positive integer number,

and α1 be a geodesic loop in Mn based at p. Then either there exist K distinct

non-trivial geodesic loops, α1, . . . , αi, . . . , αK of length l1, . . . , li, . . . , lK , such that

li ≤ il1, 2 ≤ i ≤ K, or there exist a number r ≤ K, such that the (non-geodesic)
loop αr

1 = α1∗· · ·∗α1 is path-homotopic to p along the curves of length ≤ (2K−1)l1.

Proof. Suppose that there are no K distinct geodesic loops based at p of length
≤ Kl1. Consider the first K powers of α1: α1, α

2
1, . . . , α

i
1, . . . , α

K
1 . Suppose that

none of these loops is path-homotopic to p without the length increase. That means
that, for every i when we apply the BCSP to αi

1, it stops at a non-trivial geodesic
loop αi respectively. Our assumption implies that all these loops cannot be distinct.
Therefore there exist i #= j ∈ {1, . . . ,K}, such that αi = αj . Without any loss of

generality, let us assume that j > i. Then α
j−i
1 is path-homotopic to p as follows:

α
j−i
1 → α

j
1 ∗ −αi

1 → αj ∗ −αi → p. The length of curves during this homotopy is
bounded by (j + i)l1 ≤ (2K − 1)l1.

Let Mn be a closed Riemannian manifold, satisfying the hypothesis of Theo-
rem 0.1. Fix a point p ∈ Mn. Let S2 be triangulated as in Lemma 1.1, and D3 be
triangulated as the cone over the chosen triangulation of S2. Let f : S2 → Mn be
a map such that its composition f ◦H with the Hopf fibration H : S3 → S2 is an
element of infinite order in π3(M

n). Suppose that we have extended f : S2 → Mn

to the 1-skeleton of D3 as in Lemma 1.2. Suppose that there exist at most (k − 2)
non-trivial geodesic loops based at p of length ≤ (k − 1)(2d + δ). Then to extend
to 2-skeleton of D3, we will proceed as follows: In the 2-skeleton of D3 there will be
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2-simplices of two types. The boundary of the simplices of type I will be mapped to
a curve that is contractible to p in a natural way as it is described in Lemma 1.2.
According to Lemma 1.1 the boundary of every 3-simplex of D3 contains a sim-
plex of type I. To extend to the simplices of type II, we will proceed as follows:
let σ̃2

i = [p̃, ṽi1 , ṽi2 ] be such a simplex. Its boundary is mapped to a curve passing
through the point p of length ≤ (k− 1)(2d+ δ). Let us try to contract this curve as
a loop using the BCSP with fixed endpoints. If, indeed, it is contractible using the
BCS, then we are done. If it gets stuck on one of the geodesic loops based at p we can
proceed as follows: let us denote this curve by α and let us consider its powers αj ,
j = 1, . . . , k − 1. Let us apply the BCSP with the fixed endpoints to each of these
curves. It cannot happen that BCSP ends at a different geodesic loop every time,
as we have at most (k − 2) distinct non-trivial geodesic loops based at p of length
≤ (k − 1)(2d + δ). According to Lemma 2.3 the only other possibility is that some
power αi of α with i ≤ k is contractible to a point via the loops based at p of length
smaller than (2k − 3)k(2d+ δ). Note, however that for different α, this power i can
be different. But for every considered loop α α(k−1)! will be contractible via loops of
length ≤ k ((k−1)!+2k−4)(2d+ δ). (We can contract k!/i copies of αi one by one.
When we contract each copy of αi we get an extra summand (2k − 3− i)k(2d + δ)
to the length of the considered curve.) This observation will help us to finish the
proof of Theorem 0.1.

Proof of Theorem 0.1 in the case when p = q. The proof will be by contradiction.
Let f : S2 →Mn be a non-contractible map such that f ◦H represents an element
of infinite order in π3(M

n). Assume that S2 is triangulated into fine simplices as
in Lemma 1.1, and that f(S3) has induced triangulation, such that diameter of any
simplex in this triangulation is smaller than δ. Let D3 be triangulated as a cone over
the triangulation of S2. Denote another copy of S2 by S2

∗ . Let fs : S
2
∗ → S2 denote a

standard map of degree s. Assume S2
∗ is triangulated so that fs is a simplicial map.

Let D3
∗ be triangulated as a cone over S2

∗ . We can extend fs to a map of D3
∗ to D3

by mapping (r, θ), (θ ∈ S2
∗), to (r, fs(θ)). We will denote this extension also by fs.

