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Since Cayley’s theorem implies that every finite group G is isomorphic to a
subgroup of S|G|, understanding the representation theory of the finite symmetric
groups is likely to yield productive tools and results for the representation theory
of finite groups in general. In these notes we will examine the basic results for
the representation theory of Sn. We will describe all irreducible representations of
Sn and their characters, as well as giving a complete method for decomposing a
representation of Sn into its irreducible factors, in terms of certain elements of the
group algebra CSn known as Young symmetrizers. No such general method exists
for general finite groups, so in a sense the fundamental problems of representation
theory have been answered in the case of finite symmetric groups.

The Group Algebra CG

We first review some facts regarding the group algebra CG where G is a finite
group. If A(G) is the algebra of all complex valued functions on G with multipli-
cation given by the convolution

f ∗ f ′(g) =
∑

g′∈G

f (g′) f ′
(
g′−1g

)
,

then CG is isomorphic as a complex algebra with A(G), via the map CG → A(G),
g 7→ eg, where eg : G → C is the function g′ 7→ δg,g′ . If a =

∑
g∈G agg ∈ CG, then

a is sent to the function g 7→ ag. Henceforth we will write a =
∑

g∈G a(g)g. Then

ab =
∑

g,g′∈G a(g)b(g′)gg′ =
∑

g∈G

(∑
g′∈G a(g′)b

(
g′−1g

))
g, so that as an element

in A(G), (ab)(g) := a∗ b(g) =
∑

g′∈G a(g′)b
(
g′−1g

)
. In this way we may pass easily

between CG and A(G). Under this isomorphism we also find that Z(CG), the centre
of CG, corresponds with C(G), the set of class functions on G.

On CG we have the involution

a∗ =

(∑
g

a(g)g

)∗

:=
∑

g

a(g)g−1 =
∑

g

a (g−1)g.

Then if a∗a = 0 we have a∗a(g) =
∑

g′∈G a (g′−1)a
(
g′−1g

)
= 0 and in particular,

0 = a∗a(e) =
∑

g∈G a (g)a (g), so that a = 0. An involution satisfying a∗a = 0 ⇒
a = 0 is called nondegenerate, and the algebra possessing it is called symmetric. If
a∗ = a then a is called Hermitian. For a Hermitian element a ∈ CG, a2 = 0 ⇒
a = 0. It follows that if I is a left ideal of CG and I2 = {0} then I = 0, because
a ∈ I ⇒ (a∗a)2 ∈ I2, so that (a∗a)2 = 0 ⇒ a∗a = 0 ⇒ a = 0.
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If (π, V ) is a group representation of the finite group G then it determines the
algebra representation (π̂, V ) of CG, via

π̂(a) =
∑

g∈G

a(g)π(g) ∈ End(V )

and it is easily checked that π̂ is an algebra homomorphism. If (ρ, V ) is a repre-
sentation of CG, then by restriction of ρ to G ⊂ CG we obtain a representation
(ρ̃, V ) of G, since ρ(g) ∈ GL(V ) for all g ∈ G. Clearly ˜̂π = π and ˆ̃ρ = ρ, and the
representation theory of CG and of G will exhibit corresponding structures. We
will denote group representations using π and algebra representations using ρ for
clarity.

The left regular representation (πL,A(G)) of G is given by (πL (g0) f) (g) =
f

(
g−1
0 g

)
, which we may write for (πL,CG) as πL(g)(a) = ga. Then the corre-

sponding left regular representation of the algebra CG is its self-representation
(ρL = π̂L,CG) with ρL(a)(b) = ab. It follows then that a (vector) subspace W ⊆ CG
is invariant under the left regular representation of CG if and only if W is a left
ideal of CG. A restriction of the left regular representation of CG to a left ideal W
is irreducible if and only if W is a minimal left ideal. Hence the left regular repre-
sentation of CG is completely reducible if and only if CG = W1 ⊕ · · · ⊕Wk, with
the Wi minimal left ideals, and this gives the decomposition of the representation
into irreducibles. Thus, in order to decompose the left regular representation of CG
into irreducibles it is equivalent to write CG as a direct sum of minimal left ideals.

In A(G) we have the inner product

(f1, f2) = |G|−1
∑

g∈G

f1(g)f2(g)

which in CG becomes 〈a, b〉 = |G|−1
b∗a(e). If W is a left ideal in CG it follows

that W⊥ is also, and CG = W ⊕W⊥. Then we obtain the following lemma.

