REPRESENTATION THEORY OF THE SYMMETRIC GROUP:
BASIC ELEMENTS

BY GRAHAM GILL,
FOR MAT1196F

Since Cayley’s theorem implies that every finite group G is isomorphic to a
subgroup of S|g|, understanding the representation theory of the finite symmetric
groups is likely to yield productive tools and results for the representation theory
of finite groups in general. In these notes we will examine the basic results for
the representation theory of S,,. We will describe all irreducible representations of
S, and their characters, as well as giving a complete method for decomposing a
representation of S, into its irreducible factors, in terms of certain elements of the
group algebra CS,, known as Young symmetrizers. No such general method exists
for general finite groups, so in a sense the fundamental problems of representation
theory have been answered in the case of finite symmetric groups.

THE GROUP ALGEBRA CG

We first review some facts regarding the group algebra CG where G is a finite
group. If A(G) is the algebra of all complex valued functions on G with multipli-
cation given by the convolution

Fxl(9)=> @) (g9,
g'eG
then CG is isomorphic as a complex algebra with A(G), via the map CG — A(G),
g — eg, where e; : G — C is the function g’ — g 4. If a =3 5 agg € CG, then
a is sent to the function g — ay. Henceforth we will write a = deG a(g)g. Then

ab=73%, reca(9b(9)99 =3 cc (ZQ’EG a(g')b (g’_lg)) g, so that as an element
in A(G), (ab)(g) = ax*b(g) = >_,cqalg)b (¢"'g). In this way we may pass easily
between CG and A(G). Under this isomorphism we also find that Z(CG), the centre
of CG, corresponds with C(G), the set of class functions on G.

On CG we have the involution

a* = (Z a(a)a) =Y alg)g™ =D alg Vg

9 g 9
Then if a*a = 0 we have a*a(g) = 3, cqa(g~)a (¢"'g) = 0 and in particular,
0=a"ale) =3 cq a(g)a(g), so that @ = 0. An involution satisfying a*a = 0 =
a = 0 is called nondegenerate, and the algebra possessing it is called symmetric. If
a* = a then a is called Hermitian. For a Hermitian element a € CG, a? = 0 =
a = 0. It follows that if Z is a left ideal of CG and Z2? = {0} then Z = 0, because
a €= (a*a)® €12, so that (a*a)’ = 0= a*a=0= a=0.
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If (m,V) is a group representation of the finite group G then it determines the
algebra representation (7, V') of CG, via

#t(a) = ) a(g)w(g) € End(V)

geqG

and it is easily checked that # is an algebra homomorphism. If (p, V) is a repre-
sentation of CG, then by restriction of p to G C CG we obtain a representation
(p, V) of G, since p(g) € GL(V) for all g € G. Clearly # = m and p = p, and the
representation theory of CG and of G will exhibit corresponding structures. We
will denote group representations using 7 and algebra representations using p for
clarity.

The left regular representation (7, A(G)) of G is given by (7, (g0) f) (9) =
f(95'9), which we may write for (w1, CG) as m1,(g)(a) = ga. Then the corre-
sponding left regular representation of the algebra CG is its self-representation
(pr. = 71, CG) with pr,(a)(b) = ab. It follows then that a (vector) subspace W C CG
is invariant under the left regular representation of CG if and only if W is a left
ideal of CG. A restriction of the left regular representation of CG to a left ideal W
is irreducible if and only if W is a minimal left ideal. Hence the left regular repre-
sentation of CG is completely reducible if and only if CG = W1 & - - - & Wy, with
the W; minimal left ideals, and this gives the decomposition of the representation
into irreducibles. Thus, in order to decompose the left regular representation of CG
into irreducibles it is equivalent to write CG as a direct sum of minimal left ideals.

In A(G) we have the inner product

(fi:f2) = 1GI7 Y fil9) fag)

geG

which in CG becomes (a,b) = |G|~ " b*a(e). If W is a left ideal in CG it follows
that W+ is also, and CG = W @ W+. Then we obtain the following lemma.

Lemma 1. Fvery left ideal in CG is principal and generated by an idempotent.

