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1 Preliminaries

Let G be a finite group. Every representation of G defines a unique left C[G]-

module where C[G] is the group ring of formal sums of elements of G with

coefficients in C; we will refer to representations as left C[G]-modules rather

than as homomorphisms from G to GL(V ) for some V .

1.1 Definitions of induced representations

Let H be a subgroup of G and W a representation. Then the induced represen-

tation V = iGHW can be gotten from W by extending the scalar ring from C[H]

to C[G]; in other words, V is

C[G]⊗C W
/
〈gh⊗ w ∼ g ⊗ hw, g ∈ G, h ∈ H,w ∈W 〉
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with the action induced linearly from g(g′ ⊗ w) = (gg′) ⊗ w. We identify each

w ∈W with 1⊗ w ∈ V . Each v ∈ V is of the form

|G|∑
i=1

giwi =
|G|∑
i=1

|H|−1

|H|∑
j=1

gihj
−1hjwi,

so there is a function f : G→W such that f(gh−1) = hf(g) and

v =
∑
g∈G

g ⊗ f(g);

this function is unique, so we can let it be fv for each v. Define f−1
v (g) = fv(g−1);

then v 7→ f−1
v is an isomorphism from V to V = {f : G→W |f(hg) = hf(g), g ∈

G, h ∈ H} with the action (gf)(g0) = f(g0g); this is the definition of induced

representation given in the notes.

1.2 Characters of induced representations

Let χW be the character of W . Let R be a system of left coset representatives

for H. Then, V as a vector space is
⊕

r∈R rW . Left multiplication by g ∈ G

takes each rW to r′W , where r′ ∈ R is the left coset representative for grH.

Hence, the trace of the action of g on V is equal to the sum of the traces of the

actions of g on each rW such that gr ∈ rH; grw = r(r−1gr)w for each w ∈W ,

so this trace is the trace of the action of r−1gr on W . Hence,

χV (g) =
∑
r∈R

r−1gr∈H

χW (r−1gr).

But (rh)−1grh ∈ H iff r−1gr ∈ H, and then χW ((rh)−1grh) = χW (h−1gh), so

χV (g) = |H|−1
∑

g0∈G

g−1
0 gg0∈H

χW (g−1
0 gg0).
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2 Artin’s Theorem

Let R(G) be the subgroup of A(G) consisting of all integer linear combinations

of characters of representations of G. If V and W are representations of G then

V ⊗C W under the action g(v ⊗ w) = gv ⊗ gw is another representation, and

its character is the product of the characters of V and W . Hence, R(G) is a

commutative ring. Then, IndG
H : A(H) → A(G), defined by

IndG
H(χ)(g) =

∑
g0∈G

g−1
0 gg0∈H

χ(g−1
0 gg0),

is a homomorphism, and so is ResG
H : A(G) → A(H), defined by ResG

H(χ)(h) =

χ(g).

Lemma 1. IndG
H R(H) is an ideal in R(G).

Proof. Let f ∈ R(H), f0 ∈ R(G).

(IndG
H(f)f0)(g) = |H|−1

∑
g0∈G

g−1
0 gg0∈H

f(g−1
0 gg0)f0(g)

= |H|−1
∑

g0∈G

g−1
0 gg0∈H

f(g−1
0 gg0)f0(g−1

0 gg0)

= IndG
H(f ResG

H(f0))(g)

Hence the image is closed under multiplication by arbitrary elements of R(G).

It is also closed under addition, since IndG
H(f + f0) = IndG

H(f) + IndG
H(f0) for

all f, f0 ∈ R(H). Therefore it’s an ideal.

Let C be the set of cyclic subgroups of G. For each H ∈ C, let χH(h) be
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|H| if H = 〈h〉 and 0 otherwise.

∑
H∈C

(IndG
H χH)(g) =

∑
H∈C

∑
g0∈G

g−1
0 gg0∈H

χH(g−1
0 gg0)|H|−1 =

∑
H∈C

∑
g0∈G

〈g−1
0 gg0〉=H

1 = |G|

Lemma 2. χH ∈ R(H) for all H ∈ C.

Proof. We proceed by induction on |H|.

χH = |H| −
∑
K∈C
K(H

(IndH
K χK).

But the constant function |H| is the character of the trivial representation of

degree |H|, and IndH
K χK ∈ R(H) for all K ∈ C, |K| < |H| , so χH ∈ R(H).

Theorem 1 (Artin’s Theorem). If V is a representation of G then χV is a

rational linear combination of characters induced from representations of cyclic

subgroups of G.

Proof.
∑

H∈C IndG
H R(H) contains the constant function |G|, so since it’s an

ideal in R(G), it contains |G|χV . The conclusion follows.

3 Brauer’s Theorem

Recall that characters of representations of G have values in the ring A ⊂

C generated by the |G|-th roots of unity. Let AR(G) be the ring of linear

combinations of characters of G with coefficients in A.

Lemma 3. Let χ : G→ Z be a class function. Then |G|χ ∈
∑

H∈C A IndG
H R(H).