Lemma 1. Every left ideal in CG is principal and generated by an idempotent.

Proof. Let W be a left ideal of CG. Since CG = W ⊕W⊥, we write e = ω+ω′ with
ω ∈ W , ω′ ∈ W⊥. Then ω = ω2 + ωω′ = ω2 + ω′ω and so ωω′ = ω′ω ∈ W ∩W⊥ =
{0}. It follows that ω = ω2 is idempotent, as is ω′ = (ω′)2. Then (CG)ω ⊆ W ,
(CG) ω′ ⊆ W⊥, and if a ∈ CG we have a = aω + aω′, so that

W ⊕W⊥ = CG = (CG)ω ⊕ (CG) ω′

which shows that W = (CG)ω, W⊥ = (CG) ω′. ¤

In the notation of the lemma, we find also that W = {a ∈ CG|aω = a}, W⊥ =
{a ∈ CG|aω = 0}. If ε ∈ CG is idempotent, define ε′ = e − ε, which is also
idempotent. We find εε′ = ε′ε = 0 and conclude that CG = (CG)ε ⊕ (CG)ε′,
(CG)ε = {a ∈ CG|aε = a} = {a ∈ CG|aε′ = 0}. However (CG)ε and (CG)ε′ will
not in general be orthogonal.

The search for the irreducible representations of Sn will reduce to the construc-
tion of two families of idempotents in CSn, one of which satisfies an orthogonality
property. The first step is more general, showing how the character of a subrep-
resentation of the left regular representation of G may be expressed in terms of
idempotents in CG.
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Lemma 2. If (π,W ) is the restriction of the left regular representation (πL,CG)
of G to a left ideal W of CG, i.e. π is a subrepresentation, and if W = (CG) ε for
some idempotent ε, then we have the following formula for the character of π:

χπ(g) =
∑

g′∈G

ε
(
g′g−1 g′ −1

)
.

Proof. Define P ∈ EndC(CG) by P (a) = aε. Define T : G → EndC(CG) by
T (g)(b) = gbε. It follows that T (g) = πL(g) ◦ P , W is T (g)-invariant and the
restriction of T (g) to W is π(g). (I.e. π = T as maps G → EndC(W ).) Let
ε′ = e− ε and let W ′ = (CG)ε′. Then CG = W ⊕W ′ and P is projection from CG
onto W along W ′. T (g) restricts to the zero operator on W ′. Choosing bases of W
and W ′ we see that tr T (g) = tr π(g) = χπ(g).

Now consider the basis of CG given by the elements of G in some fixed order:
{g1, . . . , gn}. We have T (g) (gj) = ggjε, and to discover the ith coordinate in terms
of this basis we calculate using the correspondence with A(G):

(ggjε) (gi) = ε
(
(ggj)

−1
gi

)
= ε

(
gj
−1 g−1gi

)
.

Hence

χπ(g) = trT (g) =
n∑

i=1

ε
(
gi
−1 g−1gi

)
=

∑

g′∈G

ε
(
g′g−1 g′ −1

)
. ¤

For any representation (π, V ) of G we may regard V as a CG-module via a ·v :=
π̂(a)(v). (This is not in general a faithful module action.) Under this action,
idempotents in CG become projection operators in End(V ).

If (π1, V1) , . . . , (πk, Vk) is a complete list of irreducible representations of G, then
for each m = 1, . . . , k the projections

Pm = (dim Vm) |G|−1
∑

g∈G

χπm(g)π(g) ∈ End(V )

give

V =
k⊕

m=1

PmV, where PmV ' V ⊕rm
m and π |PmV ' π⊕rm

m ,

and so π ' ⊕k
m=1π

⊕rm
m , for some nonnegative integer rm. This gives the decompo-

sition of (π, V ) into a direct sum of inequivalent subrepresentations, each of which
is equivalent to a multiple (rm) of some irreducible. In the language of CG each
Pm corresponds to the idempotent

εm = (dim Vm) |G|−1
∑

g∈G

χπm(g)g ∈ CG.

(The fact that Pm is a projection implies εm is idempotent follows by calculating
Pm for (π, V ) = (πL,CG), the left regular representation of G, for then Pm(e) = εm,
and ε2m = Pm(e)Pm(e) = P 2

m(e) = Pm(e) = εm.) To discover the irreducible factors
of (π, V ) and not only multiples of them we search for other idempotents of CG,
and we see this process carried out for G = Sn below.