Proof. Let W be a left ideal of CG. Since CG = W& W+, we write e = w+w’ with
weW,w € W, Then w = w? + ww’ = wW? 4+ w'wand soww’ =w'w e WNWt =
{0}. Tt follows that w = w? is idempotent, as is &’ = (')*. Then (CG)w C W,
(CG)w' C W+, and if a € CG we have a = aw + aw’, so that

WaeWt=CG=(CGwa (CG)
which shows that W = (CG)w, W = (CG)w'. O

In the notation of the lemma, we find also that W = {a € CGlaw = a}, W+ =
{a € CGlaw = 0}. If e € CG is idempotent, define ¢ = e — ¢, which is also
idempotent. We find e¢/ = ¢’¢ = 0 and conclude that CG = (CG)e & (CG)€,
(CG)e = {a € CGlac = a} = {a € CG|ae’ = 0}. However (CG)e and (CG)e" will
not in general be orthogonal.

The search for the irreducible representations of S,, will reduce to the construc-
tion of two families of idempotents in CS,,, one of which satisfies an orthogonality
property. The first step is more general, showing how the character of a subrep-
resentation of the left regular representation of G may be expressed in terms of
idempotents in CG.
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Lemma 2. If (m,W) is the restriction of the left reqular representation (7, CQ)
of G to a left ideal W of CG, i.e. 7 is a subrepresentation, and if W = (CG) € for
some idempotent €, then we have the following formula for the character of w:

Xn(g) = > € (9'9*1 9’71) :
g'eG

Proof. Define P € End¢(CG) by P(a) = ae. Define T : G — Endc(CG) by
T(g)(b) = gbe. It follows that T(g) = m(g) o P, W is T(g)-invariant and the
restriction of T'(g) to W is m(g). (I.e. m = T as maps G — Endc(W).) Let
¢ =e—eandlet W = (CG)€e’. Then CG =W @& W’ and P is projection from CG
onto W along W’. T'(g) restricts to the zero operator on W’. Choosing bases of W
and W' we see that tr T'(g) = tr7(g) = x»(9)-

Now consider the basis of CG given by the elements of G in some fixed order:
{g1,--.,9n}. We have T(g) (g;) = ggje, and to discover the i*" coordinate in terms
of this basis we calculate using the correspondence with A(G):

(9g5€) (9:) = € ((ggj)_l gi) =e(g; "9 "gi).
Hence

Xx(9) =trT(g) =

n
1=

(g g lg) =) e (g’g‘1 g'_l) : O
1 g'eG

For any representation (7, V') of G we may regard V as a CG-module via a-v :=
#(a)(v). (This is not in general a faithful module action.) Under this action,
idempotents in CG become projection operators in End(V).

If (1, V1), ..., (mk, Vi) is a complete list of irreducible representations of G, then
for each m = 1,..., k the projections
= (dim Vi) G 7" D Xor,, (9)7(9) € End(V)
geG
give

k
V= EB P,,V, where P,V ~ V& and 7 |p v ~72"m
m=1
and so m ~ @k _ 79 for some nonnegative integer r,,,. This gives the decompo-
sition of (w, V') into a direct sum of inequivalent subrepresentations, each of which
is equivalent to a multiple (r,,) of some irreducible. In the language of CG each
P, corresponds to the idempotent

em = (dim V;,) [G]™" > Xr,, (9)9 € CG.
geG

(The fact that P, is a projection implies ¢, is idempotent follows by calculating
P, for (m,V) = (7, CG), the left regular representation of G, for then P,,(e) = €,
and €2, = P, (e)Pn(e) = P2(e) = Py(e) = €m.) To discover the irreducible factors
of (m,V) and not only multiples of them we search for other idempotents of CG,
and we see this process carried out for G = S,, below.

A representation (p, V') of CG, where (V, (:|-)) is a complex inner product space,
is called symmetric if (p(a)(u)v) = (ulp (a*) (v)) for all @ € CG, u,v € V. If V
is finite dimensional, this condition means p (a*) = p(a)*, the adjoint operator to
p(a). Thus in an orthonormal basis § for V' we have [p(a*)]s = [p(a)]5. Then
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it is easily checked that a representation (7,V’) of G is unitary if and only if the
representation (7, V') of CG is symmetric, where V is finite dimensional.
We use the listed facts freely in what follows below:

e Two representations of a group G are (unitarily) equivalent if and only if
the corresponding representations of CG are (unitarily) equivalent.

e A representation of a group G is irreducible if and only if the corresponding
representation of CG is irreducible.

o T =17 DDy as representations of G if and only if 7 =711 & --- ® 7
as representations of CG.

