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1 General Approach for Finite Groups

A representation ρ of a finite group G is called multiplicity-free if the decomposition of ρ into irreducibles
has no repetitions. We will demonstrate that in certain cases it is possible to verify this property even if the
irreducible constituents of ρ are unknown. There is a natural algebraic translation of this definition:

Lemma 1. Let ρ be a finite-dimensional representation of a finite group G. Then ρ is multiplicity-free if
and only if the intertwining algebra HomG(ρ, ρ) is commutative. In this case, dim HomG(ρ, ρ) is equal to the
number of irreducible constituents of ρ.

Proof. This was a homework exercise. Since ρ is completely reducible, suppose it has the decomposition

ρ =
m

⊕

i=0

ρi,

possibly with repetitions. Let us sort the sequence ρ1, ρ2, . . . , ρm so that any equivalent representations occur
in consecutive terms. Now an intertwining operator A ∈ HomG(ρ, ρ) can be considered as an m×m matrix
of homomorphisms, with entries Aij ∈ HomG(ρj , ρi). Schur’s lemma tells us that

HomG(ρj , ρi) '

{

C if ρj ' ρi

{0} if ρj 6' ρi

We see that HomG(ρ, ρ) can be identified with an algebra of block-diagonal matrices over C, where the
block sizes are the multiplicities of equivalent ρi’s. Composition of intertwining operators A corresponds to
matrix multiplication. Thus HomG(ρ, ρ) is commutative if and only if all the blocks have size 1, i.e. the ρi

are distinct. When this happens, the matrix algebra is simply the set of diagonal m×m matrices, so that
dim HomG(ρ, ρ) = m.

We will be concerned with the case that ρ is induced from a finite-dimensional representation (π, V ) of
a subgroup H < G; if ρ = iGHπ is multiplicity-free then we call (G,H, π) a Gelfand triple. In particular, if
π = 1H is the trivial representation then H is called a Gelfand subgroup of G, and we say that (G,H) is
a Gelfand pair.

Recall that the Hecke algebra H = H(G, π) was defined as a space of functions that mimic the action
of π on the left and right:

H = {ϕ : G→ EndC(V ) | ϕ(kgh) = π(k) ◦ ϕ(g) ◦ π(h) ∀g ∈ G, k, h ∈ H}.

Multiplication in the Hecke algebra is by convolution: for ϕ1, ϕ2 ∈ H,

(ϕ1 ∗ ϕ2)(g) = |H |
−1

∑

g0∈G

ϕ1(g0) ◦ ϕ2(g
−1

0 g).
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Lemma 2. With notation as above, the C-algebras HomG(iGHπ, i
G
Hπ) and H are isomorphic

Proof. In class we established a vector space isomorphism. That this isomorphism respects multiplication
was left as an exercise.

Lemma 3. Let H < G be finite groups, π be a representation of H, and H = H(G, π). Then iGHπ is
multiplicity-free if and only if H is commutative. In this case, the number of irreducible constituents of iGHπ
is dimH.

Proof. This is an amalgamation of the two preceding lemmas.

We present a tool to show that H is commutative. A map ι : G → G is called an involution if ι2 = id
and ι(g1g2) = ι(g2)ι(g1) for g1, g2 ∈ G. Such an ι is evidently not required to be a homomorphism. Similarly,
a linear map ι̃ : H → H is called an involution if ι̃2 = id and ι̃(ϕ1ϕ2) = ι̃(ϕ2)ι̃(ϕ1) for ϕ1, ϕ2 ∈ H.

Lemma 4. Let H < G be finite groups, (π, V ) be a one-dimensional representation of H, and H = H(G, π).
Suppose that ι : G → G is an involution, fixing H, such that π(ι(h)) = π(h) for all h ∈ H. Then the map
ι̃ : H → H,

ι̃(ϕ)(g) = ϕ(ι(g)),

is an involution of H.

Proof. There are three things to show: that ι̃(ϕ) ∈ H for all ϕ ∈ H, that ι̃2 = id, and that ι̃ reverses
multiplication. All are straightforward, but the latter requires EndC(V ) to be commutative, which is true
only if dimV = 1.

