MAT 240, Fall 2008
Solutions to Problem Set &

1. (a) Let A be a lower triangular matrix. We shall develop the determinant of A by the first

column:
a1 aiz - - Glp Qo ag3 - - Q2n
0 a22 “ e DY a2n 0 a33 PECEY “ e a.?)n
det| 0 0 ‘as3 -+ azn | = qgydet| 0 0 @ - am |40

0 0 -+ 0 apn 0 0O - 0 ann

a3z  asq a3n

0 Q44 A4n

= ajja9 det 0 0 as5 - asp +0
0 0 -+ 0 apn

= a110a22 - 0dnn-

Similar calculations can be done for an upper triangular matrix.

(b) Let the matrix A from part a) be such that A = [T']g. Then, to calculate the eigenvalues
of T', we need to find zeros of characteristic polynomial det(A — AI},).

air — A ag e a1y
O a/22 —_— A “ e “ e a2n
det(A—)\In) = det 0 0 agz —A - a3n = (all—)\)(CLQQ—)\) s (am—)\)
0 0 ‘e 0 app—A
Hence, eigenvalues of T' are a1, a92, ..., pn.

2. Here, we work with a standard basis of RS in which T has a matrix [T]. The characteristic
polynomial of a linear operator T is f(t) = det([T] —tlg) = (t —4)(t +1)3(t — 2)%. This means
that det([T] — tlg) = 0 if and only if t = —1, 2, or 4; otherwise, det([T] — tls) # 0.

A linear transformation is invertible 7% + 272 — 3T if and only if det([T® + 2T% — 3T)) # 0.
So,

det([T3 +27% — 3T]) = det([T)([T)?+ 2[T] — 3I))
= det([T]) det(([T] + 316)([T] — Is))
= det([T)) det([T) + 3I¢) det([T] — I¢)
# 0,

since here we have product of three non-zero factors of form det([T] — tIs) for t =0, —3, 1.



3. (a) In basis 3 = {23, 22, z,1}, we have

1 0 0 O
1 -3 1 1

=1 5 4 1 9
0 0 0 1
Hence,
1-—A 0 0 0
1 -3-A 1 1
det([T) — A\y) = det 9 1 1o 9
0 0 0 1—X
3-a 1 1
= 1-Ndet| -1 -—1-x -2
0 0 1-2A

-3-x 1
= u—Aﬁda( 1 _1_A>
= (1-X2*\+2)?

The A1 =1 and Ay = —2 are eigenvalues of T', both with multiplicity 2.

(b) Rank of T'— Al equals rank of matrix [T"— AIy, which is the number of linearly inde-
pendent row or columns of the matrix. We compute it by row and column reducing the
matrix, till we can say how many rows or columns are linearly independent.

0 0 0 0 0O 0 0 0
1 —4 1 1 1 4 1 1
[T—Alfv] = o 1 _9 _9 — R3:= R3+ 2Ry — 0 -9 0 0
0 0 0 0 0O 0 0 0

Since there are two linearly independent rows, rank(T — Iy) = 2.
Similarly, we determine that

3 0 0 0
1 -1 1 1
[T+ 2Iy] = 9 1 1 -9
0O 0 0 3

has rank 3.

(c) Eigenvalue A\; = 1 has multiplicity 2 = nullity(T —Iyv) = dim(V) —rank(T —Iy) = 4—2.
However, eigenvalue Ao = —2 has multiplicity 2 # nullity(T + 2Iyy) =4 — 3 = 1. By test
for diagonalization, 7' is not diagonalizable.