REPRESENTATIONS OF S,

The number of inequivalent finite dimensional representations of S, is equal to
the number of conjugacy classes in S;,. But two elements of S,, are conjugate if
and only if they have the same cycle type, i.e. if and only if in their disjoint cycle
decompositions they have the same number of k-cycles for each K = 1,...,n. Since
the cycles are disjoint the sum of the number of each type of cycle times its length
must be n. Thus the conjugacy classes of \S,, are in one to one correspondence with
the partitions of n. A = (A1,...,A,) is a partition of n if > \; = n, each A; is an
integer, and A; > --- > A, > 0. We order the partitions lexicographically: A > p if
there exists a k such that Ay > ux and \; = p; for i < k.

Each partition A determines a unique Ferrer’s diagram with )\ dots in the k*®
row and all rows left-aligned. For example, A = (3,2,2,1,1,0,0,0,0) has Ferrer’s
diagram

If we replace each dot by a box we have a Young diagram, and if we write the
numbers from 1 to n in the boxes, one per box with no repetitions, in some order,
we have a Young tableau. A Young tableau thus corresponds to an element of S,,,
namely that element with disjoint cycle decomposition formed by the rows of the
tableau, each row mapping to a cycle. (The map from tableaux to S, is onto but

L 12 2|1 " .
not injective: 3 ‘ and 3 ‘ both produce the transposition (12) in Ss.)
If \ is a partition of n, A = (ai,...,a,) is a particular ordering of the numbers

1,...,nand 7 € S, define 7(A4) = (7 (a1),...,7 (ay)), define X to be the Young
diagram for A, define ¥ 4 to be the Young tableau formed from X by filling in the
boxes of the diagram with the elements of A, left-to-right, top-to-bottom, and define
Ox,4 € Sy, to be the permutation in S, produced by Xy 4. In case A = (1,...,n) we
will usually leave off the subscript A, writing X instead of X 4, o instead of o5 4,
etc., relying on context to distinguish the different uses. ¥y (1, .. ) is considered
to be the canonical tableau for the diagram Y. Finally, define 735 4 = Xy ()
Then it is easy to verify that oy ;(4) = Ty aT b

To obtain a complete set of irreducible representations of S,, we must associate
to each partition A of n an irreducible representation, in such a way that if X\ £ p
are partitions then the associated representations are inequivalent.
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We define the so-called Young subgroups of S,,. Given a tableau ¥ 4 define
Py, 4 to be the subgroup of S,, of permutations sending each row of ¥y 4 back
into itself, and define )5 4 to be the subgroup of S,, of permutations sending each
column of ¥y 4 back into itself. Then Py 4 is isomorphic to Sy, x ---x Sy, (where
S1 = So = {e}, the trivial group) and Qx4 is isomorphic to S,, x --- x Sy,
where p is the conjugate partition to A. (The conjugate partition to A is the
partition associated to the diagram which is the transpose of the diagram Xy.)
We have Py ;4) = 7Py a7 ! and Q) r(a) = TQx a7 ! for all 7 € S,,. Note that
Py, AN Qx4 = {e}, from direct application of the definitions.

Now construct the following elements of CS,,:

axaA = Z D, bxa = Z (sgng)g,  cxna:=axabya.

PEPx A qEQxN A

The following identities hold and are easy to verify:

®pax A = axAp = axa Vp € Py 4 oaa,\Aa_l =axqa) Vo €S,
o (sgnq)gbx a =bx a(sgng)g =bxa Vg € Qx4 oobA7A0_1 =byoa) Vo € 5y
opcx A(580q)q = cx A Vp € PxaVqg € Qx4 eocy a0 " =) pa) VO ES,

ea3 4 = May 4 where Xl = (Ai])--- (A1) = [Py a|  ea} 4 =axa
'bi,A = pulby 4 where p is the 'b;,A =bya

conjugate partition to A, and |Qx 4| = u!

