


LENGTH OF GEODESICS ON A TWO-DIMENSIONAL SPHERE

By ALEXANDER NABUTOVSKY and REGINA ROTMAN

Abstract. Let M be an arbitrary Riemannian manifold diffeomorphic to S2. Let x, y be two arbitrary
points of M. We prove that for every k = 1, 2, 3, . . . there exist k distinct geodesics between x and
y of length less than or equal to (4k2 − 2k − 1)d, where d denotes the diameter of M.

To prove this result we demonstrate that for every Riemannian metric on S2 there are two (not
mutually exclusive) possibilities: either every two points can be connected by many “short” geodesics
of index 0, or the resulting Riemannian sphere can be swept-out by “short meridians”.

1. Main results. Here are the main results of the present paper:

THEOREM 1. Let M be an arbitrary Riemannian manifold diffeomorphic to S2,
and x, y be two arbitrary points of M. Denote the diameter of M by d. (Recall
that the diameter of a compact Riemannian manifold is, by definition, the maximal
distance between two points on the manifold.) For every positive integer k there
exist at least k distinct geodesics starting at x and ending at y of length not exceeding
(4k2 − 2k − 1)d.

THEOREM 1.1. For every point x on a Riemannian manifold M diffeomorphic to
S2 and any k = 1, 2, 3, . . . there exist at least k nontrivial geodesic loops based at x
of length at most (4k2 + 2k)d.

Theorem 1.1 deals with a particular case of Theorem 1 when y = x. In this
case the shortest geodesic between x and y is trivial, and all other geodesics
starting and ending at x are nontrivial geodesic loops based at x. Thus, we can
apply Theorem 1 for k + 1 and obtain an upper bound for the length of the
kth nontrivial geodesic loop based at x. However, the upper bound provided by
Theorem 1.1 is somewhat better.

Theorem 1 is a result in the direction of our conjecture made in [NR1].
Recall, that for every two points x in a closed Riemannian manifold M there exists
an infinite set of distinct geodesics connecting x and y. (This is a well-known
theorem of J. P. Serre, [Se].) In [NR1] we observed that if M is a nonsimply
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connected closed Riemannian manifold with a torsion-free fundamental group,
then for every x, y ∈ M and every k there exist k distinct geodesics between x
and y of length ≤ kd. Of course, the same fact is true also for round spheres of all
dimensions. And, if k = 1, then the existence of one geodesic between x and y of
length ≤ d is a trivial corollary of the definition of diameter. All these facts led
us to a conjecture that there exists a universal upper bound of the form f (n, k)d
for the length of k distinct geodesics between points of a closed n-dimensional
Riemannian manifold of diameter d. The main point here is that this upper bound
does not involve any information about the metric invariants of the Riemannian
manifold other than its diameter.

Previously we established this conjecture for k = 2 and an arbitrary closed
Riemannian manifold in [NR2]. More precisely, we proved that for any two points
x, y ∈ Mn there exist two distinct geodesics starting at x and ending at y of length
≤ 2nd (and even ≤ 2qd, where q = mini{πi(Mn) �= 0}). The proof of this result
in [NR2] was heavily based on methods developed in [R], where it had been
proven that for any n, Mn, x ∈ Mn the length of the shortest nontrivial geodesic
loop based at x does not exceed 2qd( ≤ 2nd), where d denotes the diameter of
Mn. Since in our situation n = 2, we obtain the upper bound 4d which is better
than the estimate asserted in Theorem 1 for k = 2.

Note that one can make even a stronger conjecture: Is it true that for every
closed Riemannian manifold M, every pair of points x, y ∈ M and every positive
integer k there exist k distinct geodesics between x and y of length ≤ kd, where d
denotes the diameter of M? But F. Balacheff, C. Croke and M. Katz constructed
Riemannian metrics on S2 arbitrarily close to a round metric such that the length
of the shortest geodesic loop based at each point is strictly greater than 2d [BCK].
Therefore the stronger conjecture is false even in the case, when n = k = 2, x = y,
and the Riemannian metric is positively curved.

Also note that A. Schwarz [S] noticed that a modification of the proof of
J. P. Serre implies that for any closed Riemannian manifold Mn, any two points
x, y ∈ Mn and any k there exist at least k geodesics on Mn connecting x and y of
length ≤ kC(Mn), where C(Mn) depends on the ambient Riemannian manifold
Mn. Of course, this result immediately implies that there exists a scale-invariant
constant c(Mn) such that there are k distinct geodesics connecting x and y of
length ≤ c(Mn)kd. Whenever Balacheff, Croke and Katz demonstrated that one
cannot take here c(Mn) = 1 [BCK], we do not know if there exists a uniform
bound for c(Mn) that depends only on n or even only on the diffeomorphism
class of Mn. In fact, it is quite possible that such an upper bound does not exist,
and the quadratic dependence on k in Theorem 1 is optimal.

Yet we are able to prove some specific linear estimates in k for the length of
k distinct geodesics between arbitrary points. Define the geodesic complexity of
M as follows:

Definition. For every pair of points x, y ∈ M denote by g1(x, y) the number
of distinct geodesics between x and y of length ≤ 2d + dist(x, y) such that each of
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these geodesics provides the local minimum of the length functional on the space
of paths connecting x and y. Denote by g2(x, y) the number of distinct geodesics
between x and y of length ≤ 2d such that each of these geodesics provides the
local minimum of the length functional on the space of paths connecting x and y.
The geodesic complexities Ti of M, (i = 1 or 2), are defined as minx,y∈M gi(x, y).

In particular, this definition implies that every two points x and y of M can
be connected by at least T2 geodesics of length ≤ 2d and T1 geodesics of length
≤ 2d + dist(x, y). Observe, that obviously T1 ≥ T2 ≥ 1. The following theorem
is nontrivial only for k > Ti.

THEOREM 1.A. Let M be a Riemannian manifold diffeomorphic to S2 with
diameter d and geodesic complexities Ti, i = 1, 2. Then for every pair of points x, y
of M and every k there exist at least k distinct geodesics between x and y of length
≤ (2(k−1)(2T1+3)+2)d ≤ kd(4T1+6). Also, there exist at least k distinct geodesics
between x and y of length ≤ (2(k − 1)(T2

2 − T2 + 5) + 2)d ≤ kd(2T2
2 − 2T2 + 10).

The methods of the present paper are quite different from the methods of [R]
and [NR2]. To explain our methods let us start from the following definition:

Definition. Let M be a Riemannian manifold diffeomorphic to S2, and L be a
positive real number. An L-slicing of M is a nonzero degree map from the round
sphere S2 of radius 1 to M such that the length of the image of every meridian
of S2 in M does not exceed L.

(Note: some authors would use the term “sweep-out” instead of “slicing” here,
reserving the term “slicing” only for the situations when the images of different
meridians of the round S2 do not intersect.) The importance of this definition for
our purposes is due to the following lemma:

LEMMA 3. Let M be a Riemannian manifold of diameter d, which is diffeomor-
phic to S2 and admits an L-slicing for some positive L. Then for every two points
x, y ∈ M and every positive integer k there exist at least k distinct geodesics start-
ing at x and ending at y of length 2(k − 1)L + 2d. If the L-slicing maps the South
pole of S2 into either x or y, then the upper bound for the length can be improved
to 2(k − 1)L + d. If, in addition, x = y then the upper bound can be improved to
2(k − 1)L.

This lemma will be proven in the next section. Its proof is based on Morse
theory and is mostly a compilation of known facts and ideas.

As a corollary, one might be tempted to look for an L-slicing of M where L ≤
cd for an appropriate constant c. Yet examples of metrics on D2 constructed by
S. Frankel and M. Katz ([FK]) to answer a question posed by M. Gromov in [Gr]
can be used to show that such a slicing does not always exist: Although we did
not check all the details, it seems not difficult to prove that if one takes smoothed
out doubles of Riemannian D2 constructed by Frankel and Katz, then one obtains
a sequence of metrics on S2 such that for no c all of them admit a cd-slicing.
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So, instead we establish the following dichotomy: Either there exists a cd-
slicing of M for a controlled not very large c, or for every two points x, y ∈ M
there exist many distinct geodesics between x and y of length ≤ 2d which are
local minima of the distance function on the space of all paths between x and
y. Moreover, if there is no cd-slicing of M for a not very large c there must be
many short geodesics between x and y which are “deep” local minima for the
length functional. We need the following definition to state a precise form of this
result:

Definition. Let x, y be two points of M, and S be a nonnegative real number.
Let γ1, γ2 be two geodesics from x to y providing local minima for the length
functional on the space of paths from x to y. We say that γ1 and γ2 are S-distinct
if every path homotopy (i.e. a homotopy with fixed endpoints) between γ1 and
γ2 must pass through a path of length ≥ max{ length(γ1), length(γ2)} + S.

