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Abstract. Zhuchao Ji and Junyi Xie recently proved that the multiplier spectrum

of a map f : P1 → P1 will uniquely determine the map up to conjugacy, for a general

choice of f (i.e., for f in a Zariski open subset of the space of all maps of degree

d, in each degree d > 1). These notes present a sketch of the proof of the main

result in [JX3], which itself builds on the proofs in [JX1] and the main theorem of

[JX2]. In the final section, we provide a simplification of their proof and discuss a

theorem of Ji, Xie, and Zhang from [JXZ]. These notes were prepared for lectures

at Harvard and Toronto in November 2023 and edited in Spring 2024.

1. Overview

Fix a degree d ≥ 2. Let Md denote the moduli space of maps f : P1 → P1 over C
of degree d, so

Md = Ratd/Aut Ĉ
where Ratd is the space of all rational functions f(z) = P (z)/Q(z) of degree d, where

the polynomials P (z), Q(z) ∈ C[z] have no common factors, and Aut Ĉ ' PSL2C is

the group of Möbius transformations acting by conjugation; that is, ϕ ·f = ϕ◦f ◦ϕ−1.
The space Md is an affine algebraic variety (with singularities) of dimension 2d− 2.

Milnor [Mi1] showed that M2 ' C2; Silverman [Si2] constructed the moduli spaces

Md (and compactifications) over SpecZ using geometric invariant theory; Levy [Le2]

proved that Md is rational for all degrees d ≥ 2; and West [We] provided an explicit

description of M3 as a subvariety of a certain weighted projective space. Bergeron,

Filom, and Nariman [BFN] recently studied the topology of Md. Other than these

results, we know little about Md as an algebraic variety; in particular, we do not have

a good dynamical description of the ring C[Md] of regular functions on Md.

The multipliers of a map f define natural functions on Md, as follows. Recall that

the multiplier of f ∈ Ratd at a periodic point z0 with fn(z0) = z0 is the derivative

(fn)′(z0) (in coordinates where z0 6= ∞). The multipliers are invariant under the

conjugacy action.
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For each n ∈ N, we can associate to f a vector in Cdn+1 by taking the symmetric

functions in the multipliers at all points fixed by fn, counted with multiplicity. In

this way, we define morphisms

τd,n : Md −→ Cd+1 × Cd2+1 × · · · × Cdn+1,

recording multipliers for all periods ≤ n. Note that there is a great deal of redundancy

in the definition of τd,n, and there are known relations among the multipliers (that

need not concern us for the purposes of this note). Two maps f, g ∈ Ratd are said to

be isospectral if they have the same image under τd,n for all n.

McMullen [Mc1] proved that the multipliers of a map f determine its conjugacy

class [f ] in Md up to finitely many choices, as long as f is not a flexible Lattès map.

That is, for each fixed degree d and for all sufficiently large periods n (depending on

d), the restriction

τd,n : Md \ L −→ CN(d,n)

has finite fibers, where L is the algebraic curve of flexible Lattès maps (which exists

only when d = m2 for some integer m ≥ 2; it has two components in each such

degree). The multipliers are constant along the components of L.

Ji and Xie have recently proved that, by choosing n large enough (possibly depend-

ing on the degree d) and by restricting τd,n to a smaller but Zariski open dense subset

of Md, each fiber of τd,n will consist of a single point. In other words:

Theorem 1.1. [JX3] In each degree d ≥ 2, the multiplier map τd,n is generically

one-to-one, for all n� 0.

This result was already known for d = 2, as Milnor’s isomorphism M2 ' C2 is

by τd,1 [Mi1]. And in degree d = 3, it was known that τd,2 is generically one-to-one

[We, Got, HT]. The proof of Theorem 1.1 in [JX3] requires d ≥ 4 (to apply a result

of Pakovich [Pa2] in one step).

Remark 1.2. Note that τd,n may not be injective on all of Md \ L for any choice of

n. There are two known constructions of isospectral maps that are not conjugate and

not in L:

• rigid Lattès maps in degree d from non-isomorphic CM elliptic curves equipped

with the same endomorphism (e.g., multiplication by
√
−d when d is not a

square); and

• compositions of the form f1 ◦ f2 and f2 ◦ f1 in composite degrees.

It is not known if there are other examples of non-conjugate isospectral maps. See

[Mi3] for more on Lattès maps and [Pa1] for more about compositional equivalence.