Lemma 3. If Aand p are partitions of n with A > u, and no two elements in the
same column of the tableau ¥, g are in the same row of the tableau ¥y 4, then (a)
A=p and (b) £, =pg¥x a for somep € Py a, ¢ € Qxa.

Proof. The first row of ¥y 4 has A; elements, which by hypothesis occur in A\;
distinct columns of ¥, p. Hence p1qy > Aq, and so we must have Ay = p1. Then
for some q; € QB and p; € Py 4 the tableaux ¥y, (4) = p1¥aa and X, 4 (B) =
¢12,, B have the same first row. The new tableaux continue to satisfy the hypotheses
in the statement of the lemma.

Suppose that for some k& < n we have shown that A\y = p1,..., \p—1 = pp—1,
and that for some p € Py 4 and q € Q,, p the tableaux X, ,(4), X, q(B) satisfy the
hypotheses of the lemma and have the same top k — 1 rows. If A\ = 0 then p; =0,
and so A = p and ¥ ,4) = X, 4(p)- Otherwise A, > 0 and the k™ row of 3 ()
has Ay elements which appear in distinct columns of ¥, ;(p), and necessarily all
occur in rows k to n of ¥, ;(p). Hence pp > Ag, which forces Ay = pg. Then for
some g € Qq(B) and pr € Py pay, PrXapa) and qpX, o) have identical top &k
rows. (Clearly we may choose g so that it leaves unchanged the first k — 1 rows
of ¥, ¢(B) and we may choose py, so that it leaves unchanged all rows of Xy ,(4)
except the k)

We find Q, qB) = qQu.5q9 " = Q. since ¢ € Q, p and similarly Py pa) =
Py 4. Tt follows that gxq € Q. p and pgp € Py 4, and the new tableaux Xy ,, ,(a),
¥,,qeq(B) satisfy our induction hypothesis. Therefore A = u and for some p € Py 4,
q € Qu,pwehave Xy 4y = X, 4(B). Thus we've shown that ¥, g = q 'pXy 4. But
notice that pQx ap™" = Qxpa) = Q) = 4Qu.Bq" " = Qu.5. Hence ¢ = pg'p™!
for some ¢ € Qx 4, and we have ¥, g =p ¢! Y,4 as required. O
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This combinatorial lemma together with the identities above have the following
consequences.

Corollary 1.

(1)
(2)
(3)
(4)

Proof.

(1)

If X # p then 0 = ax axby B = by azay, B Vo € CS,.

If X # p then cy axcy p = 0Vz € CS,,.

IfVp € Py,aVq € Qx4 pa(sgnq)g = a, then a = a(e)cy 4.

ex azexnp = mocy,g for some m € C, where o € S, satisfies 0(B) = A.
We have m = cx po~'zcy g(e€).

Suppose A > pu. Then by Lemma 3 there exist distinct ¢,5 € 1,...,n in
some column of ¥, g such that ¢ and j occur in the same row of X 4.
Let 7 = (¢ j) be their transposition. Then 7 € Py 4 N Q, g and hence

ax,abyp = axat(sgn7)tb, p = —axabyp = axab,p = 0. Now let
o € S5,. Then a,\7AUbM7Ba_1 = axaby o) = 0 = axaob,p = 0, and
hence for all z € CS,, ax azb, p = 0. A symmetric argument shows

bx,aza, g = 0 also.
Next suppose A < p and let x € CS,,. Then
(axazby )" =0} pr*a) 4 (ab)* =b*a* in CG can be
verified by direct computation
using the convolution formula
= b, pxr*axa since ay 4, b, p are Hermitian
=0 since > \
which implies that a axb, g = 0. A symmetric argument then shows that

bx,aza,, g = 0 also.
exarcy B = axa (bxazay,p) by, =0, by (1).