A representation (ρ, V ) of CG, where (V, 〈·|·〉) is a complex inner product space,
is called symmetric if 〈ρ(a)(u)|v〉 = 〈u|ρ (a∗) (v)〉 for all a ∈ CG, u, v ∈ V . If V
is finite dimensional, this condition means ρ (a∗) = ρ(a)∗, the adjoint operator to
ρ(a). Thus in an orthonormal basis β for V we have [ρ (a∗)]β = [ρ(a)]∗β . Then
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it is easily checked that a representation (π, V ) of G is unitary if and only if the
representation (π̂, V ) of CG is symmetric, where V is finite dimensional.

We use the listed facts freely in what follows below:
• Two representations of a group G are (unitarily) equivalent if and only if

the corresponding representations of CG are (unitarily) equivalent.
• A representation of a group G is irreducible if and only if the corresponding

representation of CG is irreducible.
• π = π1 ⊕ · · · ⊕ πk as representations of G if and only if π̂ = π̂1 ⊕ · · · ⊕ π̂k

as representations of CG.

Representations of Sn

The number of inequivalent finite dimensional representations of Sn is equal to
the number of conjugacy classes in Sn. But two elements of Sn are conjugate if
and only if they have the same cycle type, i.e. if and only if in their disjoint cycle
decompositions they have the same number of k-cycles for each k = 1, . . . , n. Since
the cycles are disjoint the sum of the number of each type of cycle times its length
must be n. Thus the conjugacy classes of Sn are in one to one correspondence with
the partitions of n. λ = (λ1, . . . , λn) is a partition of n if

∑
λi = n, each λi is an

integer, and λ1 ≥ · · · ≥ λn ≥ 0. We order the partitions lexicographically: λ > µ if
there exists a k such that λk > µk and λi = µi for i < k.

Each partition λ determines a unique Ferrer’s diagram with λk dots in the kth

row and all rows left-aligned. For example, λ = (3, 2, 2, 1, 1, 0, 0, 0, 0) has Ferrer’s
diagram

• • •
• •
• •
•
•

.

If we replace each dot by a box we have a Young diagram, and if we write the
numbers from 1 to n in the boxes, one per box with no repetitions, in some order,
we have a Young tableau. A Young tableau thus corresponds to an element of Sn,
namely that element with disjoint cycle decomposition formed by the rows of the
tableau, each row mapping to a cycle. (The map from tableaux to Sn is onto but

not injective: 1 2
3

and 2 1
3

both produce the transposition (1 2) in S3.)

If λ is a partition of n, A = (a1, . . . , an) is a particular ordering of the numbers
1, . . . , n and τ ∈ Sn, define τ(A) = (τ (a1) , . . . , τ (an)), define Σλ to be the Young
diagram for λ, define Σλ,A to be the Young tableau formed from Σλ by filling in the
boxes of the diagram with the elements of A, left-to-right, top-to-bottom, and define
σλ,A ∈ Sn to be the permutation in Sn produced by Σλ,A. In case A = (1, . . . , n) we
will usually leave off the subscript A, writing Σλ instead of Σλ,A, σλ instead of σλ,A,
etc., relying on context to distinguish the different uses. Σλ,(1,...,n) is considered
to be the canonical tableau for the diagram Σλ. Finally, define τΣλ,A = Σλ,τ(A).
Then it is easy to verify that σλ,τ(A) = τσλ,Aτ−1.

To obtain a complete set of irreducible representations of Sn we must associate
to each partition λ of n an irreducible representation, in such a way that if λ 6= µ
are partitions then the associated representations are inequivalent.
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We define the so-called Young subgroups of Sn. Given a tableau Σλ,A define
Pλ,A to be the subgroup of Sn of permutations sending each row of Σλ,A back
into itself, and define Qλ,A to be the subgroup of Sn of permutations sending each
column of Σλ,A back into itself. Then Pλ,A is isomorphic to Sλ1 × · · · ×Sλn

(where
S1 = S0 = {e}, the trivial group) and Qλ,A is isomorphic to Sµ1 × · · · × Sµn

,
where µ is the conjugate partition to λ. (The conjugate partition to λ is the
partition associated to the diagram which is the transpose of the diagram Σλ.)
We have Pλ,τ(A) = τPλ,Aτ−1 and Qλ,τ(A) = τQλ,Aτ−1 for all τ ∈ Sn. Note that
Pλ,A ∩Qλ,A = {e}, from direct application of the definitions.