Remark 1.3. It is not hard to show that τd,2 is generically finite in every degree

d ≥ 2 [Ge]. Indeed, one marks the d2 + 1 points of period 1 and 2 at f(z) = zd
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and computes that the rank of the multiplier map is maximal. See also [Gor]. The

following conjecture is stated explicitly in [JX3]:

Conjecture 1.4. In every degree d ≥ 2, the period-2 multiplier map τd,2 is generically

injective.

Remark 1.5. When working with the subspace MPolyd of polynomial maps in Md,

there are many additional tools and certain arguments simplify. Note that the di-

mension of MPolyd is d−1. Restricted to MPolyd, the fixed-point multiplier map τd,1
is generically finite in all degrees d, with degree (d− 2)! [Fu], and the explicit count

of τ−1d,1 (λ) in MPolyd is known for all λ ∈ Cd+1 [Su, CP].

2. Proof strategy in [JX3]

In this section, we sketch the proof of Theorem 1.1 in [JX3]. We fix a degree d ≥ 4

and argue by contradiction.

Suppose the generic degree of τd,n is not 1 for any n. Choose nd large enough so

that τd,nd
(f) = τd,nd

(g) if and only if f and g are isospectral. Let τ := τd,nd
, and let κ

be its generic degree. Let Ud be a Zariski open subset of Md on which τ is a covering

map from Ud to its image, of topological degree equal to κ.

In particular, τ induces a κ-fold symmetry of Ud (we can build an algebraic cor-

respondence over Ud that identifies points in fibers of τ). Moreover, recalling that

J-stability is characterized by properties of the multipliers [MSS, Ly] (see also [Mc2,

Chapter 4]), τ induces a κ-fold symmetry of the bifurcation locus within Ud. Further-

more, as the multipliers also determine the Lyapunov exponent L(f) of a map f on

P1 (with respect to its measure of maximal entropy µf ) [Be], we also obtain a κ-fold

symmetry of the bifurcation current Tbif := ddcL [De1, De2] on Ud.

Remark 2.1. To obtain the symmetry of the bifurcation current, Ji and Xie take a

different approach, by first restricting to special algebraic curves within Ud and then

appealing to an arithmetic equidistribution result of [YZ2]. Working directly with

the Lyapunov exponent function seems most direct.

Ji and Xie show this extra symmetry cannot exist: in particular, they observe that

τ induces a symmetry of the postcritically finite maps along a special algebraic curve

in Ud and use the theory developed in their article [JX1] to obtain a contradiction.

We present their argument in two parts.

Remark 2.2. A map f : P1 → P1 is postcritically finite, or PCF, if each of

its critical points has a finite forward orbit. In [JXZ, Theorem 1.12], the authors

characterize the PCF maps by their multiplier spectrum, among all maps defined

over Q. This characterization is not needed for the Ji-Xie proof of Theorem 1.1, but

knowing this is possible helps put their proof in context.
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2.1. Part 1: choosing a good 1-parameter family. We begin by appealing to

recent work of Pakovich in [Pa2]. By assuming d ≥ 4 and shrinking Ud if necessary,

we can assume that the maps f with conjugacy class in Ud have no automorphisms

and no nontrivial “partners”; that is, for any f ∈ Ratd representing a point of Ud

and any other g ∈ Ratd, if the map (f, g) : P1 × P1 → P1 × P1 has a periodic curve

in P1 × P1 which is neither vertical nor horizontal, then g is conjugate to f and the

curve is one of the obvious ones (e.g., the graph of an iterate) [Pa2, Theorem 1.6]. In

particular, we obtain the following important fact: for any f with conjugacy class in

Ud, and for any g which is not conjugate to f , the invariant curves in P1 × P1 of the

product map (f, g) consist only of unions of vertical and horizontal lines.

We will work with a special 1-parameter family of maps in Ud, defined by requiring

that 2d−3 of the critical points (i.e., all but one) are periodic, and each has a distinct

period. Such curves are Zariski dense in Md [JX3, Lemma 2.5] (or see the proof of

[De3, Theorem A]), so we can be sure there exists such a curve C in the open set

Ud and so that τ is κ-to-one on this (possibly reducible) curve (by replacing C with

τ−1(τ(C)) if needed).