THEOREM 2. (Dichotomy Theorem) Let M be a Riemannian manifold diffeo-
morphic to S2, x, y be two points of M, k ≥ 2 and S ≥ 0. Then:

I. One of the following two assertions is true:
(A1) There exist at least k pairwise S-distinct geodesics between x and y of

length≤ 2d + dist(x, y) that are local minima for the length functional on the space
of paths between x and y.

(B1) There exists an L-slicing of M with L = (2k−1)d+2dist(x, y)+S. Moreover,
this L-slicing maps the South pole of S2 into x.

II. Also one of the following two assertions is true:
(A2) There exist at least k pairwise S-distinct geodesics between x and y of

length ≤ 2d that are local minima for the length functional on the space of paths
between x and y.

(B2) There exists an L-slicing of M with L = (k2 − 3k + 7)d + S. Moreover, this
L-slicing maps the South pole of S2 into x.

Observe that Theorem 2 immediately implies Theorem 1. Indeed, if (A1) is
true, then the theorem is true. But, if (B1) is true, the theorem immediately follows
from Lemma 3. Similarly, it implies Theorem 1.1. (We need to apply Theorem
2 and Lemma 3 in the case when x = y for k + 1 instead of k since the shortest
geodesic loop based at x is trivial.)

Theorem 2 also easily implies Theorem 1.A. Indeed, observe that the def-
inition of the geodesic complexity Ti of M implies the existence of a pair of
points x, y ∈ M for which the alternative (Ai) in Theorem 2 does not hold for
k = Ti + 1. (Here i = 1 or 2, of course.) Therefore there exists an L-slicing with
L = (2T1 +3)d, if i = 1, or L = (T2

2−T2 +5)d, if i = 2. Now Lemma 3 immediately
implies Theorem 1.A.

So, to establish the rest of the results of this paper we only need to prove
Lemma 3 and Theorem 2. We are going to prove Lemma 3 in the next section.
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Theorem 2 will be proven in Section 3. Section 3.1 contains a review of some
(known) facts about cut loci of analytic metrics. Section 3.2 contains some aux-
iliary facts about a curve shortening process later needed to generalize the proof
of Theorem 2 from the analytic case to the smooth case. Section 3.3 contains a
proof of Theorem 2 in the analytic case. First, in Section 3.3.1 we demonstrate
that in order to prove Theorem 2 it is sufficient to establish appropriate upper
bounds for the length of loops in optimal path homotopies contracting certain
loops. These loops are formed by pairs of minimizing geodesics connecting x
with points on the cut locus of x. Equivalently, one needs to majorize lengths of
paths during path homotopies between pairs of minimizing geodesics between x
and an arbitrary point z of the manifold. It is sufficient to consider only points z
which are the vertices of the cut locus of x.

Denote one of these geodesic loops (formed by a pair of minimizing geodesics
between x and a vertex z of the cut locus of x) by λ. Note that we can use the
tree structure of the cut locus of x to introduce a partial order on the set of loops
of interest to us, turning it into a finite poset (where we do not have any control
over the number of elements). We also can use the structure of the cut locus to
reduce the problem of contracting λ to contracting geodesic loops “smaller” than
λ in this poset. We can repeat this trick as many times as we want, but every time
we use it we worsen the upper bound for the lengths of loops in a contracting
homotopy. Therefore, this trick by itself is not sufficient for our purposes, as it
leads to upper bounds involving the height of the cut locus of x regarded as a
tree. (This height can be arbitrarily large, and we do not have any control over it.)

Now note that we can assume that x and y can be connected by less than
k “short” geodesics. We need to establish upper bounds for the length of loops
in an optimal homotopy contracting loop λ (formed by minimal geodesic digons
between x and a vertex of the cut locus of x) in terms of k and d. This is done in
Section 3.3.2 which is the central section of the paper. The first idea is to join the
loop λ with a minimal geodesic σ between x and y traversed twice (in opposite
directions), and to contract λ ∗ σ by a length nonincreasing path homotopy to
a geodesic between x and y, If the resulting geodesic is σ, we cancel it with
σ−1 and obtain a controlled homotopy contracting λ. If the resulting geodesic
σ1 is distinct from σ, then we call it the obstructing geodesic for λ. An easy
observation is that if two loops based at x have the same obstructing geodesic,
then there is a controlled homotopy between them. Thus, all loops that we would
like to contract can be partitioned into at most k−1 equivalence classes according
to what their obstructing geodesics are. We perform an inductive construction of
a controlled homotopy that contracts λ. The induction is with respect to the
number of equivalence classes in the (finite) set of loops that inculdes λ and all
loops in the considered poset that are “smaller” than λ. Here is a brief outline
of the induction step: Connect λ with the “smallest” loop in the same homotopy
class and apply a trick reducing the contracting of this loop to contracting even
“smaller” loops from the considered poset. In order to contract each of these
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loops we need to consider them and “smaller” loops from the considered poset.
Yet none of these loops can be in the equivalence class of λ. We eliminated one
equivalence class, and can now use the induction assumption.

Finally, in Section 3.4 we generalize Theorem 4 to the smooth case.
Section 4 contains a strengthening of the Dichotomy Theorem for k = 2. In

section 4 we also present another dichotomy theorem (Theorem 2.A). One of
its corollaries is that for every k ≥ 2 and every pair of points x, y ∈ M either
the space of paths of length ≤ 2d connecting x and y has at least k connected
components, or M admits a (k2 − 3k + 7)d-slicing.

Acknowledgments. The authors would like to thank an anonymous referee
whose comments helped to improve the exposition. Alexander Nabutovsky would
like to thank Shmuel Weinberger for useful discussions of the topology of the
space of loops on S2. The authors are grateful to the Max-Planck-Institut für
Mathematik, where this paper was partially written, for its kind hospitality during
their visit in July–August, 2006.

2. Proof of Lemma 3. We are going to deduce Lemma 3 from the following
Lemma 4 that will be proven at the end of this section. To state this lemma we
need the following notation: For any two points x, y in a manifold X let Ωx,yX
denote the space of all paths starting at x and ending at y. Of course, all these
spaces are homotopy equivalent to the loop space ΩX.

LEMMA 4. Let S and N be the South and the North poles of S2 with the standard
round metric. There exists a generator of H2(ΩS,SS2), which can be represented as
the image of the fundamental class of S2 under the homomorphism induced by a
map λ : S2 −→ ΩS,S(S2), such that every loop in the image of λ is either an arc
of a meridian traversed twice in opposite directions, or consists of a meridian that
goes from S to N, and a meridian that returns from N to S.

Proof of Lemma 3. To see that Lemma 4 implies Lemma 3 we will follow the
exposition in [S]. Denote the homology class λ∗([S2]) introduced in Lemma 4
by h and a two-dimensional cohomology class dual to h by c. (In other words, c
must satisfy 〈c, x〉 = 1.) For every m = 1, 2, . . . define hm as (λm)∗([(S2)m]), where
λm: (S2)m −→ ΩS,S(S2) is the map defined by the formula λm(s1, . . . , sm) =
λ(s1)∗· · ·∗λ(sm). It had been demonstrated in [S] that for every m 〈hm, cm〉 = m!,
where cm denotes the mth cup power of c.