We have Vp € Py 4 Vg € Qx a,
> alo)o =Y (senq)a(o)poq
oESy oESy
= > (sgngla(plog o
oSy
= a(o) = (sgnq)a (p~'og™ ") Vo € S,
= a(poq) = (sgnq)a (o) Yo € S,

Hence a(pq) = (sgnq)a(e). If we can show that a(o) = 0 whenever o ¢
PxaQxa = {pqlp € Pxa,q € Qxa}, then

a= > alpgpg=ale) Y (seng)pq=a(e)cra
PGEPN AQN A PEP) A
qEQx, A
since Py 4 N Qx4 = {e} implies that the set Py 4Qx, 4 is in bijection with
P)\7A X Q)\,A- Suppose that o ¢ P)\,AQ)\,A- Then 2)\70(14) = O'E)\,A and
so by Lemma 3 there exist 4, j in some column of X, ;(4) such that both
lie in the same row of ¥ 4. Let 7 = (i j), so 7 € Px A N Q) o). Since
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Qro(a) = oQx a0, 7 = oqo~! for some ¢ € Qr 4. Then e = 72 =

Toqo~! = T70q = 0. Applying equation (x) we find

a(o) = a(roq) = (sgnq)a(o) = (sgnr)a(o) = —a(o)
whence a(o) = 0.

(4) Let x € CS,,, p € Px.a, ¢ € Qxa. Then pcy azcy a(sgnq)g = cx azcy a4
since ¢y, 4 = ax abx 4. Hence ey axex a4 = ey azcy a(e)en,a, by (3). Now,
if ¥ 4, X p are two tableaux, there is a o € S, such that A = ¢(B) and
EA,A = 2)\70(3). Then

CAATCAB = 0C\ B0 ‘TCA B

= (C)\deil.fCC)\,B) (6)00)\13. O

Corollary 2. cxacup = 0 if X # p. 5 4 = 5 q(e)era. 3 4le) = Ale), ie
this value depends only on the diagram (so, only on the partition X\), not on the
particular tableau chosen. (Recall that cy := cx 1. n)-)
Proof. The first two statements follow immediately from Corollary 1. For the third
statement, we have A = o ((1,...,n)) for some o € S,,, and so cy 4 = ocyo™ L.
Then
ciA(e)c)\,A = ciA = Jcicf*l = ci(e)ac)\afl = ci(e)c;vA.
But ¢y 4 # 0 since ¢y a(e) = 1. (Recall that pg = e if and only if p = ¢ = e in
A = Yopepy 4 (sgnq)pg.) Hence &3 4(e) = 3 (e). O
qEQx, A

The elements cy 4 are known as Young symmetrizers. Although neither Hermit-
ian nor idempotent in general, they are used to construct such elements, which will
in turn be used to describe the irreducible representations of S,, and their char-
acters. The Young symmetrizers are also used to produce minimal left ideals in

CS,.
Proposition 1. The ideal Ty 4 := (CS,) cx 4 is a minimal left ideal in CS,,.

Proof. Since ¢y, 4 # 0, Zy 4 is obviously a nonzero left ideal. We note that
cx,aZx, 4 C Cey,a, since cy axcy a4 = mey 4 for some m € C by Corollary 1. Let J
be a left ideal contained in Z) 4. Then cy 4J C Ccy 4, and both ¢y 4J and Ccy 4
are vector subspaces of CS,,. However, Ccy 4 is one dimensional, and so we have
only two possibilities.

Case 1. cy aJ = Ccy 4. Then
Ixa=(CS,)Cera=(CSy)erad C T
since J is a left ideal. Therefore 7y 4 = J.
Case 2. ¢y aJ = {0}. Then
J? CThad = (CSn) exad = {0}

But this implies J = {0}, since CS,, is a symmetric algebra (possesses a nondegen-
erate involution). O

Theorem 1. I, 4 is invariant under the left regular representation m, of Sy, and
the restriction mx o of w1, to Iy a is irreducible.
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Proof. Immediate from Proposition 1 and earlier remarks about group algebras
CaG. O

Theorem 2. For A # u the representations mx a4 and m, p are inequivalent.

PTOOf' a)x,AI/L,B = ax A (Csn) a/L,Bb/L,B C ax A (CS’H) b,u,B = {O}a by Corollary L
On the other hand,
a>\7AC)\7A = aivaA’A = /\!aAvaXA = /\!CA,A 7& 0.