Now pass to a branched cover X → C, if needed, so that we can parameterize this

family of maps by ft, for t in a quasi-projective algebraic curve X, with its remaining

free critical point defining a holomorphic map c : X → P1. As c is not persistently

preperiodic, and the family is not isotrivial, the pair (f, c) must be bifurcating along

each irreducible component of X [DF, Theorem 2.5]; that is, the sequence of functions

{t 7→ fn
t (c(t))}n fails to be a normal family on any component of X. The bifurcation

current, defined above as Tbif = ddcL, restricts to X as a measure that can be

alternatively defined by

µf,c = π∗

(
T̂f ∧ [Γc]

)
where π : X×P1 → X is the projection, T̂f is the dynamical Green current on X×P1

associated to f : X ×P1 → X ×P1 defined by f(t, x) = (t, ft(x)), and Γc is the graph

of c; see, for example, [DF, §3].

Note that ft is PCF for infinitely many parameters t in X, as a simple application

of Montel’s theorem (as c will be preperiodic to repelling cycles of ft at a dense set of

parameters t in its bifurcation locus). Moreover, there are infinitely many parameters

where c is periodic (with periods→∞); see, for example, [DF, Proposition 2.4]. Note

also that the multiplier map τ can detect when c is periodic for f , at least if its orbit

is distinct from the periodic orbits of the other critical points, because there will be

2d − 2 multipliers equal to zero. (Recall that τ(ft) = τ(ft′) for t, t′ ∈ X if and only

if the two maps are isospectral.) As such, the symmetry induced by τ along X also

identifies infinitely many κ-tuples of non-conjugate PCF maps in X.

As κ is larger than 1, we can build (at least) two families ft and gt, passing to a

further branched cover of the parameter space X if necessary, with marked critical
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points c and c′ respectively, which exhibit a dynamical coincidence: the two pairs

(f, c) and (g, c′) have the same bifurcation loci and the same bifurcation measures on

X, and there are infinitely many parameters in X at which c and c′ are both periodic

(and so in particular both ft and gt are PCF at these parameters), while ft and gt are

not conjugate for any t ∈ X. Recall from the choice of the set Ud that the map (ft, gt)

on P1×P1 has no invariant curves other than (unions of) vertical and horizontal lines,

for any t ∈ X. We set

(2.1) µbif := µf,c = µg,c′

on X.

2.2. Part 2: dynamical-parameter similarity to derive a contradiction. This

is the technical heart of the Ji-Xie proof of Theorem 1.1, and we provide only a brief

outline of their argument.

As background, first recall that the Mandelbrot set looks like the corresponding

Julia set for fc(z) = z2 + c at the parameters c where the critical point is preperiodic

to a repelling cycle [Ta]. One can build these similarities in other families of maps on

P1, but also in a measure-theoretic sense, between bifurcation currents and measures

of maximal entropy on a Julia set (as done in [BE]), and the similarity extends to

parameters where the critical point lands in a hyperbolic/expanding set and not just

a single cycle (as in [Ga1, AGMV]) or, as utilized in [JX3], even just under the

assumption that f is expanding “enough” along the critical orbit, e.g., if satisfying a

Collet-Eckmann-type condition (see [PRS] for details on CE-type conditions).

By the construction of our families f and g over X in §2.1, it turns out that

µbif-almost every parameter satisfies “good enough” expansion conditions; details are

given in their earlier work [JX1, Section 4]. Their conclusion is that, since µbif =

µf,c = µg,c′ , we have µbif ≈ µft ≈ µgt at µbif-a.e. parameter t in X, where µft and µgt

are the measures of maximal entropy. Here we are being intentionally vague to avoid

technicalities. The symbol ≈ is representing an asymptotic statement: on a sequence

of shrinking neighborhoods Vn of t in the parameter space X, the measures αn µbif

(for constants αn →∞) will converge weakly to the measure µft on a small open set

in P1 intersecting the Julia set of ft.

Ji and Xie explore this concept of asymptotic symmetry between ft and gt, at µbif-

a.e. parameter t, in [JX1, Section 7]. In particular, they deduce the existence of a

holomorphic isomorphism ϕ between an open set intersecting the Julia set of ft and

an open set intersecting the Julia set of gt so that ϕ∗µft = µgt . They then appeal to

another paper of theirs [JX2, Theorem 1.7] to conclude that the product map (ft, gt)

must have an invariant curve in P1 × P1 which is not a vertical or horizontal line,

where the curve is locally given as the graph of the holomorphic ϕ. (The results

of [JX2] are built upon the theory of holomorphic local symmetries of Julia sets, as

initiated in the work of Levin [Le1]; see also [DFG] for a related result proved recently.
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To put the conclusion about the invariant curve in context, recall that Levin-Przytycki

[LP] proved that if f, g : P1 → P1 are two non-exceptional maps defined over C for

which µf = µg, then they “almost” share an iterate. In particular, one can deduce

from the proofs in [LP] that the equality of measures is equivalent to the diagonal

∆ ⊂ P1 × P1 being preperiodic for the product map (f, g); see [MS, Theorem 1.10].