Theorem 1. Suppose that there is an involution ι : G → G such that HgH = Hι(g)H for all g ∈ G. Then
(G,H) is a Gelfand pair.

Proof. We wish to show that iGHπ is multiplicity-free, where π = 1H . Construct ι̃ according to Lemma 4;
note that the requirement π(ι(h)) = π(h) is vacuous in this context.

Now H consists of all function ϕ : G→ C such that ϕ is constant on H-H double cosets; thus, ι̃ acts by
the identity on H. Finally, observe that ι̃ = id being an involution implies that H is commutative.

The last three results may be considered a recipe for identifying Gelfand pairs and Gelfand triples, one
that we will apply in Sections 4 and 3.

2 Generalization to Compact Groups

Let G be a compact group with closed subgroup H , and let µ be a normalized Haar measure on G. To
generalize our multiplicity-free criterion, we will not follow an analogous line of reasoning; rather, we will
prove directly that if the appropriate generalization of the Hecke algebra is commutative, then H is a Gelfand
subgroup of G. First, we introduce the necessary definitions:

We avoid defining Gelfand subgroups in terms of induced representations, because these may be infinite-
dimensional. However, Frobenius reciprocity implies an equivalent definition in terms of restricted represen-
tations, which we will use for compact groups: A closed subgroup H of G is a Gelfand subgroup, or (G,H)
is a Gelfand pair, if for every irreducible representation (ρ, V ) of G, the subspace of H-fixed vectors, V H ,
is at most one-dimensional.

Lemma 5. If H < G are finite groups then iGH1 is multiplicity-free if and only if for every irreducible
representation (ρ, V ) of G, the subspace V H is at most one-dimensional.

Proof. Observe that V H ' HomH(1H , V ). By Frobenius reciprocity, the latter has dimension

〈

χ1H
, rH

Gχρ

〉

H
=

〈

χiG

H
1, χρ

〉

G
,

which is the multiplicity of ρ in iGH1. This quantity is at most 1 for every irreducible ρ, if and only if iGH1 is
multiplicity-free.
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Denote by C(G) the set of continuous functions ϕ : G→ C. This forms an algebra (without a multiplica-
tive identity) under the convolution:

ϕ1 ∗ ϕ2(g) =

∫

g0∈G

ϕ1(g0)ϕ2(g
−1

0 g)dµ

Identify the subalgebra

H = H(G,H) = {ϕ ∈ C(G) | ϕ(hg) = ϕ(g) = ϕ(gh) ∀g ∈ G, h ∈ H}.

In the finite group setting, a representation (π, V ) naturally gives rise to an action of the group algebra on
V . Analogously, given a representation (π, V ) of G and a function ϕ ∈ C(G), define π(ϕ) : V → V by

π(ϕ)v =

∫

g∈G

ϕ(g)π(g)vdµ.

Lemma 6. π(ϕ1 ∗ ϕ2) = π(ϕ1) ◦ π(ϕ2)

Proof.

π(ϕ1 ∗ ϕ2)v =

∫

g∈G

∫

g0∈G

ϕ1(g0)ϕ2(g
−1

0 g)π(g)vdµ(g0)dµ(g)

=

∫

g′∈G

∫

g0∈G

ϕ1(g0)ϕ2(g
′)π(g0g

′)dµ(g0)dµ(g′)

=

∫

g0∈G

ϕ1(g0)π(g0)

∫

g′∈G

ϕ2(g
′)π(g′)vdµ(g′)dµ(g0)

= π(ϕ1) (π(ϕ2)v)

The following theorem generalizes Lemma 3.

Theorem 2. Let G be a compact group and H < G be closed. If the convolution algebra H(G,H) is
commutative, then H is a Gelfand subgroup of G.