We will now attempt to extend a map f ◦ fs from S2
∗ to D3

∗ for s = (k − 1)!, and as
an obstruction to this extension we will obtain a map g : S2

→ Mn homotopic to
f ◦ fs that is swept-out by “short” loops in a natural way. This sweep-out can then
be used to obtain the desired upper bound for k short geodesic loops based at p as
described in the introduction.

We will first extend f ◦ fs to the 0-skeleton and to the 1-skeleton of D3
∗ . The

0-skeleton of D3
∗ consists of a single additional point p∗, which is the center of the

disc. We will let the image of p∗ be p. Next, let us extend to the 1-skeleton as
follows: Consider all of the edges of the form [p∗, wi] that connect the center of the
disc with the vertex wi, where wi is mapped to a vertex ṽi by fs. There, in general,
will be s such vertices. All edges of this form will be mapped by fs to the radius
of D3 that connects the center of D3

∗ p̃ with ṽi. We map this radius to a shortest
geodesic from p to vi = f(ṽi).
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Now we will extend to the 2-skeleton of D3
∗
. Suppose that we have already

extended f : S2 → Mn to the part of the 2-skeleton that includes one 2-simplex
in the boundary of every 3-simplex in the considered triangulation of D3 \ ∂D3 as
guaranteed by the proof of Lemma 1.2. (Recall, that these 2-simplices are called
simplices of type I. Also, recall that in order to construct this extension we need
first to change the previously constructed extension to some of 1-simplices.)

Consider an arbitrary 2-simplex ofD3
∗
of the form [p∗, wj1 , wj2 ], where the bound-

ary is mapped by (the extension of) fs to the boundary of a simplex [p̃, ṽi1 , ṽi2 ] of
type I. We can assume that f : S2 →Mn was already extended to this 2-simplex of
the considered triangulation of D3 by the virtue of Lemma 1.2. In this case we will
map [p∗, wj1 , wj2] to the simplex [p̃, ṽi1 , ṽi2 ] using (the extension of) fs, and then use
the constructed extension of f . There will be s such 2-simplices of the considered
triangulation of D3

∗
that are mapped to [p̃, ṽi1 , ṽi2 ].

Finally, consider the remaining 2-simplices of the considered triangulation of D3
∗
.

These are simplices of the form [p∗, wj1 , wj2], which boundary is mapped to the
boundary of a simplex [p̃, ṽi1 , ṽi2 ] of type II (see the discussion preceding the proof
of the theorem. Recall, that “type II” just means that the considered 2-simplex
is not of type I. That is, we do not have a ready extension of f to such simplices
provided by Lemma 1.2.) There will be s simplices like that for every pair of vertices
ṽi1, ṽi2 . Consider the images of their boundaries under the map f ◦ fs : D3

∗
→ Mn.

The image will be the curve [p, vi1 ]∗ [vi1 , vi2 ]∗ [vi2 , p] raised to a power s, i.e. traced s
times. (Here vi1 = f(ṽi1), vi2 = f(ṽi2).) It is contractible with a “controlled” length
increase (length of curves in this homotopy is bounded by k((k−1)!+2k−4)(2d+δ),
see the discussion before this proof of Theorem 0.1. Otherwise there exist k − 1
distinct non-trivial geodesic loops based at p, and, therefore, k distinct geodesic
loops based at p, and we are done.)

Therefore, although we cannot extend f ◦ fs to the union of these 2-simplices,
we can fill the image of the boundary of their sum by a 2-disc, that will admit a
desired sweep-out by “short” loops based at p.

p
~

v~
1

v~
3

v~
2

w
11

w
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w
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21
w

w
22

w
23

w
31

w
32

w
33

q

f s

Figure 9: Extending a map f ◦ fs : S
2 →Mn

Thus, we managed to extend f◦fs from S
2
∗
first to the 1-skeleton of the considered

triangulation of D3
∗
, and then to a certain collection of 2-cells. (We will stop our
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attempt of extending f ◦ fs at that.) Let σ̃i = [ṽi1 , ṽi2 , ṽi3 ] be a simplex of the
considered triangulation of S2. Initially f ◦ fs was defined on the collection of s
small 2-simplices forming f−1

s (σ̃i). But then we extended f ◦fs first to the center p∗
of D3

∗ and all 1-simplices connecting p∗ with points in the inverse image of vertices
of σ̃i under fs, then to the collection of s 2-simplices mapped by fs to a 2-simplex
of type I (which is the cone over an edge of σ̃i of type I), and finally to two 2-discs
corresponding to two edges of σ̃i that become 2-simplices of type II after the coning.
As the result we obtained a singular 2-cycle in Mn. The homology class of the sum
of these singular 2-cycles over all 2-simplices σ̃i of the considered triangulation of
S2 is equal to (f ◦ fs)∗([S