The asymptotic similarity between ft and gt led Ji and Xie to a localized version of

this result.)

Ji and Xie further observe that, because the measure µbif has continuous potentials

and so cannot be supported on a countable set in X(C), and because their conclusion

holds for µbif-a.e. parameter t ∈ X, it must hold for at least one transcendental

parameter t0; i.e., with t0 ∈ X(C) \ X(Q). It follows that the invariant curve in

P1 × P1 for (ft0 , gt0) must exist in a family; that is, the pair (ft, gt) will have an

invariant curve in P1×P1 (which is neither vertical nor horizontal) for all but finitely

many parameters t ∈ X(C). But this contradicts the choice of the good 1-parameter

family f from Part 1 and completes the proof of Theorem 1.1.

2.3. A stronger conclusion. Note that the authors have proved more than what

was needed to obtain their desired contradiction and complete the proof of Theorem

1.1. They needed only find a single parameter t0 ∈ X for which (ft0 , gt0) has an

invariant curve in P1 × P1 to contradict the choice of the family f . (We will exploit

this observation to present a simplification of their proof in Section 3.)

Ji and Xie have shown the following:

Theorem 2.3. [JX3, Theorem 3.4] Suppose that ft and gt are non-isotrivial algebraic

families of maps of degree d ≥ 2 parameterized by t in a quasiprojective algebraic curve

X. Suppose that neither f nor g is a family of Lattès maps, and assume that there

are infinitely many parameters t ∈ X at which both ft and gt are PCF. Then there

exists an algebraic family of curves Wt ⊂ P1 × P1, neither vertical nor horizontal,

parameterized by t ∈ X, which is invariant for (ft, gt) for all t.

And in fact they have shown even more, if one appeals to more of the results in their

earlier article [JX1]. The families f and g are defined over Q and the construction of

the families (specifically, the PCF coincidence for the two families) implies that we

have arithmetic intersection number Lf,c · Lg,c′ = 0 on X, where Lf,c is the canonical

adelically metrized line bundle associated to the pair (f, c); its archimedean curvature

distribution is the measure µf,c defined above. As a consequence of this vanishing, Ji

and Xie deduce in [JX1, Lemma 3.15] that there is a constant C so that∫
GWt(f

n
t (ct), g

n
t (c′t)) dµbif(t) ≤ C

for all iterates n ≥ 0, for any curve family W = {Wt} in P1 × P1 for t ∈ X not

persistently containing any iterate of (c, c′), where GW is a Green function for W , in
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the sense that GWt(x) ≈ − log dist(x,Wt) in P1×P1. In other words, the orbit of (c, c′)

is – on average – not too close to the curves ofW . (Compare to Diophantine conditions

on orbits of points for maps on P1 defined over Q, for example in Silverman’s [Si1,

Theorem E].) But this on-average separation contradicts the proximity of the orbit

to an invariant curve from the asymptotic symmetry between ft and gt, so it must be

that (c, c′) is contained in that invariant curve. In other words, they prove:

Theorem 2.4. [JX3, JX1] Suppose that ft and gt are non-isotrivial algebraic families

of maps of degree d ≥ 2 parameterized by t in a quasiprojective algebraic curve X,

and suppose that c, c′ : X → P1 are active critical points for f and g, respectively.

Suppose that neither f nor g is a family of Lattès maps, and assume that there are

infinitely many parameters t ∈ X at which both ft and gt are PCF. Then there exists

an algebraic family of curves Wt ⊂ P1×P1, parameterized by t ∈ X, which is invariant

for (ft, gt) for all t and such that (fn
t (ct), g

n
t (c′t)) is contained in Wt for all t and for

all n.

3. An alternative approach

As observed in §2.3, the proof in [JX3] provides much more than simply a proof

of Theorem 1.1. Here we present an alternative approach, by simplifying the work

required for the part of their proof which was sketched above in §2.2.