Proof. Let (π, V ) be an irreducible representation of G; thus n = dimV < ∞. Suppose that the subspace
V H is at least two-dimensional; we will construct two elements of H that do not commute. Recall that
there is a G-invariant inner product 〈 , 〉 on V . Thus there is an orthonormal basis {vi}

n
i=1 of V such that

span {v1, v2} ⊂ V H , i.e. π(h)v1 = v1 and π(h)v2 = v2 for h ∈ H . Define ϕ ∈ C(G) in either of two equivalent
ways:

ϕ(g) = 〈v2, π(g)v1〉

=
〈

π(g)−1, v1
〉

.

Observe that ϕ ∈ H because v1 and v2 are H-fixed: explicitly, for h ∈ H ,

ϕ(gh) = 〈v2, π(gh)v1〉 = 〈v2, π(g)π(h)v1〉 = 〈v2, π(g)v1〉 = ϕ(g),

and
ϕ(hg) =

〈

π(hg)−1v2, v1
〉

=
〈

π(g)−1π(h)−1v2, v1
〉

=
〈

π(g)−1v2, v1
〉

= ϕ(g).

To compute the action of π(ϕ), we proceed indirectly, finding first its matrix coefficients. Let vi, vj be basis
vectors. Then

〈π(ϕ)vi, vj〉 =

〈∫

g∈G

ϕ(g)π(g)vidµ , vj

〉

=

∫

g∈G

ϕ(g) 〈π(g)vi, vj〉 dµ

=

∫

g∈G

〈π(g)vi, vj〉 〈π(g)v1, v2〉dµ
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We invoke the orthogonality relations for matrix coefficients of π, which are proved in the same manner as
for finite groups. According to these relations, the integral is equal to

1

n
δi1δj2

Thus the matrix for π(ϕ) has exactly one nonzero entry, which is in the (2, 1) position. We could also define
ϕ′ ∈ H with the roles of v1 and v2 reversed:

ϕ′(g) = 〈v1, π(g)v2〉

Repeating the above argument, the matrix for ϕ′ has exactly one nonzero entry, which is in the (1, 2) position.
But these two matrices do not commute, so H is not commutative:

π(ϕ ∗ ϕ′) = π(ϕ)π(ϕ′) 6= π(ϕ′)π(ϕ) = π(ϕ′ ∗ ϕ)

⇒ ϕ ∗ ϕ′ 6= ϕ′ ∗ ϕ

3 The Gelfand-Graev Representation

Let Fq be a finite field, n ∈ N, G = GLn(Fq), and let N be the subgroup of upper triangular matrices with 1
on the diagonal. With ψ an injective complex linear character of Fq , define a one-dimensional representation
π : N → C× by

π(a) = ψ(a12 + a23 + · · · + an−1,n), a = (aij) ∈ N.

The Gelfand-Graev representation iGN is important in the representation theory of G because it
contains most irreducible representations of G. The goal of this section is to show that it is multiplicity-free.
We will make use of the Bruhat decomposition, which in the case of GLn has an easy, direct proof.

Lemma 7 (Bruhat decomposition). One can decompose GLn(Fq) as a disjoint union of double cosets
with representatives of a certain form, as follows.

1. (The original Bruhat decomposition)

GLn(Fq) =
∐

w∈W

BwB,

where B is the Borel subgroup of GLn(Fq), containing all upper triangular matrices, and W is the
group of n× n permutation matrices.

2. (A slight modification that will be more convenient for us)

GLn(Fq) =
∐

m∈M

NmN,

where N is as above and M consists of monomial matrices, i.e. matrices with a single nonzero entry
in each row and column.

Proof. (Sketch)

1. At first, ignore the issue of whether the union is disjoint. We proceed by strong induction on n; when
n = 1, B = G so the result is trivial.

Suppose that we are given a matrix g ∈ GLn(Fq), n > 1. It suffices to find a permutation matrix in
BgB. If gn1 6= 0 then by multiplying g by appropriate elements of B on the left and right we can
erase all the entries in the first column and last row of g except gn1 itself, which we can normalize to 1.
Apply the induction hypothesis to the matrix obtained by removing the first column and last row of
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the result. This produces an (n− 1)× (n− 1) permutation matrix, and by reinserting the first column
and last row we reach the desired form.