Now construct the following elements of CSn:

aλ,A :=
∑

p∈Pλ,A

p, bλ,A :=
∑

q∈Qλ,A

(sgn q)q, cλ,A := aλ,Abλ,A.

The following identities hold and are easy to verify:

• paλ,A = aλ,Ap = aλ,A ∀p ∈ Pλ,A •σaλ,Aσ−1 = aλ,σ(A) ∀σ ∈ Sn

• (sgn q)qbλ,A = bλ,A(sgn q)q = bλ,A ∀q ∈ Qλ,A •σbλ,Aσ−1 = bλ,σ(A) ∀σ ∈ Sn

• pcλ,A(sgn q)q = cλ,A ∀p ∈ Pλ,A ∀q ∈ Qλ,A •σcλ,Aσ−1 = cλ,σ(A) ∀σ ∈ Sn

• a2
λ,A = λ!aλ,A where λ! = (λ1!) · · · (λn!) = |Pλ,A| • a∗λ,A = aλ,A

• b2
λ,A = µ!bλ,A where µ is the • b∗λ,A = bλ,A

conjugate partition to λ, and |Qλ,A| = µ!

Lemma 3. If λand µ are partitions of n with λ ≥ µ, and no two elements in the
same column of the tableau Σµ,B are in the same row of the tableau Σλ,A, then (a)
λ = µ and (b) Σµ,B = pqΣλ,A for some p ∈ Pλ,A, q ∈ Qλ,A.

Proof. The first row of Σλ,A has λ1 elements, which by hypothesis occur in λ1

distinct columns of Σµ,B . Hence µ1 ≥ λ1, and so we must have λ1 = µ1. Then
for some q1 ∈ Qµ,B and p1 ∈ Pλ,A the tableaux Σλ,p1(A) = p1Σλ,A and Σµ,q1(B) =
q1Σµ,B have the same first row. The new tableaux continue to satisfy the hypotheses
in the statement of the lemma.

Suppose that for some k ≤ n we have shown that λ1 = µ1, . . . , λk−1 = µk−1,
and that for some p ∈ Pλ,A and q ∈ Qµ,B the tableaux Σλ,p(A), Σµ,q(B) satisfy the
hypotheses of the lemma and have the same top k− 1 rows. If λk = 0 then µk = 0,
and so λ = µ and Σλ,p(A) = Σµ,q(B). Otherwise λk > 0 and the kth row of Σλ,p(A)

has λk elements which appear in distinct columns of Σµ,q(B), and necessarily all
occur in rows k to n of Σµ,q(B). Hence µk ≥ λk, which forces λk = µk. Then for
some qk ∈ Qµ,q(B) and pk ∈ Pλ,p(A), pkΣλ,p(A) and qkΣµ,q(B) have identical top k
rows. (Clearly we may choose qk so that it leaves unchanged the first k − 1 rows
of Σµ,q(B) and we may choose pk so that it leaves unchanged all rows of Σλ,p(A)

except the kth.)
We find Qµ,q(B) = qQµ,Bq−1 = Qµ,B since q ∈ Qµ,B and similarly Pλ,p(A) =

Pλ,A. It follows that qkq ∈ Qµ,B and pkp ∈ Pλ,A, and the new tableaux Σλ,pkp(A),
Σµ,qkq(B) satisfy our induction hypothesis. Therefore λ = µ and for some p ∈ Pλ,A,
q ∈ Qµ,B we have Σλ,p(A) = Σµ,q(B). Thus we’ve shown that Σµ,B = q−1pΣλ,A. But
notice that pQλ,Ap−1 = Qλ,p(A) = Qµ,q(B) = qQµ,Bq−1 = Qµ,B . Hence q = pq′p−1

for some q′ ∈ Qλ,A, and we have Σµ,B = p q′ −1 Σλ,A as required. ¤
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This combinatorial lemma together with the identities above have the following
consequences.

Corollary 1.

(1) If λ 6= µ then 0 = aλ,Axbµ,B = bλ,Axaµ,B ∀x ∈ CSn.
(2) If λ 6= µ then cλ,Axcµ,B = 0 ∀x ∈ CSn.
(3) If ∀p ∈ Pλ,A ∀q ∈ Qλ,A pa(sgn q)q = a, then a = a(e)cλ,A.
(4) cλ,Axcλ,B = mσcλ,B for some m ∈ C, where σ ∈ Sn satisfies σ(B) = A.

We have m = cλ,Bσ−1xcλ,B(e).

Proof.