Suppose 7y 4 and 7, p are equivalent as group representations. Then their cor-
responding algebra representations are also equivalent, so we can find an invertible
linear map T : Zy o4 — Z,, p such that for all z € CS,,, T oty a(x) = 71y p(z) o T.
Hence we have

T'(ax,acx,a) =T o7ty a(axa)(cra)

=7, (axa) o T (cx,a)
=axaT (cxa)=0 since T'(z) € Z,, g and ax aZ, B = {0}
= ax,acxa =0 since T is invertible
which is a contradiction. Therefore 75 4 and 7, p are inequivalent. O

Theorem 3. 7y 4 and 7y p are equivalent.

Proof. For some o € S,, 0(A) = B, and so ocy a0~ ! = ¢y p. Define T : Ty 4 —

T, to be the linear map z — zo~!. T is well-defined, since if # € Z) 4 then
x = ycy 4 for some y € CS,, and so zo~! = (ya_l) ocy a0t =yo~leyp € Iy .
T is onto since ycy g = yac%Aafl and yocy 4 € Iy 4, and T is obviously one-to-
one. Finally we check the intertwining property: for 7 € S, and « € 7 4,

1— B (7) (scail)

:ﬂ')\’B(T)OT({,C). |:|

Tomya(T)(x) =T(12) =TT

It follows that the set {(mx,Zy) |\ is a partition of n} is a complete set of inequiv-
alent irreducible representations for S,,. We may produce the ideals Z) according
to the following process.

(1) Associate to each conjugacy class in S,, the corresponding partition A of n,
and the canonical Young tableau .
(2) For each ), calculate the subgroups Py, @ and the Young symmetrizer c)

for E)\.
(3) {ocalo € Si} is a generating set for Z) as a vector space, hence contains a
basis 8y = {o1¢x, ..., 0k, Cr }-

(4) The matrix of w5 (o) in basis () is then given by the equations defining the
matrix coefficients a;;(0):
kx
(o) (0jcn) = o0jen = Zaij(a)ai@\,
i=1
so that
[TF/\(U)]gA = (aij(a))gi,jgm :
(5) We may also orthonormalize basis 35 to 3} with respect to the inner product
in CS,,. Then [mx(0)] g, Will be a unitary matrix since the left regular
representation of \S,, is unitary with respect to this inner product.
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Characters of irreducible representations of S,. Since equivalent represen-
tations have the same character, we denote by x the character of the irreducible
representation (mx a,Zx 4) of S,,. We have seen in Lemma 2 that in CG in general
the character of a subrepresentation (7, W) of the left regular representation of G
is determined by the idempotent €, where W = (CG)e. Although ¢y 4 is not idem-
potent, the relation ¢} , = c3(e)ex.a will allow easy definition of an idempotent
generator of Zy 4 provided that ci (e) # 0.

Lemma 4. Define my = c3(e). Then my = nl/ky, where ky is the vector space
dimension of Ty .

Proof. Define the linear operator T\ on CS,, by Th(z) = xcx. Then Z, is T)-
invariant, and T (zcy) = ;vci = mxcy, so that the restriction of T to Z is the
operator my1z,. Choose any basis of 7, and extend it to a basis of 8 of CS,,. Then

s = [ s ]

where O represents a zero block of appropriate dimensions, * is an arbitrary block,
and I, is the k) X k) identity matrix. Hence tr T\ = myky.

On the other hand in the basis « = {o1,...,0m} of CS,, formed by ordering the
elements of S, in some fashion, we have

n!

Ty () = yer = 3 n (07 10)

i=1

and so
[TA](X = (CA (Ug‘_lgi))lgl‘,jgn! :
Hence
n!
trTy\ = Zc,\ (ai_lai) =ca(e)n! =n!
i=1
since ¢y (e) = 1, by straightforward calculation. O

In particular my # 0, and so we set € 4 := mxch7A. We find
2 -2 2 -2
EA,A = m)\ CA,A = m/\ m)\cA,A = 6>\7A

and obviously Zy 4 = (CS,)ex a. Then the following theorem is an immediate
application of the formula for a character in terms of an idempotent generator of
its representation space, when this is a subspace of CG, described in Lemma 2.

