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1 Preliminaries

Let G be a finite group. Every representation of G defines a unique left C[G]-
module where C[G] is the group ring of formal sums of elements of G with
coefficients in C; we will refer to representations as left C[G]-modules rather

than as homomorphisms from G to GL(V') for some V.

1.1 Definitions of induced representations

Let H be a subgroup of G and W a representation. Then the induced represen-
tation V = i W can be gotten from W by extending the scalar ring from C[H]

to C[G]; in other words, V is
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with the action induced linearly from g(¢’ ® w) = (9¢9’) ® w. We identify each
we W with 1l®w € V. Each v € V is of the form

|G| |G| |H|

Zgiwi = Z |H|™* Zgihj_lhjwia
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i=1

so there is a function f : G — W such that f(gh™!) = hf(g) and

v=">Y g® flg);
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this function is unique, so we can let it be f, for each v. Define f, 1(g9) = f,(g71);
then v — £, ! is an isomorphism from V to V = {f : G — W|f(hg) = hf(g),g €
G,h € H} with the action (¢f)(g0) = f(gog); this is the definition of induced

representation given in the notes.

1.2 Characters of induced representations

Let xw be the character of W. Let R be a system of left coset representatives
for H. Then, V' as a vector space is @, . rW. Left multiplication by g € G
takes each rW to r'W, where ' € R is the left coset representative for grH.
Hence, the trace of the action of g on V is equal to the sum of the traces of the
actions of g on each rW such that gr € rH; grw = r(r~lgr)w for each w € W,

so this trace is the trace of the action of r~tgr on W. Hence,

xvig) = Y. xwlrgn).

reR
rilgreH

But (rh)~tgrh € H iff r=1gr € H, and then xw ((rh)~tgrh) = xw(h=1gh), so

xv(g) =1HIT DY xwilgg g90)-
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2 Artin’s Theorem

Let R(G) be the subgroup of A(G) consisting of all integer linear combinations
of characters of representations of G. If V' and W are representations of G then
V ®@c W under the action g(v ® w) = gv ® gw is another representation, and
its character is the product of the characters of V and W. Hence, R(G) is a

commutative ring. Then, Ind% : A(H) — A(G), defined by

Indiz (x)(9) = > x(9 '990):
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is a homomorphism, and so is Res$ : A(G) — A(H), defined by Res% (x)(h) =

x(9)-
Lemma 1. Ind$ R(H) is an ideal in R(G).

Proof. Let f € R(H), fo € R(G).

(Ind () fo)(g) = 1HI™" > (95" 990) fol9)
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=H[™" > f(95 " 990)fo(95 " 990)
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= Ind (f Res (f0))(9)

Hence the image is closed under multiplication by arbitrary elements of R(G).
It is also closed under addition, since Ind$ (f + fo) = Ind% (f) + Ind% (fo) for

all f, fo € R(H). Therefore it’s an ideal. O

Let C be the set of cyclic subgroups of G. For each H € C, let xg(h) be



|H| if H = (h) and 0 otherwise.
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Lemma 2. xg € R(H) for oll H € C.

Proof. We proceed by induction on |H|.

xu = |[H| - Z (Indg XK )-
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But the constant function |H| is the character of the trivial representation of

degree |H|, and Ind¥ xx € R(H) for all K € C,|K| < |H| ,s0 xg € R(H). O

Theorem 1 (Artin’s Theorem). If V is a representation of G then xv is a
rational linear combination of characters induced from representations of cyclic

subgroups of G.

Proof. Y yce Ind$ R(H) contains the constant function |G|, so since it’s an

ideal in R(G), it contains |G|xy. The conclusion follows. O

3 Brauer’s Theorem

Recall that characters of representations of G have values in the ring A C
C generated by the |G|-th roots of unity. Let AR(G) be the ring of linear

combinations of characters of G with coefficients in A.
Lemma 3. Let x : G — 7Z be a class function. Then |G|x € Y yce AInd$ R(H).

Proof.