(1) Suppose λ > µ. Then by Lemma 3 there exist distinct i, j ∈ 1, . . . , n in
some column of Σµ,B such that i and j occur in the same row of Σλ,A.
Let τ = (i j) be their transposition. Then τ ∈ Pλ,A ∩ Qµ,B and hence
aλ,Abµ,B = aλ,Aτ(sgn τ)τbµ,B = −aλ,Abµ,B ⇒ aλ,Abµ,B = 0. Now let
σ ∈ Sn. Then aλ,Aσbµ,Bσ−1 = aλ,Abµ,σ(B) = 0 ⇒ aλ,Aσbµ,B = 0, and
hence for all x ∈ CSn, aλ,Axbµ,B = 0. A symmetric argument shows
bλ,Axaµ,B = 0 also.

Next suppose λ < µ and let x ∈ CSn. Then

(aλ,Axbµ,B)∗ = b∗µ,Bx∗a∗λ,A (ab)∗ = b∗a∗ in CG can be
verified by direct computation
using the convolution formula

= bµ,Bx∗aλ,A since aλ,A, bµ,B are Hermitian
= 0 since µ > λ

which implies that aλ,Axbµ,B = 0. A symmetric argument then shows that
bλ,Axaµ,B = 0 also.

(2) cλ,Axcµ,B = aλ,A (bλ,Axaµ,B) bµ,B = 0, by (1).
(3) We have ∀p ∈ Pλ,A ∀q ∈ Qλ,A,

∑

σ∈Sn

a(σ)σ =
∑

σ∈Sn

(sgn q)a(σ)pσq

=
∑

σ∈Sn

(sgn q)a
(
p−1σq−1

)
σ

⇒ a(σ) = (sgn q)a
(
p−1σq−1

) ∀σ ∈ Sn

⇒ a (pσq) = (sgn q)a (σ) ∀σ ∈ Sn.(∗)
Hence a(pq) = (sgn q)a(e). If we can show that a(σ) = 0 whenever σ /∈
Pλ,AQλ,A := {pq|p ∈ Pλ,A, q ∈ Qλ,A}, then

a =
∑

pq∈Pλ,AQλ,A

a(pq)pq = a(e)
∑

p∈Pλ,A

q∈Qλ,A

(sgn q)pq = a(e)cλ,A

since Pλ,A ∩Qλ,A = {e} implies that the set Pλ,AQλ,A is in bijection with
Pλ,A × Qλ,A. Suppose that σ /∈ Pλ,AQλ,A. Then Σλ,σ(A) = σΣλ,A and
so by Lemma 3 there exist i, j in some column of Σλ,σ(A) such that both
lie in the same row of Σλ,A. Let τ = (i j), so τ ∈ Pλ,A ∩ Qλ,σ(A). Since
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Qλ,σ(A) = σQλ,Aσ−1, τ = σqσ−1 for some q ∈ Qλ,A. Then e = τ2 =
τσqσ−1 ⇒ τσq = σ. Applying equation (∗) we find

a(σ) = a(τσq) = (sgn q)a(σ) = (sgn τ)a(σ) = −a(σ)

whence a(σ) = 0.
(4) Let x ∈ CSn, p ∈ Pλ,A, q ∈ Qλ,A. Then pcλ,Axcλ,A(sgn q)q = cλ,Axcλ,A

since cλ,A = aλ,Abλ,A. Hence cλ,Axcλ,A = cλ,Axcλ,A(e)cλ,A, by (3). Now,
if Σλ,A, Σλ,B are two tableaux, there is a σ ∈ Sn such that A = σ(B) and
Σλ,A = Σλ,σ(B). Then

cλ,Axcλ,B = σcλ,Bσ−1xcλ,B

=
(
cλ,Bσ−1xcλ,B

)
(e)σcλ,B . ¤

Corollary 2. cλ,Acµ,B = 0 if λ 6= µ. c2
λ,A = c2

λ,A(e)cλ,A. c2
λ,A(e) = c2

λ(e), i.e.
this value depends only on the diagram (so, only on the partition λ), not on the
particular tableau chosen. (Recall that cλ := cλ,(1,...,n).)

Proof. The first two statements follow immediately from Corollary 1. For the third
statement, we have A = σ ((1, . . . , n)) for some σ ∈ Sn, and so cλ,A = σcλσ−1.
Then

c2
λ,A(e)cλ,A = c2

λ,A = σc2
λσ−1 = c2

λ(e)σcλσ−1 = c2
λ(e)cλ,A.