Alternatively, we can use the results on rational homology and cohomology
algebras of ΩSn that easily follow from the rational homotopy theory (cf. [FHT],
ch. 16). (The multiplication on homology groups of loop spaces is induced by
the composition of paths regarded as a map ΩSn × ΩSn −→ ΩSn.) In partic-
ular, the loop space of S2 is rationally homotopy equivalent to the product of
S1 and CP∞. The class c introduced above corresponds to a generator of the
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algebra H∗(CP∞, Q). The rational homology and cohomology groups of ΩS2 in
every dimension are isomorphic to Q. The rational homology algebra of ΩS2 is
isomorphic to the algebra of polynoimials Q[t] of one variable (of degree one)
([FHT], pp. 234–235). The class h introduced above corresponds to the square
of a generator of this algebra.

Let φ be a L-slicing of M. It induces a map ΩS,S(S2) −→ Ωφ(S),φ(S)(M)
that will be denoted by φ̃. Note that the homomorphisms in homology groups
(in all positive dimensions) induced by φ̃ are also nontrivial. Consider classes
h̃, c̃ corresponding to h, c in Ωx,y(M). More precisely, consider some minimizing
geodesics τ1 from x to φ(S) and τ2 from φ(S) to y, and for every s ∈ S2 define
λ̃(s) as the join of τ1, φ̃(λ(s)) and τ2. The map λ̃ induces isomorphisms between
all rational homology and cohomology groups of ΩS,S(S2) and Ωx,y(M). Denote
classes of Ωx,y(M) corresponding to homology and cohomology classes hm and
cm by h̃m and c̃m. We have exhibited above a specific cycle representing hm. The
definition of L-slicings and the definition of λ̃ immediately imply that, when we
apply λ̃ to this cycle we obtain a 2m-dimensional cycle in Ωx,y(M) made of paths
of length ≤ 2mL + 2d (≤ 2mL + d, if either x = φ(S), or y = φ(S); ≤ 2mL, if
x = y = φ(S)).

Note that when one pulls down h̃m as far as possible, it gets stuck at a critical
point of the length (or the energy) functional, which is a geodesic between x and
y. Here one can just use the gradient flow of the energy functional on Ωx,y(M),
and to use a modification of the work of N. Koiso [Ko] or M. Grayson [G] where
the space of closed curves is replaced by the space of paths with fixed endpoints
to prove the local and global existence of solutions of the corresponding parabolic
PDE. But, of course, this is not needed. Classically one circumvents the technical
difficulties related to the appearance of nonlinear parabolic PDEs by using a
finite-dimensional approximation of Ωx,y(M) and a gradient flow of the energy
functional on this finite-dimensional approximation (cf. [B] or [Kl]). One can
define the same critical values of the energy functional in terms of cohomology
classes c̃m as the minimal sublevel set of the energy functional which can be a
support of a cochain representing c̃m.

In general critical points corresponding to homology (or cohomology) classes
of different dimensions need not be different, but Lyusternik and Schnirelman
observed that if one of the cohomology classes is a cup product of the other and
a third cohomology class of dimension l, and these two classes correspond to
the same critical level, then the dimension of the critical point set at this level is
at least l. See, for example, [Kl] for a proof of this fact. (In terms of homology
classes one needs to require that one of these classes is a cap product of the
other and a cohomology class of dimension l. In this case one says that the first
homology class is subordinate to the second.)

Since the difference of dimensions of classes c̃m is at least two, and the
dimension of any critical level (=the set of geodesics between two fixed points
of the same length on M) is at most one, one concludes that h̃m correspond
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to geodesics between x and y of diffferent length for different values of m =
0, 1, 2, . . ., and the lemma follows.

Proof of Lemma 4. First, recall that π1(ΩS2) = H1(ΩS2) = Z, H2(ΩS2) =
Z,π2(ΩS2) = π3(S2) = Z and is generated by the Hopf fibration H : S3 −→ S2.
Since H2(π1(ΩS2)) = 0 the Hurewicz homomorphism π2(ΩS2) −→ H2(ΩS2) is
surjective by virtue of the Hopf theorem (and, thus, is an isomorphism). Therefore
we can construct a generator of H2(ΩS,SS2) by merely regarding the Hopf fibration
as a cycle in H2(ΩS,SS2). Let x0 ∈ H−1(S) ⊂ S3 be a point in the inverse image
of the South pole of S2. Consider a slicing of S3 by loops based at x0 and
transversally intersecting a big S2 ⊂ S3 passing through x0 at one point (pairwise
intersecting only at x0). (The resulting picture will be a three-dimensional analog
of slicing of S2 into loops depicted on Fig. 1.) Then the images of these loops
under H will be elements of ΩS,SS2. Together they will form a generator of
H2(ΩS,SS2).

Here is an explicit description of the generator. Big circles passing through
the South pole S on S2 constitute a circle in ΩS,SS2. Take a big circle B passing
through S. Take the perpendicular big circle b passing through S. It consists of
two meridians m1 and m2. Contract B to S along circles passing through S and
tranversally intersecting m1 (correspondingly, m2) at one point. These will be two
halves of the homologically nontrivial circle in ΩS2 hanging at B (see Fig. 1).

We prefer to replace this circle by the following homotopic circle: Start from
S regarded as a trivial loop. Continuously extend it along arcs of m1 passed
twice with opposite orientations until we obtain m1 ∗m−1

1 . Now go along pairs of
meridians forming with m1 angles α and −α, where α varies from 0 to π. At the
end of this stage we obtain m2 ∗m−1

2 . Contract the doubled m2 to S along itself.
(See Fig. 2.) Consider this circle as a map of a meridian µ of S2 into ΩS,SS2.
(Here both poles of S2 are mapped to the trivial loop.)
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To obtain the desired two-dimensional homology class in ΩS,S(S2) we need
to rotate B (and thereby b and the whole circle in ΩS,SS2 obtained by the two
different contractions of B to S). We obtain a desired map of S2 to ΩS,SS2.

3. Proof of Theorem 2. First, we are going to prove Theorem 2 in the
case when M is analytic. In Section 3.4 we will prove the theorem in the general
(smooth) case. In Sections 3.1–3.3 we will assume that M is a real analytic
Riemannian manifold. Throughout this section we are going to use the following
notation: The cut locus of a point x ∈ M will be denoted Cx.

3.1. Some facts about cut loci. Here we collected some facts about cut
loci of points on analytic Riemannian manifolds diffeomorphic to S2 that we
will need for our proof. Most of these facts are known and were apparently first
discovered by S. B. Myers [M]. See also [K], [Be] and references there for more
information.

3.1.1. A cut locus of a point on a closed analytic n-dimensional manifold
is a finite CW complex of dimension ≤ n− 1 [Bu]. (This assertion does not hold
if we assume that the manifold is only C∞, [GS].) In dimension 2 it had been
first proven by S. B. Myers [M]. In fact, Buchner proved that the cut locus is
subanalytic and used Hironaka’s results on triangulability of subanalytic sets. We
refer the reader to a survey [BM] for properties of subanalytic sets.
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3.1.2. The cut-locus of every point x of M is a finite tree [M].

Proof. Indeed, its homotopy type is the homotopy type of S2 minus a 2-cell,
i.e. of a point. But a finite-dimensional 1-complex contractible to a point is a
tree. If it is 0-dimensional, it is a point, which we consider as a degenerate tree.

3.1.3. Assume that τ1, τ2 are two distinct minimizing geodesics between x
and a point v in the cut locus of x, Cx. Consider one of two open domains, D,
bounded by the digon τ1 ∗ τ2. Either D

⋂
Cx is not empty, or Cx = {v}, and M

can be partitioned into minimizing geodesics from x to v.

Proof. Consider the plane tangent to M at x. Consider the angle formed by
vectors tangent to M at x pointing inwards D and bounded by the rays generated
by the tangent vectors to τ1 and τ2 at x. Consider the geodesic rays from x in
directions of all vectors in this angle. If D

⋂
Cx is empty, then all these geodesics

must be minimizing until they leave D. None of them can intersect τ1 or τ2 at
points different from x, v, since otherwise τ1 (or τ2) will stop being minimizing.
Therefore each of these geodesic rays must pass through v. Let l = dist(x, v), TlMx

denote the set of all tangent vectors at x of length equal to l, and Al ⊂ TlMx denote
the subset of TlMx formed by tangent vectors to geodesics from the considered
set. (Al is an arc of the circle TlMx formed by all vectors in the angle between
tangent vectors to τ1 and τ2). Consider the restriction of the exponential map at
x on TlMx. This is an analytic map, which is constant on Al. (Its value is equal
to v.) The analytic continuation principle implies that it is constant on TlMx, and
is equal to v. Thus, every geodesic of length ≤ dist(x, v) issued from x must be
minimizing, and therefore does not contain any points of Cx other than v. On
the other hand, it stops being minimizing after passing through v. Since every
point of M can be connected with x by a minimizing geodesic, we see that M
is partitioned into these minimizing geodesics from x to v (intersecting only at x
and v).