Our proof begins in the same way by contradiction, as described in the beginning

of the previous section and by selecting a good 1-parameter family to work with,

exactly as we have detailed in §2.1. We assume we have two algebraic families of

maps f = {ft} and g = {gt} parameterized by t ∈ X as in the conclusion of §2.1;

note that the families are defined over Q.

We first wish to show that there is at least one parameter t0 ∈ X at which c

is preperiodic to a repelling cycle of ft0 and c′ is preperiodic to a repelling cycle

for gt0 . As we observed in §2.1, we already know that there are infinitely many

parameters t ∈ X for which c and c′ are simultaneously periodic (but then the cycles

are superattracting). And we know that there are infinitely many parameters where

c is preperiodic to a repelling cycle of ft because (f, c) is active, and similarly there

exists an infinite set of parameters where c′ is preperiodic to a repelling cycle of gt;

the aim is to show that at least one of these parameters coincides.

Remark 3.1. For readers familiar with arithmetic equidistribution, as in the first

step of the proof of the main result of [JX1] (and all of the cases of that theorem known

before, going back to [BD]), one might expect to begin by applying an equidistribution

theorem to deduce that all of the PCF parameters for f and for g must coincide. But

note that the equidistribution results for quasiprojective varieties – specifically the

versions proved by [YZ2] or [Ga2] that can be used in our setting here where X is
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not compact – are not yet known to imply that the two height functions on X(Q),

associated to the pairs (f, c) and (g, c′) respectively, are equal. That would be the

case when working with heights on projective varieties. (In particular, the analog of

the arithmetic Hodge Index theorem of [YZ1] is not known to hold in this setting.) So

we cannot deduce immediately that all PCF parameters coincide for the two families

of maps. We take another approach, which involves less sophisticated machinery,

though it still uses arithmetic input.

As mentioned in Remark 2.2, it was proved in [JXZ, Theorem 1.12] that the PCF

maps f : P1 → P1 can be detected – from among all maps defined over Q – by

properties of their multipliers. Here we reformulate (and reprove) their result as

follows:

Theorem 3.2. Suppose that f : P1 → P1 has degree > 1 and is defined over a number

field K. Then f is PCF if and only if there is a finite set S of places of K so that

every nonzero multiplier λ for f will satisfy |λ|v ≥ 1 at all places v 6∈ S.

Proof. Suppose that f is PCF. Then there are only finitely many places of K at

which f can have attracting cycles that are not superattracting. Indeed, for any

f : P1 → P1 defined over K, there is a finite set S of places (which correspond to

primes of Q bounded by the degree of the map f) so that for any v 6∈ S, a v-adically

attracting cycle that is not superattracting must attract a critical point with infinite

orbit; see [Mi2, Corollary 14.5] for archimedean places and [BIJL, Theorem 1.5] for

the non-archimedean case.

For the converse, suppose that f has an infinite critical orbit. Extend the number

field K if necessary, so that all critical points are defined over K. Conjugating by a

Möbius transformation defined over K, we may assume that z0 =∞ is a critical point

with infinite orbit. It was proved in [Si1, Theorem 2.2] that for any finite set S of

places, the orbit {fn(z0)} will contain only finitely many S-integers. In particular, for

any choice of S, we can always find a place v 6∈ S and an iterate n so that |fn(0)|v > 1.

In particular, recalling that f has good reduction at all but finitely many places, there

is an infinite set V of places v so that f has good reduction and the residue class of z0
modulo v is periodic for f mod v. Let n(v) denote the minimal period of this residue

class, and note that the collection {n(v) : v ∈ V} is unbounded.

Now let us change coordinates again so that the critical point with infinite orbit

lies at z0 = 0. Suppose that v is a place in V , and assume that n = n(v) is larger

than the periods of any periodic critical points for f . So fn takes the open v-adic unit

disk to itself and contains no superattracting periodic points. By Hensel’s Lemma –

or more precisely, the Weierstress Preparation theorem as formulated in [Be, Chapter

14] – there is a periodic point z1 for f in the residue class of z0, with exact period n.

Because (fn)′(z0) = 0, the derivative of fn at z1 must be v-adically smaller than 1 in

absolute value, so this cycle is attracting. �
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Corollary 3.3. If f, g : P1 → P1 defined over Q are isospectral, and if f is PCF,

then g is PCF.