But cλ,A 6= 0 since cλ,A(e) = 1. (Recall that pq = e if and only if p = q = e in
cλ,A =

∑
p∈Pλ,A

q∈Qλ,A

(sgn q)pq.) Hence c2
λ,A(e) = c2

λ(e). ¤

The elements cλ,A are known as Young symmetrizers. Although neither Hermit-
ian nor idempotent in general, they are used to construct such elements, which will
in turn be used to describe the irreducible representations of Sn and their char-
acters. The Young symmetrizers are also used to produce minimal left ideals in
CSn.

Proposition 1. The ideal Iλ,A := (CSn) cλ,A is a minimal left ideal in CSn.

Proof. Since cλ,A 6= 0, Iλ,A is obviously a nonzero left ideal. We note that
cλ,AIλ,A ⊂ Ccλ,A, since cλ,Axcλ,A = mcλ,A for some m ∈ C by Corollary 1. Let J
be a left ideal contained in Iλ,A. Then cλ,AJ ⊂ Ccλ,A, and both cλ,AJ and Ccλ,A

are vector subspaces of CSn. However, Ccλ,A is one dimensional, and so we have
only two possibilities.

Case 1. cλ,AJ = Ccλ,A. Then

Iλ,A = (CSn)Ccλ,A = (CSn) cλ,AJ ⊂ J
since J is a left ideal. Therefore Iλ,A = J .

Case 2. cλ,AJ = {0}. Then
J 2 ⊂ Iλ,AJ = (CSn) cλ,AJ = {0}.

But this implies J = {0}, since CSn is a symmetric algebra (possesses a nondegen-
erate involution). ¤

Theorem 1. Iλ,A is invariant under the left regular representation πL of Sn, and
the restriction πλ,A of πL to Iλ,A is irreducible.
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Proof. Immediate from Proposition 1 and earlier remarks about group algebras
CG. ¤
Theorem 2. For λ 6= µ the representations πλ,A and πµ,B are inequivalent.

Proof. aλ,AIµ,B = aλ,A (CSn) aµ,Bbµ,B ⊂ aλ,A (CSn) bµ,B = {0}, by Corollary 1.
On the other hand,

aλ,Acλ,A = a2
λ,Abλ,A = λ!aλ,Abλ,A = λ!cλ,A 6= 0.

Suppose πλ,A and πµ,B are equivalent as group representations. Then their cor-
responding algebra representations are also equivalent, so we can find an invertible
linear map T : Iλ,A ³ Iµ,B such that for all x ∈ CSn, T ◦ π̂λ,A(x) = π̂µ,B(x) ◦ T .
Hence we have

T (aλ,Acλ,A) = T ◦ π̂λ,A (aλ,A) (cλ,A)

= π̂µ,B (aλ,A) ◦ T (cλ,A)

= aλ,AT (cλ,A) = 0 since T (x) ∈ Iµ,B and aλ,AIµ,B = {0}
⇒ aλ,Acλ,A = 0 since T is invertible

which is a contradiction. Therefore πλ,A and πµ,B are inequivalent. ¤
Theorem 3. πλ,A and πλ,B are equivalent.

Proof. For some σ ∈ Sn σ(A) = B, and so σcλ,Aσ−1 = cλ,B . Define T : Iλ,A →
Iλ,B to be the linear map x 7→ xσ−1. T is well-defined, since if x ∈ Iλ,A then
x = ycλ,A for some y ∈ CSn, and so xσ−1 =

(
yσ−1

)
σcλ,Aσ−1 = yσ−1cλ,B ∈ Iλ,B .

T is onto since ycλ,B = yσcλ,Aσ−1 and yσcλ,A ∈ Iλ,A, and T is obviously one-to-
one. Finally we check the intertwining property: for τ ∈ Sn and x ∈ Iλ,A,

T ◦ πλ,A(τ)(x) = T (τx) = τxσ−1 = πλ,B(τ)
(
xσ−1

)

= πλ,B(τ) ◦ T (x). ¤

It follows that the set {(πλ, Iλ) |λ is a partition of n} is a complete set of inequiv-
alent irreducible representations for Sn. We may produce the ideals Iλ according
to the following process.

(1) Associate to each conjugacy class in Sn the corresponding partition λ of n,
and the canonical Young tableau Σλ.

(2) For each λ, calculate the subgroups Pλ, Qλ and the Young symmetrizer cλ

for Σλ.
(3) {σcλ|σ ∈ Sn} is a generating set for Iλ as a vector space, hence contains a

basis βλ = {σ1cλ, . . . , σkλ
cλ}.