3.1.4. Let v be a point inside an edge of the cut locus of x, Cx. Then the
minimizing geodesics from x come to v from both sides of the cut locus. There
exists exactly one minimizing geodesic from x to v coming from each side.

Proof. Consider the boundary Bε of ε-heighborhood of Cx. Consider its inter-
section with the 2ε-neighborhood of v. For small positive ε it will consist of two
arcs Aε1, Aε2 on both sides of Cx. Each point of Aεi can be connected with x by
exactly one minimizing geodesic. As ε −→ 0, these minimizing geodesics con-
verge to a limit set of minimizing geodesics between x and v. All the geodesics
in these limit sets are minimizing.

We need to prove that each of these two limit sets contains exactly one
geodesic. Let γ1, γ2 be two distinct minimizing geodesics from x to v coming
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from one side of Cx. They can intersect Cx only at v. Cx is connected. Therefore
one of two open digons bounded by γ1, γ2 has the empty intersection with Cx.
Now we can apply 3.1.3 and conclude that Cx = {v}, which contradicts our
assumption that v is a point on an edge of Cx.

3.1.5. Let the tree Cx not be a point, and let v be a vertex. Denote the number
of edges of the cut locus meeting at v by kv . These kv edges divide a small
open neighborhood U of v into kv connected components that we will denote
Ki, i = 1, . . . , kv . The set of all minimizing geodesics from x to v consists of kv

geodesics. There exists exactly one minimizing geodesic from x to v approaching
v from within Ki for every i.

Proof. We can use 3.1.3 to conclude that there is at most one minimizing
geodesic from x to v approaching v from within Ki exactly as it has been done in
the proof of 3.1.4. We can obtain one minimizing geodesic from x to v approach-
ing v from within Ki proceeding as follows: Take a point vε in the intersection
of the boundary of the ε-neighborhood of v with Ki. Consider the minimizing
geodesic from x to vε. As ε −→ 0, a subsequence of the sequence of these mini-
mizing geodesics will converge to a minimizing geodesic from x to v approaching
v from within the closure of Ki. But minimizing geodesics from x to v cannot
intersect Cx at points other than x and v, and therefore each of these minimizing
geodesics must approach v from within of one of the sets Ki.

3.1.6. (Sliding of minimizing geodesics along edges) Let [v1, v2] be an edge
3.1.6. Let γ be a minimizing geodesic from x to v1. Then there exists a continuous
family of minimizing geodesics connecting x with all points of [v1, v2] starting
with γ.

Proof. Consider a very small open neighborhood U of [v1, v2] and the con-
nected component K of U \ Cx that contains γ \ {v1}. According to 3.1.4, 3.1.5
for every v ∈ [v1, v2] there exists exactly one minimizing geodesic from x to
v that approaches v from within K. We claim that this family of minimizing
geodesics continuously depends on v. To see that observe that if this family is
not continuous at a point v∗, then there must be at least two distinct minimizing
geodesics between x and v∗ approaching v∗ from K providing a contradiction
with 3.1.4.

Definition. The minimizing geodesic between x and v2 obtained as in the
proof above will be called the result of a sliding of γ along the edge [v1, v2].

3.2. Curve-shortening processes. Let x, y be two points, on M and Ωx,y(M)
denotes the space of paths between x and y. Below we will need a curve-
shortening process on Ωx,y(M). This means that we would like to choose for every
path ρ ∈ Ωx,y a length-nonincreasing homotopy connecting ρ with a geodesic
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between x and y providing a local minimum for the length functional on Ωx,y(M).
In fact many such processes are known. For example, one can use the obvious
modification of the Birkhoff curve shortening process for Ωx,y(M) instead of the
space closed curves ΛM on M. (We refer a reader to [C] for a detailed description
of this process for ΛM. In order to modify it for Ωx,y we consider only broken
geodesics that start at x0 = x and end at xN = y. The endpoints x and y remain
fixed during the whole process.)

Yet another option is a class of flows suggested by J. Hass and P. Scott in
[HS]. Let conv(M) denotes the convexity radius of M. Consider a covering of
M by discs D0, . . . , Dn−1. We demand that the radii of these discs are less than
conv(M)/2, that the discs with the same centers of half the radius cover M, the
discs meet transversely, and no three boundaries of these discs intersect. Define
for every i > n Di as Di(modn). Then for every i = 1, 2, 3, . . . , one constructs an
obvious homotopy that replaces every arc of the curve inside Di by the minimal
geodesic with the same end points. The desired curve shortening process on the
space of all closed curves on M is the composition of all these homotopies. In
order to modify this flow to make it work for Ωx,y(M) instead of the space of
all closed curves on M we demand that x, y must be inside some of the discs
Di. Also, when we modify the initial and the last arc of the curve, we find path
homotopies connecting these arcs with the minimizing geodesics between x (or,
correspondingly, y) and the other endpoint of the arc (on the boundary of the
considered disc).

Either of these flows can be used to prove Theorems 1, 1.1 and 2 in the case
of an analytic M. We can assume that “a curve shortening process” mentioned
below in Sections 3.1–3.3 is one of these processes. If M is analytic, we do not
have any restrictions on the curve shortening flow at all. In particular, we do not
need any kind of continuity.

However, in order to prove our results in the smooth case we need to impose
one restriction on the flow. This restriction will be used only in the last section
to extend the main results of the paper from the analytic case to the smooth case.
Namely, let γ be a piecewise smooth path on S2 connecting x and y. Consider a
surface generated by a path homotopy obtained using a chosen curve shortening
flow. Consider this surface as a map from the standard two-dimensional disc
into M = (S2, g). Consider the Lipschitz constant of this map, λ, as a function
of the Riemannian metric g on M. We need to define a curve shortening flow
for all smooth Riemannian metrics on S2 so that for every compact set K of
Riemannian metrics on S2 supg∈K λ(g) <∞. Here we can assume that for every
g ∈ K the length of γ is either ≤ D0 = 2d + δ (for the purposes of proving
Theorem 2.II) or ≤ D0 = 2d + dist(x, y) + δ (for the purposes of proving Theorem
2.I). Here is the simplest way to do this. Let D = D0 + S, where S is the same
as in Theorem 2. Let γ be a piecewise-smooth path in M = (S2, g) connecting
x and y of length ≤ D. Let Ωx,y(M)D denotes the space of all paths of length
≤ D between x and y. Consider the connected component Ωγ of Ωx,y(M)D that
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contains γ. Choose a path p in Ωγ providing the global minimum of the length
functional on Ωγ . Define a metric on Ωx,y(M) as follows: The distance between
two paths γ1 and γ2 will be the infimum over all homotopies between these two
paths of the maximal length of a trajectory of a point of γ1 during this homotopy.
Of course, homotopies between some γ1, γ2 connecting x and y can be regarded
as paths between γ1 and γ2 in Ωx,y(M). Choose an (almost) optimal homotopy
between γ and p. That is, we choose a homotopy such that the maximal length of
a trajectory is almost equal to the distance between γ and p. This homotopy will
be the curve shortening process for γ. It is obvious that the Lipschitz constant
of an (optimal) map of [0, 1] × [0, 1] into M generated by this homotopy can
be majorized in terms of the length of γ and the width of the homotopy (=the
maximal length of the trajectory of a point of γ during this homotopy). The
width of this homotopy can, in turn, be majorized by the diameter of Ωγ . (The
last assertion trivially follows from the definition of the metric on Ωx,y(M).)

Now we are going to consider γ as a fixed path on S2 between x and y, where
S2 is endowed with Riemannain metrics from a compact set K of Riemannian
metrics. The length of γ and D continuously depend on the Riemannian metric
and, are therefore bounded on K.