Glx = > (IndF xm)x = Y _ Indf(xm ResF x)
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But for each ¢ in the orthonormal basis of CR(H) consisting of irreducible

characters,

(W, xmRes x) = > ¢(h) (xur (P~ IH| " )x(h™) € 4,

heH
so xi Res$ x € AR(H). The conclusion follows. O

Lemma 4. Let x € AR(G) have integer values, p be a prime, g € G have

order p™l, where p does not divide I, and gg € <gpn> so that gga1 € <gl>. Then

x(9) = x(go) (mod p).

Proof. Let H = (g) and xo = Res$ x. Since all irreducible characters of H have
degree 1, we can let them be 1;,1 <1 < p"l, and then xg = Zlel a;p; for some
a; € A. g""gg"" € (gP") and, since g and go commute, g gg” = (ggo_1)r" €
<gl> N <gpn> = {1}. Hence, g*" = ab .

n n

p™l p p"l p
Xo(9)"" = xo(90)"" = < aﬂbz‘(Q)) - (Z aﬂbi(QO))
; i=1

=S (v (o) - (o))
=1
=0 (mod pA)

Since y has integer values, xo(g)?" —x0(g0)?" € pANZ = pZ, so x(g) = xo0(9) =

n

X0(9)”" = x0(90)"" = x0(g90) = x(g0) (mod p).

OJ

For prime p, let E,, be the set of p-elementary subgroups of G, i.e. subgroups

isomorphic to direct products of cyclic groups and p-groups.



Lemma 5. Let p be a prime and |G| = p"l where p does not divide . Then
1 €Y e, Indf R(H).

Proof. Let R be a system of representatives of the classes in G of elements with
order not divisible by p. For each r € R, let H, = (r) P, ~ (r) x P, where
P. is a Sylow p-subgroup of the centralizer Z(r) = {g € G|gr = rg} of r. Let
Xr : (r) — C be defined by x,(g) = dg-| (r)|; then x, € AR({r)) by a lemma
proven earlier. Now define v, : H. — C by ¥,-(990) = x»(9),9 € (r),g0 € Pr;
then v, € AR(H,), and v, has integer values. Now let ¢ = ZTeRIndgT Uy
A conjugate of an element with order not divisible by p in H, for some r € R

must necessarily lie in (r). Hence, for each r,7¢ € R,

(ndff, v, ) o) = [HA™ D (g rog)

geG
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= |Hr|71 Z ¢r(gil7ﬂog)
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= §TUT|P7'|_1|Z(T)|7

which is divisible by p if and only if  # r¢. Hence, ¥ (r) is not divisible by p for
any r € R, so ¥(go) is not divisible by p for any gg with order not divisible by p.
Now given g € G, let go € (g) be such that go has order not divisible by p and
ggo_1 has order a power of p. Then, by an earlier lemma, ¥(g) = ¥(go). Thus, 9
has integer values not divisible by p, so [ (z/)”n_l(p’l) — 1) has values divisible
by |G|, so by an earlier lemma { (w”‘l@*l) - 1) € Yer, AInd§ R(H). But



since ¥ € 3 e, ATnd$ R(H) and >mer, 4 Ind$ R(H) is an ideal in AR(G),
"D e Sy AInd§ R(H), 501 € Yy Alndfy R(H). ANQ =7, 50
A/Z is torsion-free, so since it’s finitely generated, it’s free, so A has a finite basis
g with 1 € 8. | € R(G) can be expressed uniquely as a linear combination of
irreducible characters, namely as [’y where x is the character of the 1-dimensional
trivial representation. But we also know that | € >, .p A md$ R(H), so

1€ 0ep @ yep, ndf R(H). Hence, | € 3y Indf R(H). O
Theorem 2 (Brauer’s Theorem). R(G) =3 4 E, md$ R(H).

Proof. 3 yey &, Ind$ R(H) contains > _Her, nd$ R(H) for all primes p, so it
has finite index not divisible by p, so it has index 1. The conclusion follows. [
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