If gn1 = 0 then it is trickier. Let gi1 6= 0 and gnj 6= 0 where i is chosen as large as possible and j as
small as possible. By multiplying by elements of B on the right and left, we can clear the first and jth
columns and the ith and last rows, except for the entries gi1 and gnj , which we can normalize to 1. We
can then apply the induction hypothesis to the matrix obtained by removing these rows and columns,
to create a permutation matrix. This completes the induction.

We now have to check that the double cosets BwB are disjoint. Let w1, w2 ∈W be in the same double
coset; it follows that

w1bw
−1

2 ∈ B

for some b ∈ B. Since w1bw
−1

2 is obtained by permuting rows and columns of b, if we change some of
the nonzero entries of b, perhaps making them zero, the result will still be upper triangular. Let us
replace b with the identity matrix; then we have

w1w
−1

2 ∈ B

⇒ w1w
−1

2 ∈W ∩ B = {In}

⇒ w1 = w2,

as desired.

2. Let D < G be the group of diagonal matrices. The result, ignoring disjointness of the union, follows
from the Bruhat decomposition because B = DN = ND and M = DW = WD. That the union is
disjoint can be deduced as before.

Theorem 3. With N , G, and π as above, the Gelfand-Graev representation iGNπ of GLn(Fq) is multiplicity-
free.

Proof. For each double coset NgN , either we will show that H vanishes on NgN , or we will construct
a representative of NgN of a special form. Then we will exhibit an involution of G that preserves these
representatives, and will conclude that H is commutative.

Fix g ∈ G, and consider the double coset NgN . By the lemma, NgN = NmN for some monomial matrix
m. Assume that H does not vanish on NmN , i.e. there is some ϕ : G → C, ϕ ∈ H, and some h ∈ NmN

such that ϕ(h) 6= 0.
The monomial matrix m has a single nonzero entry in each row. We first show that if mij and mi+1,k

are both nonzero entries of m, then k ≤ j + 1. Equivalently, m has the form

m =











D1

D2

...

Dp











where D1, D2, . . . , Dp are diagonal matrices.
The proof is by contradiction: assume that mij 6= 0 and mi+1,k 6= 0, with k > j + 1, and define x, y ∈ N

by

x = In +mijei,i+1,

y = In +mi+1,kejk .

(ejk refers to a matrix with a single 1 at position (j, k).) One can verify the following relations:

xm = m+mijmi+1,keik = my,

π(x) = ψ(mij) 6= 1,

π(y) = ψ(0) = 1.
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Any function ϕ : G→ C in the Hecke algebra H(G, π) must satisfy the compatibility property, leading to

π(x)ϕ(m) = ϕ(xm) = ϕ(my) = ϕ(m)π(y)

⇒ (π(x) − π(y))ϕ(m) = 0

⇒ ϕ(m) = 0

⇒ ϕ(NmN) = 0.

Thus, unless m is of the desired form, every function in H will vanish on the double coset NmN .
Next, we show that Dt is a scalar matrix, 1 ≤ t ≤ p, by a similar approach. It suffices to show that if mij

and mi+1,j+1 are nonzero then they are equal. Let x and y be as above with k = j + 1; we have as before

xm = my,

π(x) = ψ(mij),

π(y) = ψ(mi+1,j+1),

(π(x) − π(y))ϕ(m) = 0.

Since ϕ does not vanish on NmN , it cannot vanish on m, so

ψ(mi,j) = ψ(mi+1,j+1)

⇒ mi,j = mi+1,j+1,

since ψ is injective.
Now consider the involution ι : G → G taking a matrix g to the matrix obtained by reflecting g about

its back-diagonal. Explicitly, ι(g) = w(g′)w where w is the n × n back-identity matrix and g′ denotes the
transpose of g. Observe that ι fixes matrices m of the block form described above, where each Dt is a scalar
matrix. Since ι also leaves N and π invariant, we can apply Lemma 4 to construct ι̃ : H → H. We claim
that ι̃(ϕ) = ϕ for every ϕ ∈ H. Indeed, ϕ is determined by its values on the representatives m we have
found, and ι̃(ϕ) has the same values on these elements. Hence ι̃ reduces to the identity map, so that H is
commutative. The result now follows from Lemma 3.