So, it remains only to prove the existence of a uniform upper bound for the
diameter of every connected component of Ωx,y(M)D in the considered metric
for all Riemannian metrics g ∈ K on S2. In fact, the existence of such a bound
is well known. Here we sketch how it can be obtained. We refer the reader
to a much more detailed exposition in [R0], [NR0]. (In these papers such an
estimate was obtained for spaces of closed curves instead of spaces of paths with
fixed endpoints, but the argument is completely similar.) The sectional curvature,
volume and diameter of (S2, g) also depend continuously on g. The classical
lower bound for the injectivity radius proven by J. Cheeger easily implies that
the convexity radius of M is bounded from below in terms of an upper bound for
the absolute value of the sectional curvature of (S2, g), a positive lower bound for
the volume and an upper bound for diameter (cf. [Ch]). Therefore the convexity
radius of M is uniformly bounded from below on K by a constant ν > 0. Denote
the upper bound for the volume of (S2, g), where g ∈ K by V , and an upper
bound for D by DK . The classical inequality proven by C. Croke implies that the
volume of any ball of radius ν/10 is bounded from below by constν2. This gives
us a uniform upper bound M = [V/(constν2)] + 1 for the number of points in a
minimal ν/4-net Netg on (S2, g) for all g ∈ K. Consider all broken geodesics from
x to y of length ≤ 5D such that the length of every segment is ≤ ν and all ends
of geodesic segments other than the endpoints x, y are in Netg. Denote the set of
these broken geodesics by Bg. Bg is a ν-net in the set of paths in Ωx,y(M)D made of
all paths parametrized by the arclength (in the sense of the metric on Ωx,y(M) that
we are considering). The cardinality of Bg can be obviously uniformly bounded
on K. Moreover, every path between γ1, γ2 ∈ Ωx,y(M)D can be ν-approximated
by a path with short segments connecting points from Bg. Therefore, if γ1 and γ2
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are in the same connected component of Ωx,y(M)D they can be connected by the
following homotopy: It goes from γ1 to a nearest point of Bg, then it goes via
short segments connecting pairs of close points of Bg, and at the end it goes from
a point of Bg that is ν-close to γ2 to γ2. Now note that if this homotopy visits
a point of Bg twice (thus, forming a loop), then we can just eliminate this loop
shortening the homotopy. So, the homotopy can be chosen so that it visits every
point of Bg at most once, and it length is bounded in terms of the product of the
cardinality of Bg and ν. These observations provide us with an upper bound for
the diameter of every connected component of Ωx,y(M)D.

Note that although this flow will eventually shorten any path between x and
y that was not a geodesic, it can increase the length of the path in the process.
(It differs in this aspect from the Birkhoff or Hass-Scott flows.) But the lengths
of the intermediate paths will be bounded by D.

3.3. Proof of Theorem 2.

3.3.1. Path homotopies of controlled length and slicings of a 2-sphere.
Here we are going to reduce Theorem 2 to Corollaries 7 and 9. The assertions
of these corollaries constitute the crucial part of the proof of Theorem 2. They
will be rigorously stated and proven in section 3.3.2. They both provide an upper
bound L for the maximal length of loops in “optimal” path homotopies contracting
minimal geodesic digons emanating from x. In Corollary 7 we assume that there
are at most k − 1 distinct geodesics between x and y of length ≤ 2d providing
local minima for the length functional on Ωx,y(M). Under this assumption we
obtain L = (k2 − 3k + 6)d. In Corollary 9 we assume that there are at most
k − 1 distinct geodesics between x and y of length ≤ 2d + dist(x, y) providing
local minima for the length functional on Ωx,y(M). This assumption leads to the
estimate L = (2k− 2)d + 2dist(x, y) ≤ 2kd. Moreover, both of these estimates can
be generalized to the case, in which one assumes the existence of at most k − 1
“short” S-distinct geodesics between x and y for any nonnegative S.

Let f : S2 −→ M be a diffeomorphism. Endow S2 with a very fine triangula-
tion, so that the images of all simplices of this triangulation under f are δ-small
for a very small positive δ. We are going to attempt to extend f to the disc D3

triangulated as the cone over the chosen triangulation of S2. (Such extension is
obviously impossible, but in the process we will construct a desired L-slicing of
M unless we will be prevented from doing so by the appearance of k distinct
geodesics connecting x and y.) We start from mapping the only new vertex (=the
center of D3) into x and all new 1-dimensional simplices (that connect the cen-
ter of D3 with points on its boundary, S2) into (arbitrary) minimizing geodesics
between x and the images of the corresponding points on S2 under f .

Consider now the boundaries of the new 2-simplices. Each of them is formed
by two new 1-dimensional simplices mapped into minimizing geodesics between
x and some δ-close points a, b ∈ M and the (very short) minimal geodesic [a, b].
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We will think of the boundaries of the new 2-dimensional singular simplices in
M as being formed by two paths of length ≤ d + δ/2 connecting x with the
midpoint of the short side, and going along the sides of the triangle from x along
two different directions. We will try to fill each of these triangles in M by finding
a path homotopy between these two paths.

We will try to find the desired path homotopies using some geometric ideas
explained below. The upshot will be that either there exists a path homotopy via
paths of controlled length, or we will get the desired k distinct or S-distinct short
geodesics between x and y. (This will be the main part of the proof.)

To finish the proof we need to consider only the case when all boundaries
of new 2-dimensional simplices can be contracted by means of a path homotopy
passing via paths of controlled length.

Since the extension of f to D3 is impossible, we cannot extend f from the
boundary of at least one three-dimensional simplex of the chosen triangulation of
D3. This boundary consists of three new 2-dimensional simplices and a small 2-
dimensional simplex coming for the original triangulation of S2. First, assume that
this simplex is mapped into a point. In particular, all new 1-dimensional simplices
in the 1-skeleton of the 3-dimensional simplex were mapped to minimal geodesics
between x and this point. On the previous steps of the proof we concluded that
for each of the three resulting geodesic digons one its side can be connected with
the other by a path homotopy passing through paths of controlled length. Now
we can combine these three path homotopies in the most obvious way into a
L-slicing of M. (Each of these three path homotopies constitutes a third of the
L-slicing. The boundary of the considered 3-simplex is mapped into M with a
nonzero degree. Here L is an upper bound for the length of the paths in the three
path homotopies.)

The situation when the small 2-dimensional 1-simplex is nontrivial can be
easily reduced to the situation when it is trivial. Indeed, we can contract the small
2-simplex over itself to a point q. Let x1, x2, x3 denote its vertices. We extend
the minimal geodesics from x to x1, x2, x3 by joining them correspondingly with
[x1, q], [x2, q], [x3, q] to obtain three paths, p1, p2, p3 connecting x with q. For
every vertex xi denote the midpoint of the opposite side of the triangle x1x2x3 by
mi. Assume that for every i = 1, 2, 3 there exists a path homotopy connecting two
paths between x and mi along two different sides of the triangle xxjxk, where xj

and xk denote the vertices of the side of the triangle x1x2x3 opposite to xi. (Note
that mi ∈ (xjxk).) Assume that this homotopy goes via paths of length ≤ L (for
some L). Then is is easy to find a path homotopy between pi and pj (for all pairs
of i and j) that goes via paths of length ≤ L + o(1). Here is a description of one
such homotopy. Denote the midpoint of [xixj] by mk.

pi = [xxi] ∗ [xiq] −→ [xxi] ∗ [ximk] ∗ [mkxi] ∗ [xiq]

−→ [xxj] ∗ [xjmk] ∗ [mkxi] ∗ [xiq]

= [xxj] ∗ [xjxi] ∗ [xiq] −→ [xxj] ∗ [xjq] = pj.
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Here the first path homotopy is the insertion of [ximk] traversed twice in the
opposite direction, the second path homotopy passes only though paths of length
≤ L, and the third path homotopy is, in fact, between [xjxi] ∗ [xiq] and [xjq] via
(a part of) the very small triangle x1x2x3.