It follows that, for our families f and g parameterized by t ∈ X with τ(ft) = τ(gt)

for all t (so that ft and gt are isospectral), a map ft is PCF if and only if gt is PCF.

As the pair (f, c) is bifurcating, we know that there are infinitely many parameters

where c is preperiodic to a repelling cycle for f , so c′ must be preperiodic for g at

these parameters. Since the bifurcation loci in X are the same for (f, c) and for (g, c′),

c′ must also be preperiodic to repelling cycles at these parameters (because the pair

(g, c′) would be stable in a neighborhood of a parameter where c′ is preperiodic to an

attracting cycle, and PCF maps have no neutral cycles [Mi2, Corollary 14.5]). In other

words, there are infinitely may parameters t at which both c and c′ are preperiodic to

repelling cycles. We will let t0 ∈ X be one of these parameters.

It is convenient to choose our parameter t0 ∈ X so that, in addition, the critical

point c for f is transversely pre-repelling. This means that the graph of some iterate

t 7→ fn
t (c(t)) in X × P1 intersects the graph of a repelling periodic point (defined

in a neighborhood of t0 in X) transversely in X × P1, over the parameter t0. Such

parameters are dense in the support of the measure µbif [Du, Theorem 0.1].

We now exploit the existence of the parameter t0. We will deduce from the equality

of bifurcation measures (2.1) that the measures of maximal entropy µft0
and µgt0

are

related on some open sets intersecting their supports. From this we will conclude that

the pair (ft0 , gt0) has an invariant curve in P1× P1 which is not a union of horizontal

and vertical lines. This would contradict the original construction of the family f .

As mentioned above in §2.2, measure-theoretic similarities have been built between

parameter spaces and dynamical spaces, when a critical point is preperiodic to a

repelling cycle; see, for example, [FG, §4.1.4] and also [BE, Ga1, AGMV]. Recall

that the critical point c for f is transversely pre-repelling at t0. Let t 7→ Rf (t) and

t 7→ Rg(t) denote parameterizations of the repelling cycles for f and g, respectively,

in a neighborhood of t0 that lie in the forward orbits of c and c′, respectively, at t0.

Let q ≥ 1 denote the order of contact of the graph of an iterate gm0(c′) with the graph

of Rg near t0, in X × P1. Choose integer p ≥ 1 so that Rf and Rg are fixed by fp

and gp, respectively. Let u be the local potential in X for µbif , defined by evaluating

the homogeneous escape-rate function for f or for g along a lift of the critical point

and chosen so that u(t0) = 0. Let λf = (fp
t0)
′(Rf,t0) and let λg be a q-th root of the

multiplier of gt0 at Rg(t0). Suppose that ϕf is a linearizing coordinate for f , so that

fp
t0(ϕf (w)) = ϕf (λfw) for w in a small disk around 0; similarly for g. Then, as in

[FG, Proposition 4.13], we have

lim
n→∞

dn0+np u(λ−nf (t− t0)) = β Uft0
(ϕf (t− t0))
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and

lim
n→∞

dm0+np u(λ−ng (t− t0)) = β′ Ugt0
(ϕg((t− t0)q))

uniformly on a small neighborhood of t0, where Uft0
and Ugt0

denote locally-defined

potentials for the measures of maximal entropy (defined by evaluating the homoge-

neous escape-rate function along a holomorphic section), having value 0 the repelling

point, and β and β′ are a positive constants. [Caution: the arguments in [FG] were

written only for polynomials, but the arguments go through exactly the same.] It

follows that the Laplacians of these subharmonic functions converge weakly. Note

that, a priori, the two multipliers λf and λqg are unrelated, but since they correspond

to a rescaling rate at which the same measure µbif converges to (possibly two dif-

ferent) nontrivial and nonatomic measures, it must be that there is convergence of

the sequence (λf/λg)
n to some α ∈ C∗, after passing to a subsequence if necessary;

compare [JX1, Proposition 7.2]. We deduce that h(z) := ϕg((ϕ
−1
f (z)/α)q) defines a

holomorphic map from a small neighborhood of Rf (t0) in P1 to a small neighborhood

of Rg(t0) so that h∗µgt0
is proportional to µft0

. Note that this h is q-to-1. But we can

now apply a theorem of Dujardin, Favre, and Gauthier [DFG, Theorem A] to deduce

that the graph of h in P1 × P1 is part of an algebraic curve which is preperiodic for

(ft0 , gt0). This completes the proof.
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