4 GLn(Fq2) and GLn(Fq)

Let q be a prime power, n a positive integer, and G=GLn(Fq2). Let F : G → G be the Frobenius auto-
morphism of G, taking a matrix a = (aij) to ā = F (a) = (aq

ij). We will use both the bar and F notations,

but remember that in the algebraic closure of Fq it is not true that a = a! Let F*: G → G denote the
twisted Frobenius automorphism, given by

F*(a) = (a−1)′,

the transpose-inverse of F (a). Consider the sets

R = {r ∈ G | F (r) = r} = GLn(Fq),

U = {u ∈ G | F*(u) = u} = Un(Fq2),

H = {h ∈ G | F (h) = h′},

Pretending for a moment that G = GLn(C) and F is complex conjugation, R would consist of matrices with
real entries, U of unitary matrices, and H of Hermitian matrices. We will show that U is a Gelfand subgroup
of G. Remarkably, each of our results has an analogue where, roughly, F is replaced by F*—for example,
(G,R) is also a Gelfand pair—but we will not explore this duality.

We rely on an extension of a fundamental theorem of Lang that is often used to study finite groups of
Lie type. Let k be the algebraic closure of Fq , Mn(k) be the vector space of n × n matrices over k, and
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K = GLn(k). If p1, . . . , pm : Mn(k) → k are polynomials in the matrix entries, then we call their set of
common roots S = {x ∈ Mn(k) | p1(x) = · · · = pm(x) = 0} a closed set (in the Zariski topology). The set
of invertible matrices in such a closed set, A = S ∩K, might happen to form a subgroup of GLn(k); in this
situation we call A a linear algebraic group. A inherits the Zariski topology from Mn(k), so that we can
ask whether A is connected.

Theorem 4 (Steinberg’s Extension of Lang’s Theorem). If A is a connected linear algebraic group
and F : A → A is an endomorphism of algebraic groups with finitely many fixed points, then the function
ζ : A → A,

ζ(x) = xF (x)−1,

is surjective.

Each of F and F* has finitely many fixed points, and we will use Lang’s Theorem in both forms. We
begin our analysis of U with the following lemma.

Lemma 8. Two elements x,y ∈ G lie in the same U -U double coset if and only if x′x and y′y are conjugate
by an element of U .

Proof. For one direction, suppose that y ∈ UxU . Thus for some u, v ∈ U ,

y = vxu

⇒ y′ = u′x′v′

= u−1x′v−1

Combining these two equations, we obtain y′y = u−1x′xu, which expresses the desired result, that y′y and
x′x are conjugate by u ∈ U .

Now assume as hypothesis that y′y = u−1x′xu. Then, rearranging and using u−1 = u′,

1 = (xuy−1)′xuy−1

⇔ xuy−1 ∈ U

⇒ x ∈ UyU,

as desired.

Thus to each U -U double coset UxU we can associate a matrix x′x ∈ H , which is unique up to conjugacy
by elements of U . We will see shortly that this uniqueness can be strenghened to conjugacy in G.

Lemma 9. Hermitian matrices h1, h2 ∈ H are conjugate in G if and only if they are conjugate by an element
of U .

Proof. One direction is trivial. For the other direction, suppose that h1 = g−1h2g for some g ∈ G. Using
Hermiticity of h1 and h2, it follows that

h1 = g′h2g
′−1

⇒h2 = g′−1h1g
′

= (gg′)−1h2gg
′

⇒gg′ ∈ CG(h2) ⊂ CK(h2)

The centralizer CK(h2) is known to be a connected linear algebraic group for any h2 ∈ K. We will use F*
as our Frobenius map, so we should verify that F* restricts to CK(h2). Indeed, if x ∈ CK(h2) then

xh2 = h2x

⇔ F*(x)F*(h2) = F*(h2)F*(x)

⇔ F*(x)h−1

2 = h−1

2 F*(x)

⇔ h2 F*(x) = F*(x)h2

⇔ F*(x) ∈ CK(h2)
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Thus by Lang’s theorem, the map ζ(x) = xF*(x−1) of CK(h2) into itself is surjective. In particular, there
is a preimage c ∈ CK(h2) of gg′, so that

c F*(c−1) = gg′

= g F*(g−1)