Thus, we demonstrated that proving of Theorem 2 reduces to finding path
homotopies between the halves of the boundaries of new 2-dimensional singular
simplices in M that pass via paths of controlled length (or obtaining distinct min-
imizing geodesics between x and y as obstructions if the desired path homotopies
do not exist). Denote two vertices of a considered 2-simplex by x1 and x2; the
third vertex is, of course, x. One of two paths in question is the join of the min-
imal geodesic from x to x1 and the part of [x1x2] between x1 and the midpoint
m of [x1x2], the other is the join of [xx2] and [x2m]. Denote these two paths by
π1,π2. The intersection of π1

⋃
π2 with the cut locus Cx of x is entirely contained

in the short simplex [x1x2]. By perturbing the short geodesic segment between
x1 and x2 as a smooth path with fixed endpoints we can ensure that the number
of its points of intersection with Cx is finite, and that m is not in Cx. (Here we
use the subanaliticity of the cut-locus, cf. [B], [BM]). Denote these points by
P1, P2, . . .PK (see Fig. 3). These points divide π1

⋃
π2 into segments [PiPi+1],

where P0 = PK+1 = x.
We would like to construct a continuous family of paths of controlled length

between x and all points of π1
⋃
π2, so that the lengths of all these paths do not

exceed a certain upper bound. In addition, we want the path connecting x with
P0 = PK+1 = x to be trivial. There will be exactly one path γxPt connecting x
with every point Pt ∈ (π1

⋃
π2) \ Cx, but possibly a continuous family of paths

between x and Pt, if Pt ∈ (π2
⋃
π2)

⋂
Cx. Once the desired continuous family of

paths between x and all points of π1
⋃
π2 is constructed, one can construct the

path homotopy between π1 and γxm as follows: We start from π1 regarded as
the join of the trivial path from x to x and π1. Let Pt move from P0 to m along
π1. For every position of Pt we can replace the trivial path from x to P0 = x
by a path from x to Pt from the constructed continuous family, and π1 by the
arc of π1 between Pt and m. The joins of these pairs of paths constitute a path
homotopy between π1 and γxm. In exactly the same way one can construct a path
homotopy between γxm and π2. The desired path homotopy between π1 and π2

is the combination of these two path homotopies.
Now we are going to explain our approach to constructing the desired family

of continuous paths between x and Pt. If Pt ∈ [P0, P1)
⋃

(PK , PK+1] γxPt is just the
minimizing geodesic xPt. Similarly, if Pt belongs to the open segment (PiPi+1) of
π1
⋃
π2, i = 1, . . . , K − 1, then Pt is not in a cut locus of x and can be connected

with x by the unique minimizing geodesic. For every i these minimizing geodesics
form continuous families of paths between x and Pt ∈ (Pi, Pi+1). These paths will
be γxPt . Moreover, when Pt approaches Pi or Pi+1, these minimizing geodesics
converge to minimizing geodesics between x and Pi or x and Pi+1. Denote these
limit geodesics by w+

i and w−i+1. Now the problem is that for every i w+
i can
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differ from w−i . But if we have a choice of a path homotopy between every
pair of distinct minimizing geodesics with the same endpoints emanating from x,
then we will be able to complete the construction of the continuous familiy of
paths between x and points of π1

⋃
π2 by connecting w−i with w+

i by such a path
homotopy for every i = 1, . . . , K − 1.

Assume that every pair of minimizing geodesics starting at x and ending at
a point p ∈ Cx can be connected by a path homotopy that passes through paths
of length ≤ Y , where Y ≥ d. Then examining our previous construction of the
continuous family of paths between x and points of π1

⋃
π2 and the construction

of the path homotopy between π1 and π2 we see that the length of paths in the
path homotopy between π1 and π2 does not exceed Y + δ, where δ > 0 can be
made arbitrary small.

Thus, in order to prove Theorem 2 it is sufficient to construct a path homotopy
between an arbitrary pair of minimizing geodesics starting at x and ending at a
point p ∈ Cx such that the lengths of paths during the path homotopy do not
exceed appropriate upper bounds.

Our next observation is that one can reduce finding controlled path homo-
topies between pairs of minimizing geodesics with the same endpoints starting
at x to finding controlled contractions of based at x loops formed by these pairs.
More precisely, Lemma 5 below implies that if a loop formed by a pair of these
minimizing geodesics can be contracted via loops of length ≤ L∗ then there is
a path homotopy between these minimizing geodesics passing through paths of
length ≤ L∗ + d.

LEMMA 5. Consider two paths τ1, τ2 from x to y. Assume that the loop τ1 ∗ τ−1
2

based at x can be contracted to x via loops based at x of length ≤ K. Then there
exists a path homotopy between τ1 and τ2 that passes only through paths of length
≤ length(τ2) + K.

Proof. We start from τ2 and use the contraction of τ1 ∗ τ−1
2 in reverse time

to create τ1 ∗ τ−1
2 out of the point x. As the result we obtain τ1 ∗ τ−1

2 ∗ τ2. Then
we contract τ−1

2 ∗ τ2 over itself.

Combining these observation together we arrive at the following proposition:

PROPOSITION A. Assume that every loop based at x and formed by a pair of
minimizing geodesics starting at x and ending at a point P ∈ Cx can be contracted
to a point via loops of length not exceeding L̃ based at x. Then the length of paths
in a path homotopy connecting π1 to π2 does not exceed L̃ + d.

Combining this proposition with the previous discussion we obtain:

PROPOSITION B. Assume that for every z ∈ Cx and every two minimizing
geodesics γ1, γ2 between x and z there exists a path homotopy contracting the loop



562 ALEXANDER NABUTOVSKY AND REGINA ROTMAN

γ1∗γ−1
2 that passes through loops of length≤ L̃. Then there exists an (L̃+d)-slicing

of M.

Thus, we demonstrated that in order to prove Theorem 2 it only remains to
find an upper bound L for the maximal length of loops in optimal path homotopies
contracting loops formed by pairs of minimizing geodesics connecting x with a
point on the cut locus Cx of x. Below we will see how one can get such an estimate
if there exists less than k short geodesics between x and y. Our estimates will
be L = (k2 − 3k + 6)d, if there exist less than k distinct geodesics of length
≤ 2d (see Corollary 7 below), or L = (2k − 2)d + 2dist(x, y), if there exist less
than k distinct geodesics of length ≤ 2d + 2dist(x, y) (Corollary 9). Let S be
a nonnegative number. Then one can also obtain similar upper bounds, if one
assumes the existence of at most k− 1 S-distinct geodesics (instead of assuming
the existence of k − 1 distinct geodesics.) In the first case our estimate becomes
L = (k2 − 3k + 6)d + S (if there exist less than k S-distinct geodesics of length
≤ 2d), in the second case it becomes L = (2k − 2)d + 2dist(x, y) + S (if there
exist less than k distinct S-geodesics of length ≤ 2d + 2dist(x, y)). Combining this
estimates with Proposition B, we immediately complete the proof of Theorem 2
(in the considered now analytic case). Now it remains only to prove the above
mentioned Corollaries 7 and 9. This will be done in Section 3.3.2 below (and is
the crucial part of the proof of all main results of the present paper).

3.3.2. Path homotopies contracting loops formed by two minimizing
geodesics.

3.3.2.1. Let γ1, γ2 be two minimizing geodesics from x to a point p ∈ Cx.
We would like to find a bound L ≥ d such that there exists a path homotopy
contracting γ1 ∗ γ−1

2 passing through loops based at x of length ≤ L. We are
going to assume either that there exist at most k − 1 geodesics between x and y
of length ≤ 2d (or 2d + dist(x, y)) or at most k − 1 S-distinct geodesics between
x and y of length ≤ 2d (or ≤ 2d + dist(x, y)), where S is a nonnegative number.

3.3.2.2. Obstructing pairs. Let us first try to find the desired path homo-
topy as follows. Connect p with y by a minimizing geodesic σ. Apply a curve
shortening process in the space of paths starting at x and ending at y to γ1 ∗ σ
and γ2 ∗ σ. We end at geodesics between x and y of length ≤ 2d providing local
minimuma for the length functional. Denote these geodesics by ω1,ω2. If ω1 = ω2

then we can combine these two homotopies into a path homotopy

γ1∗γ−1
2 −→ γ1∗σ∗σ−1∗γ−1

2 −→ ω1∗σ−1∗γ−1
2 −→ ω1∗ω−1

2 = ω1∗ω−1
1 −→ {x},

and hence obtain a path homotopy contracting γ1 ∗ γ−1
2 via loops based at x

of length ≤ 4d. The difficult case is when ω1 �= ω2. In this case we will call
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the (unordered) pair of geodesics ω1,ω2 an obstructing pair. If ω1 and ω2 are
S-distinct, we will call them an S-obstructing pair. If they are not S-distinct, then
we can contract ω1∗ω−1

2 via loops of length S+4d, thereby obtaining a homotopy
that contracts γ1 ∗ γ−1

2 via loops of length ≤ S + 4d.