(4) The matrix of πλ(σ) in basis βλ is then given by the equations defining the
matrix coefficients aij(σ):

πλ(σ) (σjcλ) = σσjcλ =
kλ∑

i=1

aij(σ)σicλ,

so that
[πλ(σ)]βλ

= (aij(σ))1≤i,j≤kλ
.

(5) We may also orthonormalize basis βλ to β′λ with respect to the inner product
in CSn. Then [πλ(σ)]β′λ will be a unitary matrix since the left regular
representation of Sn is unitary with respect to this inner product.
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Characters of irreducible representations of Sn. Since equivalent represen-
tations have the same character, we denote by χλ the character of the irreducible
representation (πλ,A, Iλ,A) of Sn. We have seen in Lemma 2 that in CG in general
the character of a subrepresentation (π, W ) of the left regular representation of G
is determined by the idempotent ε, where W = (CG)ε. Although cλ,A is not idem-
potent, the relation c2

λ,A = c2
λ(e)cλ,A will allow easy definition of an idempotent

generator of Iλ,A provided that c2
λ(e) 6= 0.

Lemma 4. Define mλ = c2
λ(e). Then mλ = n!/kλ, where kλ is the vector space

dimension of Iλ.

Proof. Define the linear operator Tλ on CSn by Tλ(x) = xcλ. Then Iλ is Tλ-
invariant, and Tλ (xcλ) = xc2

λ = mλxcλ, so that the restriction of Tλ to Iλ is the
operator mλ1Iλ

. Choose any basis of Iλ and extend it to a basis of β of CSn. Then

[Tλ]β =
[

mλIkλ
∗

0 0

]

where 0 represents a zero block of appropriate dimensions, ∗ is an arbitrary block,
and Ikλ

is the kλ × kλ identity matrix. Hence trTλ = mλkλ.
On the other hand in the basis α = {σ1, . . . , σn!} of CSn formed by ordering the

elements of Sn in some fashion, we have

Tλ (σj) = σjcλ =
n!∑

i=1

cλ

(
σ−1

j σi

)
σi

and so
[Tλ]α =

(
cλ

(
σ−1

j σi

))
1≤i,j≤n!

.

Hence

trTλ =
n!∑

i=1

cλ

(
σ−1

i σi

)
= cλ(e)n! = n!

since cλ(e) = 1, by straightforward calculation. ¤

In particular mλ 6= 0, and so we set ελ,A := m−1
λ cλ,A. We find

ε2λ,A = m−2
λ c2

λ,A = m−2
λ mλcλ,A = ελ,A

and obviously Iλ,A = (CSn) ελ,A. Then the following theorem is an immediate
application of the formula for a character in terms of an idempotent generator of
its representation space, when this is a subspace of CG, described in Lemma 2.

Theorem 4. The character χλ of the irreducible representation (πλ,A, Iλ,A) of Sn

is given by

(†) χλ(σ) =
∑

τ∈Sn

ελ,A

(
τσ−1τ−1

)
=

kλ

n!

∑

τ∈Sn

cλ,A

(
τσ−1τ−1

)

where kλ = dimC Iλ,A. (The sums are independent of the choice of A.)

From Theorem 4 is derived the Frobenius formula for calculating χλ and a related
result for finding kλ. The Murnaghan-Nakayama rule gives an inductive procedure
for calculating characters in terms of Young diagrams. However, these results will
not be considered here. See for example [Fulton] for details.
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Decomposition of representations of Sn into direct sums of irreducibles.
For each partition λ of n we define the element ωλ := m−1

λ

∑
σ∈Sn

σελσ−1. ωλ is
independent of the choice of Young tableau Σλ,A for λ, since as σ ranges through Sn,
σελσ−1 ranges through ελ,A for all n! possible Young tableaux Σλ,A corresponding
to the diagram Σλ.

We find

ωλ(τ) =
1

mλ

∑

σ∈Sn

ελ

(
σ−1τσ

)
=

1
mλ

∑

σ∈Sn

ελ

(
στσ−1

)
(‡)

=
1

mλ
χλ

(
τ−1

)
by (†).

Proposition 2. ωλ has the following properties.

(1) ωλ 6= 0.
(2) ωλ is Hermitian and idempotent.
(3) ωλ ∈ Z (CSn).
(4) ωλωµ = 0 for λ 6= µ and 〈ωλ, ωµ〉 = δλ,µ/m2

λ.
(5) The set {ωλ|λ is a partition of n} is a basis of Z (CSn).