⇒ c−1g = F*(c−1g)

⇔ c−1g ∈ U

We would like to conclude that c−1g ∈ U by definition, but we need to know first that c−1g ∈ G. However,

F 2(c−1g) = F*
2
(c−1g) = c−1g,

so that the entries of c−1g are fixed by F 2, hence they are in Fq2 , and c−1g ∈ G. Now, since c commutes
with h2, we obtain the desired relation,

h1 = g−1h2g

= g−1(ch2c
−1)g

= (c−1g)−1h2(c
−1g)

Therefore c−1g is an element of U that conjugates h2 to h1.

Theorem 5. U = Un(Fq) is a Gelfand subgroup of G = GLn(Fq2).

Proof. Let ι : G → G denote the map
ι(x) = x′

Since ι is a composition of the Frobenius automorphism and the transpose involution, and since ι2 = id,
we conclude that ι is an involution of G. By Theorem 1, it remains to show that ι preserves U -U double
cosets. Let UxU be an arbitrary double coset, x ∈ G. The Hermitian matrices corresponding to the double
cosets UxU and Uι(x)U are respectively x′x = ι(x)x and xι(x) which are conjugate by x ∈ G. By Lemma
9, xι(x) and ι(x)x are also conjugate by an element of U , thus Lemma 8 implies that UxU = Uι(x)U . We
have arrived at the conditions of Theorem 1.

Knowing that the irreducible constituents of iGU1 are distinct, we may now wish to describe them, or
at least count them. By Theorem 1, they are equal in number to the U -U double cosets in G. Lemma 8
describes an injection of the latter into the set of U -conjugacy classes of H , taking the double coset UxU to
the conjugacy class of x′x. The following lemma shows that this map is onto.

Lemma 10. For each h ∈ H, there is an x ∈ G such that x′x = h.

Proof. Lang’s Theorem applied to K and F* immediately gives us y ∈ K satisfying the related condition
yy′ = h. We have

yF (y)′ = h

⇒ F 2(y)F (y)′ = F (h)′ = h

Combining these equations gives y = F 2(y), so that y ∈ G. Now x = y′ ∈ G is the desired element because
xx = yy = h.

Next is another technical lemma relating conjugacy in different subgroups of K.

Lemma 11.

1. Two matrices r1, r1 ∈ R are conjugate in R if and only if they are conjugate in K.

2. Two matrices g1, g2 ∈ G are conjugate in G if and only if they are conjugate in K.
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Proof. The two parts are really the same statement for over different fields, because R = GLn(Fq) while
G = GLn(Fq2); we should only prove part 1, and only the reverse direction. The proof is very similar to that
of Lemma 9, so we will skip the computations. Let r1, r2 ∈ R satisfy r1 = x−1r2x for some x ∈ K. Note
that xx−1 ∈ CK(r2), and that the centralizer CK(r2) is a connected linear algebraic group on which F acts.
Applying Lang’s Theorem to CK(r2) and F we find c ∈ CK(r2) such that

cc−1 = xx−1 ∈ CK(r2).

Then c−1x ∈ R performs the required conjugation,

r1 = (c−1x)−1r2c
−1x.

Using Lemmas 8, 9, and 10, we can relate the number of U -U double cosets to the number of G-conjugacy
classes of H . In fact, these conjugacy classes of H have a simpler interpretation in terms of R.

Lemma 12. A conjugacy class of G contains an element of H if and only if it contains an element of R.
Thus, the number of U -U double cosets in G is equal to the number of conjugacy classes of R.

Proof. For the first claim, we must show that each element of H is conjugate to some element of R and vice
versa.

Let h ∈ H . Any matrix is conjugate in K to its transpose–this is not hard to verify if the matrix is in
Jordan canonical form–so that there is some y ∈ K such that

y−1hy = h′ = h.