3.3.2.3. Obstructing geodesics. Here is another approach to contracting
γ1 ∗ γ−1

2 . Fix one of the minimizing geodesics between x and y and denote it
γ. Consider the following path between x and y: γ1 ∗ γ−1

2 ∗ γ. If we apply
a curve-shortening process to this path we will end at a geodesic τ of length
≤ 2d + dist(x, y) between x and y providing a local minimum for the length
functional on the space of paths between x and y. If this geodesic is not γ,
we will call it an obstructing geodesic corresponding to the pair γ1, γ2. If S is
a nonnegative number, and this geodesic is S-distinct from γ, we call it an S-
obstructing geodesic. Note that γ1 ∗ γ−1

2 can be connected by a path homotopy
first with γ1 ∗ γ−1

2 ∗ γ ∗ γ−1, and then with τ ∗ γ−1. If τ = γ, we can contract
τ ∗ γ−1 over itself, obtaining a path homotopy contracting γ1 ∗ γ−1

2 via loops
of length ≤ 2d + 2dist(x, y). If τ and γ are not S-distinct, then τ ∗ γ−1 can be
contracted via loops of length ≤ 2d + 2dist(x, y) + S. Therefore, in the last case,
γ1 ∗ γ−1

2 can be contracted via loops of length ≤ 2d + 2dist(x, y) + S.

3.3.2.4. These considerations provide the base of inductive proofs of the
following two lemmae (Lemma 6, Lemma 8):

LEMMA 6. Let γ1 and γ2 be minimizing geodesics between x and a point p ∈ M,
D be a domain in M bounded by γ1

⋃
γ2, and S be a nonnegative number. Denote

the union of the set of all vertices of Cx inside D and the one point set {p} by Q.
For every q ∈ Q and every pair of minimizing geodesics between x and q consider
the corresponding obstructing pair (respectively, S-obstructing pair), if it exists.
Let N be the cardinality of the resulting set of obstructing pairs (respectively, S-
obstructing pairs). Then there exists a path homotopy contracting loop γ1 ∗γ−1

2 via
loops of length ≤ (2N + 4)d (respectively, (2N + 4)d + S).

COROLLARY 7. Let γ1 and γ2 be minimizing geodesics between x and a point
p ∈ M. Assume that there exists at most k − 1 geodesics (respectively, S-distinct
geodesics) between x and y of length ≤ 2d providing local minima for the length
functional on the space of curves connecting x and y. Then the loop γ1 ∗ γ−1

2 can
be contracted via loops of length≤ (k2−3k + 6)d (respectively, (k2−3k + 6)d + S).

Indeed, it is obvious that N in Lemma 8 is majorized by by the num-
ber (k − 1)(k − 2)/2 of all possible pairs of distinct geodesics of length ≤
2d between x and y that provide a local minimum of the length functional
on Ωx,y(M).
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Proof of Lemma 6. The proof will be by induction with respect to N. The base
of induction N = 0 was provided by an argument that followed the definition of
obstructing and S-obstructing pairs in 3.3.2.2. To prove the induction step assume
that the lemma is true for N − 1. We will prove the induction step only in the
case, when N is the number of the obstructing pairs. The proof in the case, when
N measures the number of S-obstructing pairs is nearly identical.

The main idea is to use the following obvious observation: If γ1 ∗ γ−1
2 and

another geodesic loop λ have the same obstructing pair ω1,ω2, then γ1∗γ−1
2 can be

connected with either λ or λ−1 by a path homotopy passing through ω1∗ω−1
2 and

involving only loops of length≤ max{length(λ), length(γ1∗γ2)}. This observation
will enable us to reduce finding of a path homotopy contracting γ1∗γ−1

2 to finding
a path homotopy contracting the loop λ formed by the innermost in D pair of
minimizing geodesics between x and a vertex of Cx that has the same obstructing
pair as γ1, γ2. Then, we will reduce finding a path homotopy contracting λ to
finding path homotopies between pairs of minimizing geodesics (with the same
endpoints) that are even deeper inside D. Therefore the obstructing pair ω1,ω2

cannot appear anymore, and the induction assumption will apply. Here are the
details.

First, we are going to introduce a partial order on the set of all pairs of
minimizing geodesics connecting x with points of Q. For brevity we will call
such pairs MGD (an abbreviation of “minimal geodesic digons”). Note that no
pair of such MGD can intersect at points other than their common endpoints.
(Otherwise, the intersecting geodesics will stop being minimizing.) In particular,
they can intersect γ1

⋃
γ2 only at x and, possibly at p (if p is an endpoint of

the considered MGD). Therefore each of the considered MGD bounds a unique
domain contained in D. We say that one such MGD is less than the other if the
domain inside D bounded by the first MGD is properly contained in the domain
bounded by the second. It is clear that γ1, γ2 is the maximal element of this
(finite) poset. Denote the resulting poset P(γ1, γ2, D).

Note that N is the cardinality of the set of obstructing pairs of all MGDs
from P(γ1, γ2, D). If γ1, γ2 do not have an obstructing pair, then the assertion of
Lemma 6 immediately follows from 3.3.2.2. So, we can assume that γ1, γ2 have
an obstructing pair. Among all considered MGD that have the same obstructing
pair as γ1, γ2 choose an MGD µ that has the following property: Consider the
set of MGD that are less than µ . None of these MGD has the same obstructing
pair as γ1, γ2. (In other words, µ is a minimal element in the set of all MGDs
in P(γ1, γ2, D) that have the same obstructing pair as γ1, γ2.) The existence of µ
follows from the finiteness of P(γ1, γ2, D). µ consists of two minimizing geodesics
with common endpoints. Denote these minimizing geodesics by δ1 and δ2. Let
D1 be the domain bounded by δ1, δ2 and contained in D. Denote the common
endpoint of δ1, δ2 different from x by p∗.

As we already observed, γ1 ∗ γ−1
2 can be connected with δ1 ∗ δ−1

2 via loops
of length ≤ 4d. Therefore it is sufficient to contract δ1 ∗ δ−1

2 .
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Consider the intersection of Cx with D1. There are three cases:

Case 1. This intersection is empty. Then according to 3.1 there is a length
nonincreasing path homotopy from δ1 to δ2, that can be used to find a length
nonincreasing contraction of δ1

⋃
δ2.

Case 2. There is exactly one edge of Cx approaching p∗ from inside of D1.
We can slide δ1, δ2 along this edge to the nearest vertex (see 3.1.6). This sliding
will provide us with a homotopy of the loop δ1 ∗δ−1

2 via loops of length ≤ 2d. At
the end of this process we will obtain a MGD that bounds a proper subdomain
D2 of D1. We can define a set Q2 and a number N2 for D2 exactly as Q and
N were defined for D in the text of Lemma 6. The definition of µ implies that
N2 < N. Now we can apply the induction assumption to contract the loop formed
by this new MGD that bounds D2.

Case 3. There exist more than one edge of Cx approaching p∗ from D1. In
this case there is a sequence of minimizing geodesics between x and p∗ β1 =
δ1,β2, . . . ,βq−1,βq = δ2, q > 2 such that for every i βi and βi+1 bound a proper
subdomain D∗i of D1 such that no geodesic βj passes inside D∗i . One can construct
a path homotopy between δ1 and δ2 by joining path homotopies between βi and
βi+1 for all i. Because of the definition of µ every pair βi,βi+1 satisfies conditions
of Lemma 6 with some number Ni < N of potential obstructing pairs instead
of N. Therefore, the induction assumption implies that loops βi ∗ β−1

i+1 can be
contracted via loops of length ≤ 2(N − 1) + 4 = 2N + 2. Therefore Lemma 5
implies the existence of path homotopies between βi and βi+1 that pass through
paths of length ≤ 2N + 3. These path homotopies together form a path homotopy
δt, t ∈ [1, 2] between δ1 and δ2. We can contract δ1 ∗ δ−1

2 by, first, going through
loops δt ∗ δ−1

2 , and then cancelling δ2 ∗ δ−1
2 along itself.