2
∗ ]) = sf∗([S

2]).
We are going to demonstrate now that each of these singular 2-cycles is spherical

and, moreover, can be represented by a map of a circle into the space of loops in
Mn based at p so that all loops in the image of the circle are “short”. For this
purpose consider the just described singular 2-cycle in Mn corresponding to σ̃i. It
is constructed from a small simplex σ2

i = [vi1 , vi2 , vi3 ] = f(σ̃2
i ) in the following way.

Firstly, one connects p with each of the vertices vij , j = 1, 2, 3 by curves f(ẽj),
where ẽj are segments connecting p̃ with ṽij . We then obtain three closed curves:
ej ∗ [vij , vijmod3+1

] ∗ −ejmod3+1, j = 1, 2, 3. By Lemma 1.2 at least one of these
curves is contractible to p along “short” curves, and without any loss of generality
we can assume that e3 ∗ [vi3 , vi1 ] ∗ −e1 is such a curve. The homotopy generates a
2-dimensional disc that we will denote σ2

31. This disc, as well as σ2
i , will be taken

with a multiplicity s. The remaining two curves are both path-homotopic to p along
“short” curves after they have been traced s times. We would like to comment that
σ2
i is arbitrarily small and, therefore, can be treated as a point q (see the Remark 2.5
below for the details. To avoid a misunderstanding note that the notation q is used
here and below in this section differently than in the text of Theorem 0.1. This is
justified by the fact that here we study only lengths of geodesic loops based at p and
not of geodesics connecting p with an arbitrary point that was denoted q in the text
of Theorem 0.1). We now present a sweep-out by short curves. See also Figure 10.
p ∼ e1 ∗ −e2 ∗ . . . ∗ e1 ∗ −e2 (Figure 10(a)). We next use Lemma 2.1 to “replace” e1

by e3 (Figure 10(b)):

e1 ∗ −e2 ∗ . . . ∗ e1 ∗ −e2 ∼ e3 ∗ −e2 ∗ . . . ∗ e3 ∗ −e2 .

Finally, this curve is path-homotopic back to p (see Figure 10(c)).
So, we can separately sweep-out all such singular 2-cycles by “short” loops. Now

we can combine these sweep-outs to obtain a sweep-out of their sum sf∗([S
2]).

Note that the longest loops in the sweep-out appear when we contract e1 ∗−e2 or
e3 ∗−e2 iterated s times. Thus, we obtain L ≤ (2k!+4k2 −8k)d, and Proposition A
implies that the length of the shortest k geodesic loops on Mn (including the trivial)
does not exceed 2kL ≤ (4k! + 8k2 − 16k)d. If k ≥ 3, then (4k! + 8k2 − 16k)d ≤ 8k!d.
(If k = 2, then a better bound 4d for the length of a shortest non-trivial geodesic
loop based at p can be obtained as a particular case of the main result of [R]).

Remark 2.4. Note that, in this proof, we really needed the possibility of contract-
ing the boundary of one of the three “not small” 2-simplices in the boundary of the
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Figure 10: Sweep-out of a sphere

considered 3-simplex to a point without iterating it s times. Otherwise we would
not be able to obtain a desired sweep-out. This explains the necessity of Lemmas
1.2 and 1.1.

Remark 2.5. In this remark we will explain why the small simplex [vi1 , vi2 , vi3 ]
mentioned in the proof of Theorem 0.1 can be treated as a point. In fact, [vi1 , vi2 , vi3 ]
can be “replaced” by q = vi2 (see Figure 11). In Figure 11 we show that there
is a “short” path-homotopy between two curves e1 ∗ [vi1 , q] and e3 ∗ [vi3 , q] (see
Figure 11(a)), that goes as follows: Firstly, note that by Lemma 2.1 there is a
path homotopy passing through “short” curves between e1 ∗ [vi1 , vi3 ] and e3 during
which the points p and vi3 remain fixed. Let us denote the curves in this homotopy
by c1τ . Secondly, because [vi1 , vi2 , vi3 ] can be made arbitrarily small (in particular,
its diameter can be made much smaller than convexity radius), it can be swept out
by curves of length ≤ ε(δ), where ε(δ) approaches 0 as δ approaches 0, with fixed
endpoints vi1 and vi2 = q. Let these curves be denoted as c2s. (See Figure 11(d)).
Now the homotopy will go as follows (see Figure 11(b)–(f)):

e1 ∗ [vi1 , q] ∼ e1 ∗ c2s ∼ e1 ∗ [vi1 , vi3 ] ∗ [vi3 , q] ∼ c1τ ∗ [vi3 , q] ∼ e3 ∗ [vi3 , q] .