We apply Lang’s theorem directly to K and F : it states that xx−1 = y should have a solution x ∈ K. Let
r = x−1hx; then

r = x−1h′x

= (x−1y)(y−1hy)(y−1x)

= x−1hx

= r

⇒ r ∈ R

Finally, by Lemma 11, r and h are conjugate not only in K but also in G.
Now suppose we are given r ∈ R. Again, let y ∈ K satisfy

y−1ry = r′.

This time we apply Lang’s theorem to K and F*, to obtain x ∈ K such that xx′ = y. As before, h = x−1rx

is Hermitian and is conjugate to r in G.
We know that U -U double cosets of G are in bijective correspondence with the conjugacy classes of G

that contain elements of H . As we have just seen, these are also the classes that contain elements of R.
Each such class is an entire conjugacy class of R, by Lemma 11, hence the last sentence in the statement of
the lemma follows.

F permutes the irreducible representations ofG in a natural way: If (ρ,W ) is an irreducible representation
of G, then (Fρ,W ) = (ρ,W ) is the irreducible representation

ρ(g)w = ρ(g)w,

for w ∈ W . It may happen that ρ ' ρ; we will show that this occurs precisely when ρ is in the decomposition
of iGU1. First, we state a result from character theory:
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Lemma 13 (Brauer Permutation Lemma). Let A be a group which acts on the set of irreducible
characters of G and on the set of conjugacy classes of G. Assume that χ(g) = (a · χ)(a · g) for each a ∈ A,
g ∈ G, and irreducible character χ. Then for each a ∈ A, the number of fixed irreducible characters of G is
equal to the number of fixed classes.

We will apply this to the cyclic group A = {1, a} of order 2, where a acts by the Frobenius map F . We
have defined the action of F on representations so that it obeys the consistency condition in this lemma.
Now it is easy to see that an irreducible character χρ of G is fixed by a if and only if ρ ' ρ, but determining
which conjugacy classes are fixed is more subtle.

Lemma 14. A conjugacy class of G is fixed by F if and only if it contains an element of R.

Proof. If r ∈ R and g = t−1rt is conjugate to r, then g is also conjugate to r = r because g = t
−1
rt. This

remark proves one direction of the claim. For the other direction, suppose that g ∈ G is conjugate to g, say
by y−1gy = g. By Lang’s theorem applied to K and F , there is an element x ∈ K such that xx−1 = y. Let
r = x−1gx; we proceed as in the first part of Lemma 12 to show that r ∈ R and that r and g lie in the same
conjugacy class of G.

Now Brauer’s Permutation Lemma tells us that the number of irreducible representations fixed by F is
equal to the number of conjugacy classes of G containing elements of R, that is, by Lemma 11, the number
of conjugacy classes of R.

Theorem 6. The irreducible subrepresentations of iGU1 are precisely the irreducible representations ρ of G
such that ρ ' ρ.

Proof. We have shown in the previous discussion and Lemma 12 that the two sets in the statement have
the same cardinality, namely, the number of conjugacy classes of R. Thus it is sufficient to prove that each
irreducible subrepresentation of iGU1 is equivalent to its image under F .

Let (ρ, V ) be an irreducible subrepresentation of iGU1. Recall from Exercise 6 on page 33 of the course
notes that ρ induces an irreducible representation of H = H(G, 1U ),

f · v =
1

|G|

∑

g∈G

f(g)ρ(g)v,

for vectors v in the one-dimensional subspace V U of U -fixed vectors. Replacing the index g in the sum with
g, we find that

f · v =
1

|G|

∑

g∈G

f(g)ρ(g)v

=
1

|G|

∑

g∈G

f(g)ρ(g)v

To justify the last equality, we claim that g and g lie in the same U -U double coset; because f ∈ H is
constant on such double cosets, this implies f(g) = f(g). According to Lemmas 8, 9, and 11, it is sufficient
to show that g′g and g′g are conjugate in K, which is true because they are transposes of each other.

Comparing the last two equations, we find that ρ and ρ must induce the same representation of H.
Strictly, we should check that V U is the set of U -fixed vectors in ρ, but this is straightforward because
U = F (U). It follows that ρ and ρ are equivalent representations of G.
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