Theorem 4. The character xx of the irreducible representation (wx a,Zx a) of Sp
is given by

(1) xa(o) = Z exa(ro”lr ) = % Z exa (o't

TES, " T€S,

where kyx = dimcZy 4. (The sums are independent of the choice of A.)

From Theorem 4 is derived the Frobenius formula for calculating x, and a related
result for finding k). The Murnaghan-Nakayama rule gives an inductive procedure
for calculating characters in terms of Young diagrams. However, these results will
not be considered here. See for example [Fulton] for details.
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Decomposition of representations of S;, into direct sums of irreducibles.
For each partition A of n we define the element w) := m;l Zaesn ogexo Tl wy is
independent of the choice of Young tableau ¥ 4 for A, since as o ranges through .S,,,
oexo~! ranges through € 4 for all n! possible Young tableaux ¥, 4 corresponding

to the diagram Y.

We find
1) wx(T) = mik Ugsjn € (0_17'0) = mi)\ Ugsjn € (aro_l)
= m%xA (71 by (1)

(1) wr #0.

) wy is Hermitian and idempotent.

) wx € Z(CSy,).

) wawy, =0 for X # p and (wx,w,) = 6x,,/m3.

) The set {wx|\ is a partition of n} is a basis of Z (CS,,).

(8) wile) = —xa(e) = kA #0 by (1) and Lemma 4

mx m)\
so wy # 0.
(2) Since the left regular representation 7y, is unitary with respect to the inner
product we have in CS,,, it follows that ) is unitary in 7, with the same
inner product. Hence y» (U’l) = xa(0). Then

wXZZW 72){)\

GES UGS
= — E xr (07 o= g wy(o)o
UES o€ESy

using equation (1), so wy is Hermitian.

To show that w) is idempotent, we compute using the matrix coefficients
a;; of m\ with respect to a fixed basis of 7. We show idempotence by
comparing coefficients in wf\, wi:

Z wx(T)wx (T_lo)

TES

= ZXA Dxa (o) by (3).

TESn

w3 (o)
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But
(™ Hxa (0717') =trmy(7) tr (WA (071) 7T)\(T))
kx kx kx
=DM DD ain (07" ary(r)
i=1 j=1k=1
kx
=D Zak i()aiq(
J.k=1
Hence
1 &
Wi(a) = m2 Z ajk (U 1)
A k=1
kx
Z ak,j(7)aqi(T)
i=1T1€S,
ol B kx
= W Z aj K (071) Z (ak,j,a;;) (the inner product
A jk=1 i=1 of A(S,))
1 k?)\ k)\
= — Z aji (07 Z 0k,i05. orthogonality relations,
M =1 i=1 and ky = n!/my by
Lemma 4
1 &
= ;am (e
1 1
= — ) = b )
R (67!) =wa (o) y (1)

Therefore w) is idempotent.
(3) Tt is clear that wy is a class function, and so wy € Z (CS,,).

(4)

1
wrw, = o, Z awAU_lrqu_l
o, TES
= Z Cx,o((1,...,n))Cu,m((1,...,m))
o, TESy
=0 if A # p, by Corollary 1.
Then
1 1
{wr,wp) = Swuwa(e) = Swuwa(e) by (2)
1 1
= Sk (e) = —onuen(e) by (2)
k2 O
=0y 2 = i b and Lemma 4.
AL (n')z mg\ y (§)

(5) Since {wx|A is a partition of n} is an orthogonal set of nonzero elements in
Z (CSy) by (1), (3) and (4), with number of elements equal to the number
of conjugacy classes in S,,, it forms a basis of Z (CS,,). O
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Now {(mx,Zx) |\ is a partition of n} is a complete set of irreducible representa-
tions for S,. Let (m,V) be any finite dimensional representation of S,. Then we
have the projections

P\ = (dlm(c I)\) |Sn|_l Z XA(J)W(O—)

g€Sy
_ L -1
= Ugsjn xx (071 w(o)
=7 (w>\) .

It is then evident, from the general results for CG, that
F(wy) V =P

and

~ DTN
T |7AT(WA)V =T

for some nonnegative integer ). Therefore

V= @ﬁ(u},\)V'z @Iﬁa”
A A

~ Dra
e @,
A
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