We can prove analogues of Lemma 6 and Corollary 7, where the notion of
obstructing pair is replaced by the notion of obstructing geodesic.

LEMMA 8. Let γ1 and γ2 be distinct minimizing geodesics between x and a point
p ∈ M, D be a domain in M bounded by γ1

⋃
γ2, and S be a nonnegative number. Let

Q be the set of points formed by p and all vertices of Cx inside D. For every vertex
q ∈ Q and every pair of minimizing geodesics between x and q consider the cor-
responding obstructing geodesic (respectively, S-obstructing geodesic), if it exists.
Let N be the cardinality of the resulting set of obstructing geodesics (respectively,
S-obstructing geodesics). Then there exists a path homotopy contracting γ1 ∗ γ−1

2
and passing only through loops of length ≤ (2N + 2)d + 2dist(x, y) (respectively,
≤ (2N + 2)d + 2dist(x, y) + S).

COROLLARY 9. Let γ1 and γ2 be minimizing geodesics between x and a point
p ∈ M. Assume that there exists at most k − 1 geodesics (respectively, S-distinct
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geodesics) between x and y of length ≤ 2d + dist(x, y) providing local minima for
the length functional on the space of curves connecting x and y. Then γ1 ∗ γ−1

2 can
be connected by a path homotopy via loops of length≤ (2k−2)d+2dist(x, y) ≤ 2kd
(respectively, ≤ (2k − 2)d + 2dist(x, y) + S ≤ 2kd + S).

Indeed, if there exist at most k − 1 distinct geodesics between x and y, then
there exist at most (k − 1) − 1 = k − 2 distinct obstructing geodesics. So, N in
Lemma 8 cannot exceed k − 2.

Proof of Lemma 8. The proof of Lemma 8 uses induction with respect to N. It
is completely parallel to the proof of Lemma 6. The difference is that the notion of
obstructing geodesic replaces the notion of obstructing pair. Correspondingly, the
construction of a path homotopy contracting γ1 ∗γ−1

2 , when it has no obstructing
geodesic (correspondingly, S-obstructing geodesic) replaces a similar argument
for obstructing pairs. (Recall that this argument was given right after the definition
of obstructing and S-obstructing geodesics in 3.3.2.3.)

3.4. The smooth case. In the previous sections we proved Theorem 2 (and
thereby the rest of the results of this paper) in the case when M is a real analytic
Riemannian manifold. Here we demonstrate that the analiticity is not necessary.

First, approximate a given smooth Riemannian metric g on S2 by a converging
sequence of analytic Riemannian metrics gn, limn−→∞ gn = g in C3-topology on
the space of smooth Riemannian metrics on S2. Denote (S2, gn) by Mn and (S2, g)
is M.

We are going to use the curve shortening flow introduced at the end of
Section 3.2 in order to construct path homotopies between a path from x and y
and a geodesic between x and y.

Let i = 1 or 2. The already proven analytic case of Theorem 2 implies that
for every n either Ai or Bi hold for Mn. Consider two cases. In the first case Ai

holds not only for the considered value, S0, of S but also for every value of S in
the interval [S0, S0 + ζ] for some small positive ζ and for all but finitely many gn.
In the second case there exists a decreasing sequence Sm < S0 + ζ converging to
S and a strictly increasing sequence nm such that Bi holds for Sn and Mnm . We
would like to prove that in the first case Ai holds for M, and in the second case
Bi holds for M thereby establishing Theorem 2 for M.

Case 1. Passing to a subsequence and changing the notations we can assume
that Ai holds for all Riemannian metrics gn for S = S0 + ζ. We claim that it holds
also for M for S = S0. Otherwise, there will be less than k S0-distinct geodesics
between x and y. Note that an easy compactness argument implies that for every
ε > 0 for all sufficiently large n every geodesic of length ≤ 2d + dist(x, y)
(correspondingly, 2d) between x and y on Mn will be ε-close to a geodesic of
length ≤ 2d + dist(x, y) (correspondingly, ≤ 2d) between x and y on M. Therefore
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for all sufficiently large n there exist two (S0 + ζ)-distinct geodesics on Mn that
are ε-close to geodesics between x and y on M that are not S0-distinct. Choosing
ε sufficiently small we ensure that these geodesics on Mn are not (S0 + ζ)-distinct
thereby obtaining the desired contradiction.

Case 2. We would like to obtain an L-slicing of M for the postulated value
of L as the limit of (L + εm)-slicings that exist for Mnm (possibly passing to a
subsequence of nm). The only thing that we need in order to ensure the existence
of such a limit is a uniform bound for the Lipschitz constant for all slicings of
Mnm (possibly after a suitable reparametrization of S2 that is being mapped to
Mnm). Since these slicings were constructed by gluing several path homotopies
between paths between x and y and geodesics between x and y we need a uniform
bound for Lipschitz constant for these path homotopies. These homotopies were
just applications of a chosen curve shortening process. We arrive to the question
that had been posed and resolved in 3.2: We demonstrated that one can choose
a curve shortening process so that such a bound always exists (for all paths of
length ≤ 2d + dist(x, y) + S + δ or ≤ 2d + S + δ and all Riemannian metrics from a
compact set K. In our situation K = {g}⋃{g1, g2, . . .}.) So, for the chosen curve
shortening processes a limit L-slicing of M exists.

4. Concluding remarks.

4.1. One can find path homotopies between pairs of minimizing geodesics
connecting x and Pi (see 3.2) not using a path homotopy contracting the geodesic
loops formed by such pairs. An alternative approach enabled us to improve the
Dichotomy Theorem (Theorem 2) for k = 2. We obtained the following result:

THEOREM. Let M be a Riemannain manifold diffeomorphic to S2 of diameter
d. Let S ≥ 0. Let x, y be two points of M such that there exists only one geodesic
between x and y of length ≤ 2d (respectively, every two geodesics between x and
y of length ≤ 2d can be connected by a path homotopy that increases the length
by a summand not exceeding S). Then there exists a 3d-slicing (respectively, a
(3d + S)-slicing) of M that maps the South pole of S2 into x.

We omit the details of the proof of this Theorem. It implies that a Riemannian
metric on S2 for which the length of a second shortest geodesic between a pair
of points can be strictly greater than 2d cannot be too rugged. (Examples of such
metrics were constructed in [BCK].)

4.2. As it had been noted, the main purpose of chosing a curve shortening
process as it had been done in 3.2 was to extend the proof of main results from
the analytic case to the smooth case. Yet, such a choice of the curve shortening
process can be used also to prove some strenghenings of Theorem 2. Indeed,
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note that the curve shortening process introduced in 3.2 applied to a closed
curve can end only at a geodesic between x and y that is a global minimum
of the length on a connected component of Ωx,y(M)2d+S+δ (or, correspondingly,
Ωx,y(M)2d+dist(x,y)+S+δ.) (Here Ωx,y(M)R denotes the space of all paths of length
≤ R between x and y.) Therefore, we can strengthen A1, A2 by demanding that
the k S-distinct geodesics minimize the length in different connected components
of Ωx,y(M)2d+dist(x,y)+S (or, correspondingly, Ωx,y(M)2d+S). As a corollary we obtain
the following dichotomy theorem:

THEOREM 2.A. (Dichotomy theorem II.) Let M be a Riemannian manifold
diffeomorphic to S2, d be the diameter of M and x and y be two arbitrary points
of M.

(A) For every k > 1 either the space of all paths between x and y of length
≤ 2d has at least k connected components, or M admits a (k2 − 3k + 7)d-slicing
that maps the South pole of S2 into x.

(B) For every k > 1 either the space of all paths between x and y of length
≤ 2d + dist(x, y) has at least k connected components or M admits a (2k − 1)d +
2dist(x, y)-slicing that maps the South pole of S2 into x.
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