Proof.

|G|χ =
∑
H∈C

(IndG
H χH)χ =

∑
H∈C

IndG
H(χH ResG

H χ)
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But for each ψ in the orthonormal basis of CR(H) consisting of irreducible

characters,

〈
ψ, χH ResG

H χ
〉

=
∑
h∈H

ψ(h)(χH(h−1)|H|−1)χ(h−1) ∈ A,

so χH ResG
H χ ∈ AR(H). The conclusion follows.

Lemma 4. Let χ ∈ AR(G) have integer values, p be a prime, g ∈ G have

order pnl, where p does not divide l, and g0 ∈
〈
gpn〉

so that gg−1
0 ∈

〈
gl
〉
. Then

χ(g) ≡ χ(g0) (mod p).

Proof. Let H = 〈g〉 and χ0 = ResG
H χ. Since all irreducible characters of H have

degree 1, we can let them be ψi, 1 ≤ i ≤ pnl, and then χ0 =
∑pnl

i=1 aiψi for some

ai ∈ A. gpn

g−pn

0 ∈
〈
gpn〉

and, since g and g0 commute, gpn

g−pn

0 =
(
gg−1

0

)pn

∈〈
gl
〉
∩
〈
gpn〉

= {1}. Hence, gpn

= gpn

0 .

χ0(g)pn

− χ0(g0)pn

=

(
pnl∑
i=1

aiψi(g)

)pn

−

(
pnl∑
i=1

aiψi(g0)

)pn

≡
pnl∑
i=1

apn

i ψi(g)pn

−
pnl∑
i=1

apn

i ψi(g0)pn

=
pnl∑
i=1

apn

i

(
ψi

(
gpn
)
− ψi

(
gpn

0

))
= 0 (mod pA)

Since χ has integer values, χ0(g)pn−χ0(g0)pn ∈ pA∩Z = pZ, so χ(g) = χ0(g) ≡

χ0(g)pn ≡ χ0(g0)pn ≡ χ0(g0) = χ(g0) (mod p).

For prime p, let Ep be the set of p-elementary subgroups of G, i.e. subgroups

isomorphic to direct products of cyclic groups and p-groups.
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Lemma 5. Let p be a prime and |G| = pnl where p does not divide l. Then

l ∈
∑

H∈Ep
IndG

H R(H).

Proof. Let R be a system of representatives of the classes in G of elements with

order not divisible by p. For each r ∈ R, let Hr = 〈r〉Pr ' 〈r〉 × Pr where

Pr is a Sylow p-subgroup of the centralizer Z(r) = {g ∈ G|gr = rg} of r. Let

χr : 〈r〉 → C be defined by χr(g) = δgr| 〈r〉 |; then χr ∈ AR(〈r〉) by a lemma

proven earlier. Now define ψr : Hr → C by ψr(gg0) = χr(g), g ∈ 〈r〉 , g0 ∈ Pr;

then ψr ∈ AR(Hr), and ψr has integer values. Now let ψ =
∑

r∈R IndG
Hr
ψr.

A conjugate of an element with order not divisible by p in Hr for some r ∈ R

must necessarily lie in 〈r〉. Hence, for each r, r0 ∈ R,

(
IndG

Hr
ψr

)
(r0) = |Hr|−1

∑
g∈G

g−1r0g∈Hr

ψr(g−1r0g)

= |Hr|−1
∑
g∈G

g−1r0g∈〈r〉

ψr(g−1r0g)

= |Pr|−1
∑
g∈G

g−1r0g=r

1

= δr0r|Pr|−1
∑
g∈G

g−1rg=r

1

= δr0r|Pr|−1|Z(r)|,

which is divisible by p if and only if r 6= r0. Hence, ψ(r) is not divisible by p for

any r ∈ R, so ψ(g0) is not divisible by p for any g0 with order not divisible by p.

Now given g ∈ G, let g0 ∈ 〈g〉 be such that g0 has order not divisible by p and

gg−1
0 has order a power of p. Then, by an earlier lemma, ψ(g) = ψ(g0). Thus, ψ

has integer values not divisible by p, so l
(
ψpn−1(p−1) − 1

)
has values divisible

by |G|, so by an earlier lemma l
(
ψpn−1(p−1) − 1

)
∈
∑

H∈Ep
A IndG

H R(H). But
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since ψ ∈
∑

H∈Ep
A IndG

H R(H) and
∑

H∈Ep
A IndG

H R(H) is an ideal in AR(G),

lψpn−1(p−1) ∈
∑

H∈Ep
A IndG

H R(H), so l ∈
∑

H∈Ep
A IndG

H R(H). A∩Q = Z, so

A/Z is torsion-free, so since it’s finitely generated, it’s free, so A has a finite basis

β with 1 ∈ β. l ∈ R(G) can be expressed uniquely as a linear combination of

irreducible characters, namely as lχ where χ is the character of the 1-dimensional

trivial representation. But we also know that l ∈
∑

H∈Ep
A IndG

H R(H), so

l ∈
∑

a∈β a
∑

H∈Ep
IndG

H R(H). Hence, l ∈
∑

H∈Ep
IndG

H R(H).

Theorem 2 (Brauer’s Theorem). R(G) =
∑

H∈
S

p Ep
IndG

H R(H).

Proof.
∑

H∈
S

p Ep
IndG

H R(H) contains
∑

H∈Ep
IndG

H R(H) for all primes p, so it

has finite index not divisible by p, so it has index 1. The conclusion follows.
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