Proof.

(1)

(§) ωλ(e) =
1

mλ
χλ(e) =

kλ

mλ
=

k2
λ

n!
6= 0 by (‡) and Lemma 4

so ωλ 6= 0.
(2) Since the left regular representation πL is unitary with respect to the inner

product we have in CSn, it follows that πλ is unitary in Iλ with the same
inner product. Hence χλ

(
σ−1

)
= χλ(σ). Then

ω∗λ =
∑

σ∈Sn

ωλ(σ)σ−1 =
1

mλ

∑

σ∈Sn

χλ(σ)σ−1

=
1

mλ

∑

σ∈Sn

χλ

(
σ−1

)
σ =

∑

σ∈Sn

ωλ(σ)σ

= ωλ

using equation (‡), so ωλ is Hermitian.
To show that ωλ is idempotent, we compute using the matrix coefficients

ai,j of πλ with respect to a fixed basis of Iλ. We show idempotence by
comparing coefficients in ω2

λ, ωλ:

ω2
λ(σ) =

∑

τ∈Sn

ωλ(τ)ωλ

(
τ−1σ

)

=
1

m2
λ

∑

τ∈Sn

χλ(τ−1)χλ

(
σ−1τ

)
by (‡).
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But

χλ(τ−1)χλ

(
σ−1τ

)
= trπλ(τ) tr

(
πλ

(
σ−1

)
πλ(τ)

)

=
kλ∑

i=1

ai,i(τ)
kλ∑

j=1

kλ∑

k=1

aj,k

(
σ−1

)
ak,j(τ)

=
kλ∑

j,k=1

aj,k

(
σ−1

) kλ∑

i=1

ak,j(τ)ai,i(τ).

Hence

ω2
λ(σ) =

1
m2

λ

kλ∑

j,k=1

aj,k

(
σ−1

)

·
kλ∑

i=1

∑

τ∈Sn

ak,j(τ)ai,i(τ)

=
n!
m2

λ

kλ∑

j,k=1

aj,k

(
σ−1

) kλ∑

i=1

(ak,j , ai,i) (the inner product
of A (Sn))

=
1

mλ

kλ∑

j,k=1

aj,k

(
σ−1

) kλ∑

i=1

δk,iδj,i orthogonality relations,
and kλ = n!/mλ by
Lemma 4

=
1

mλ

kλ∑

i=1

ai,i

(
σ−1

)

=
1

mλ
χλ

(
σ−1

)
= ωλ (σ) by (‡).

Therefore ωλ is idempotent.
(3) It is clear that ωλ is a class function, and so ωλ ∈ Z (CSn).
(4)

ωλωµ =
1

mλmµ

∑

σ,τ∈Sn

σωλσ−1τωµτ−1

=
∑

σ,τ∈Sn

cλ,σ((1,...,n))cµ,τ((1,...,n))

= 0 if λ 6= µ, by Corollary 1.

Then

〈ωλ, ωµ〉 =
1
n!

ω∗µωλ(e) =
1
n!

ωµωλ(e) by (2)

=
1
n!

δλ,µω2
λ(e) =

1
n!

δλ,µωλ(e) by (2)

= δλ,µ
k2

λ

(n!)2
=

δλ,µ

m2
λ

by (§) and Lemma 4.

(5) Since {ωλ|λ is a partition of n} is an orthogonal set of nonzero elements in
Z (CSn) by (1), (3) and (4), with number of elements equal to the number
of conjugacy classes in Sn, it forms a basis of Z (CSn). ¤
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Now {(πλ, Iλ) |λ is a partition of n} is a complete set of irreducible representa-
tions for Sn. Let (π, V ) be any finite dimensional representation of Sn. Then we
have the projections

Pλ = (dimC Iλ) |Sn|−1
∑

σ∈Sn

χλ(σ)π(σ)

=
1

mλ

∑

σ∈Sn

χλ

(
σ−1

)
π(σ)

= π̂ (ωλ) .

It is then evident, from the general results for CG, that

π̂ (ωλ)V ' I⊕rλ

λ

and
π

∣∣
π̂(ωλ)V ' π⊕rλ

λ

for some nonnegative integer rλ. Therefore

V =
⊕

λ

π̂ (ωλ) V '
⊕

λ

I⊕rλ

λ

and
π '

⊕

λ

π⊕rλ

λ .
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