In other words, if T" is diagonalizable, we can find a basis of P3(R) consisting of eigen-
vectors of T. Eigenvectors with eigenvalue \;, i = 1,2, satisfy T'(v) = A\, i.e. (T —
Aily)(v) = 0. Therefore, linearly independent eigenvectors with eigenvalue \; form a
basis of N(T — \;). However, we know that nullity(T — Iy) = dim(V') — rank(T — Iy) =
4 — 2 = 2, so there are two linearly independent eigenvectors withe eigenvalue 1; and
nullity(T' +2Iy) = 4 —3 = 1, so there is only one linearly independent vector with eigen-
value —2. Since there are overall only three linearly independent eigenvectors, we cannot
form a basis of P3(R) in which T" would be diagonal. Therefore, T" is not diagonalizable.



()

()

5. (a)

(b)

As we mentioned, By = N(T — Iy) = {& = (a,b,c,d) | [T — Iy]Z = 0}. Hence, we need to
find solutions of system,

0 =0
a—4b+c+d = 0
—2a—b—2c—2d = 0
0 =0
So,
—c—d -1 -1
E = 0 ce,deR =<c 0 +d 0 tc,d eR
c 1 0
d 0 1

Hence, a basis of By is {—a3 + 2, —23 + 1}. We can check that T(—a3 + 2) = —2® + z
and T(—23 4+ 1) = —23 + 1.

The characteristic polynomial of T is f()\) = det([T]—\I4) = (A—1)%(\—2i)2. Therefore,
the eigenvalues of T' are Ay = 1 and Ay = 2i.

We need to determine rank of

2% 1 1 -1 11 1 -1
0 0 0 0 . 0 1-2 0 0
T=Ivl=| o 0 0 and [T=2ilv]= | o~ o7 4 g
1 2-2 2-2 -2+42i 1 2-2 2-2 -1

After some row and column reductions, we deduce that rank(T'—Iy) = rank([T'—Iy]) = 2
and rank(T — 2ily) = rank([T — 2ily]) = 3.

Multiplicity of eigenvalue A\; = 1 is 2 and nullity(T — Iy) = 4 — 2 = 2. But, eigenvalue
A2 = 2i has multiplicity 2 # nullity(T — 2ily) = 4 — 3 = 1. Therefore, T is not
diagonalizable.

We have that T4(f(z)) = T3(f(ix)) = T?(f(—x)) = T(f(—ix)) = f(x), for all f € P(C).
Hence, T* = I.

If A\ is an eigenvalue of T, then for some function f € P(C), f # 0, T(f) = Af. So,
f = T*f) = Mf, implying that (1 — A\*)f = 0. Since f # 0, \* = 1. Therefore, the
eigenvalues of T are 1, —1, ¢, and —1.

Basis of N(T — Iy) is {#** | k = 0,1,2,...}. Basis of N(T — ily) is {z**! | k =
0,1,2,...}. Basis of N(T + Iy) is {«***2 | k = 0,1,2,...}. Finally, basis of N(T + ily)
is {z%+3 | k=0,1,2,...}.

If nullity(T? — T) > 0, there there exists v € V, v # 0, such that (T? — T)(v) = 0.
Therefore, T o (T'— Iy)(v) = 0. If (T'— Iy )(v) = 0, then T'(v) = v, so v is an eigenvector
with eigenvalue 1. Otherwise, (T'—Iy)(v) = w, w # 0. Then, To (T —1Iy)(v) = T(w) = 0,
so w is an eigenvector with eigenvalue 0. Hence, at least one of 1 and 0 is an eigenvalue

of T.



(b) Let 8 be a basis of N(T'), and let v be a basis of N(T' — Iyy). By Theorem 5.8 (which
holds since V' is finite dimensional), 5 U+ is a linearly independent set which consists of
nullity(T)+nullity(T — Iy/) vectors. Moreover, we claim that 3Uy C N(T?—T). Indeed,
if # € 3, then T(x) = 0, so (T? — T)(z) = T?*(z) — T(x) = 0—0 = 0. Also, if z € 7,
then (T — Iy)(z) = 0, i.e. T(z) = Iy(z) = x. Therefore, (T? — T)(z) = T?(x) — T(x) =
T(x) —x =z —x = 0. Hence, nullity(T? —T) > |3 U~| = nullity(T) + nullity(T — Iy).