Thus, the point q replaces [vi1 , vi2 , vi3 ], e1 is replaced by e1 ∗ [vi1 , q] and e3 is
replaced by e3 ∗ [vi3 , q].
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Figure 11: Small simplices can be ignored.

3 Geodesic Segments Between Different Points

In the previous sections we assumed that the points p and q coincide, i.e. we were
interested in geodesic loops based at p. In this section, we outline how this proof can
be generalized for the case when p and q are allowed to be distinct points. The main
problem is with the first step of the extension process: When we contract a loop
based at p using a loop shortening process, we are either able to contract it all the
way to a point, or get stuck at a geodesic loop, not at a geodesic between p and q.
The remedy can be found at our paper [NR2]. Namely, we replace the Birkhoff
curve-shortening process for loops by another curve shortening process described in
the proof of Lemma 1 in [NR2]. It works as follows: Attach to a considered loop
a fixed minimal geodesic σ between p and q. We obtain a path between p and q.
Now apply a version of the Birkhoff curve-shortening process for curves with fixed
endpoints to this path. The result will be a geodesic between p and q. If for some S
there is only one geodesic between p and q of length ≤ S, then this process will be
continuous with respect to initial loop based at p, when we consider only loops of
length ≤ S−dist(p, q). Further, assume that λ1 and λ2 are loops based at p. Assume
that when we apply this process to λ1 and λ2 we get stuck at the same geodesic µ
between p and q. Then there is the following path homotopy between λ1 and λ2 that
passes through loops of length ≤ max{length(λ1), length(λ2)}+2dist(p, q) (compare
with [NR3]): Choose a minimizing geodesic σ between p and q. Now proceed as
follows:

λ1 −→ λ1 ∗ σ ∗ σ
−1 −→ µ ∗ σ−1 −→ λ2 ∗ σ ∗ σ

−1 −→ λ2.

Here arrows denote obvious path homotopies between loops based at p.
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A modification of same idea can be used in the proof of an analog of Lemma 1.2:
If λ1, λ2 are two paths between p and x, σ is a minimal geodesic between p and q, we
can consider path λ1 ∗λ

−1
2 ∗σ between p and q. Apply the Birkhoff curve shortening

process with fixed endpoints to this path. Assume that the process stops at a
geodesic τ between p and q. Of course, the length of τ does not exceed the sum of
lengths of λ1, λ2 and σ. Consider a new path λ∗2 = τ∗σ−1∗λ2. Now λ1∗λ

∗−1
2 ∗σ can be

contracted to σ by a length non-increasing path homotopy. Therefore λ1 ∗ λ
∗−1
2 can

be contracted to a point by a path homotopy that increases the length by not more
than 2d. This observation leads to an analog of Lemma 1.2 where we conclude either
the existence of N+1 distinct geodesics between p and q of length ≤ (4N +1)(d+δ)
or the extendability of f on each simplex σ ∈ K so that the extension is generated
by a 1-parametric family of loops of length ≤ 4N(d+δ). Note that this upper bound
is approximately twice the bound in the original estimate. As the result the upper
bound that we obtain when p and q can be different is asymptotically twice the
upper bound in the loop case ((8k! + o(k!))d versus (4k! + o(k!))d).
This idea can also be used to modify Lemma 2.3 as follows: Now we do not

attempt to contract powers of α to a point by a length non-increasing path homotopy
as in its original version. Instead we attach σ∗σ−1 to αi at its endpoint and apply the
Birkhoff curve shortening process for curves with fixed endpoints to αi ∗ σ. Assume
that this process converges to a geodesic τi. Then, if τi = τj , then α

i is homotopic to
αj via τi ∗σ

−1 as above, and α|i−j| is contractible via curves of length not exceeding
(2max{i, j}−min{i, j}) length(α)+2 dist(p, q), and an analog of Lemma 2.3 easily
follows.
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