(c) If T is diagonalizable, there exists a basis 5 of V' in which [T]s is a diagonal matrix. Let

ag 0 - 0
0 ay -~ 0
Ds=1 . . .
0 0 - ayp

Then, nullity(T) = n — rank(T"). We know rank(T") equals number of linearly indepen-
dent rows, that is number of diagonal elements a;, i = 1,2, ..., n, such that a; # 0. That
is nullity(T) equals number of a;’s such that a; = 0. Since

ai—1 0 - 0
0 a—1 -~ 0

[T —Ivlpg = : N :
0 0 - ap—1

nullity(T — Iy) equals number of a;’s such that a; — 1 =0, i.e. a; = 1. Now,

a? —ay 0 0

0 0 a2 —ap

so nullity(T? —T) equals number of a;’s for which a? —a; = a;(a;—1) = 0, that is, number
of a;’s such that a; = 0 or a; = 1. Hence, nullity(T? —T) = nullity(T) + nullity(T — Iy/).
(d) Let 8 be a basis of N(T') and ~ be a basis of N(T' — I/). We have proved that SU~ is a
linearly independent set in N (72 — T). In order to prove it is a basis of N(T? — T, we
need to show that it generates N (T2 —T). That is, if € N(T?—T), we need to show that
x can be written as a linear combination of vectors in BU~. Let x = (z — T'(z)) + T'(z).
Then, (T — Iy)(T(z)) = (T? — T)(x) = 0, so T(z) € span(y). Also, T(z — T(z)) =
To(l,—T)(x)=—(T?-T)(z) =0, so x — T(x) € span(v). Therefore, x € span(3U~).

7. =: Assume that T is diagonalizable. Then in some basis (3,

ai; 0 -+ 0
0 ago 0
[T]s = :
0 0 Ann,

Hence, det([T]3) = ai1a22- - ann # 0 since T' is invertible. Therefore, a; # 0 for all i =



10.

11.

1,2,...,n. We can compute 771,

1
a0 0
[Tfl] 0 E 0
B8 = .
: 1
0 0 o

So, T~! is diagonal.

«: This direction is the same as above, just start from the assumption that 7! is diagonal-
izable.

=: Assume that T is diagonalizable, that is [T']3 = D is a diagonal matrix in a basis (.
Consider the new basis v defined by the change of basis matrix [U]z = [In]g (that is,
if v = {y1,92,...,Yn}, the coordinates of y; is basis 3 are given by " column of U =
[c1 c2 -+ ¢, ie. [yilg = ¢). Then in basis v, [UTU Y], = [In]g[UTU_l]g[In]?, =
[U)5e1alUL[T (U5 U] = [T)5 = D.

<: We can do the same in this direction. Given a basis 3 in which UTU ! is diagonalizable,
consider change of matrix given by [In]g = [U]g.

. If A and B are similar, there exists an invertible matrix C' such that A = C~'BC. We can

define a linear operator W given by [W]g = C. Then this problem reduced to proving that
T is diagonalizable if and only if W—'UW is diagonalizable. We proved this in the previous
problem.

Let § be a basis in which T is diagonalizable. Then,

a; 0 -+ 0
0 ago 0
[T]s = :
0 0 Ann,

In complex numbers, 22 — ¢ = 0 has two solutions for any ¢ € C. Hence, we can always find

b2 =ai,i=1,2,...,n. Let U € L(V) be defined by

(3

by 0 - 0

0 boo 0
[Uls = :

0 0 b

Then, U? = T since [U%)5 = [U]?g = [Tg.

Problems from section §5.1 :
#8.

(a) We will prove this by counter position.
=-: Assume that zero is an eigenvalue of T. Then there exists v € V, v # 0, such that
T(v) =0-v = 0. Hence, both 0 and v are mapped by T to 0. Hence, T' is not injective,
and so not invertible.



<: If T is not invertible, then T is not one-to-one. Otherwise, if T' is injective, by
dimension theorem, rank(T") = dim(V') — nullity(T) = dim(V'), so T is onto and hence
T is invertible. So, if T' is not one-to-one, then there exist v, vy € V such that vy # v9
and T'(v1) = T'(v2). So T(v; — va) = 0, which means that v; — v2 # 0 is an eigenvector
with eigenvalue 0.

(b) In previous part, we have proved that eigenvalue A # 0, since T is invertible. This means
that A\~! exists. For some v € V, v # 0, such that T'(v) = Av. So v = T~YT(v)) =
T~1(A(v)) = AT~ Y(v). Hence, T~1(v) = A~1v, i.e. A7 is an eigenvalue of T-!. We prove
the opposite direction similarly.

#15.

(a) We prove this by induction. Base step: T?(z) = T(T(z)) = T'(Az) = AT (z) = \2z.
Induction hypothesis: Assume that for any m € N, T (x) = \"z.
Induction step: Then T™ ! (z) = T(T™(z)) = T(A\™x) = \™T(z) = X",

417,

(a) Assume that X is an eigenvalue of T'. Then for some matrix 4 # 0, A = T(A) = \A.
That is,

ail a1y vt Gl Aa1r Aaiz - Aaig

. a2 a2 v Ap2 Aag1  Aaza -+ Aag,
A" = ) . = . . = MA.

Qln A2n " Opn AQpl Aap2 -+ Aapn

Since A # 0, there exists a;; # 0, and from above we see that a;; = Aa;; and a;; = Aaj;.
That is Qi5 = )\QCLU. Since Qjj 75 O, )\2 = 1, so A = =£1.

(b) Let A\ = 1. Then we need to find a basis for set of all matrices A such that A = A’
These are symmetric matrices, which look like

a1 a2 o Qip
al2 @ - Qop
A= ) . = Z a;jAij,
: - i<j
A1n A2n  *°° QApn

where A;; = (ciy) and ¢y = 1if k =i and [ = j, or kK = j and [ = ¢, otherwise ¢;; = 0.
Note that B8 = {A4;; |1 < j, i=1,2,...,n, j =1,2,...,n} is linearly independent and

dimension of this space is n + @

If Ay = —1, then we need to find a basis of set of all matrices A such that A = —A.
These matrices are

0 a2 v Qp
—aio 0 R I
A= : L. - Z aijBij,
: : : 1<J
—aip, —az, -+ 0
where B;; = (cx1), ¢ij = 1, ¢j; = —1, otherwise ¢ = 0. The set v = {Bj; | i < j, i =
1,2,...,n, j =1,2,...,n} is linearly independent generating set, and dimension of this

(n—l)n'

space if



(c) — (d) By Theorem 5.8, we know that 5 U~ is a linearly independent set having (n +
(nél)n) + (n;l)n = n? vectors. Hence, it is a basis of M, x,(R), and in this basis T is

diagonal.

492

(a) We have shown that T™(z) = A™z in problem #15. Let g(t) = apt™ + ap_1t" 1 +--- +
ait + ag. Then, g(7T) is a linear map and

9g(T)(x) = a,T"(x)+ an,lT”_l(x) +- +a1T(x) + agly(z)
= a Nz +ap N o4+ e T + apx
g(N)z.

Problems from section §5.2:

#8.

Since A2 is an eigenvalue of A, there exists at least one vector © € M, «1 such that A-z = Aoz
Hence, dim(E),) > 1. Since dim(Ey,) + dim(E),) < n in general, and here dim(E),) +
dim(E),) > n, we conclude that dim(E),) + dim(FE),) = n and hence A is diagonalizable.

412

(a) Let E(T), be the eigenspace of T' corresponding to eigenvalue A, and let E(T~1),-1 be
the eigenspace of T~! corresponding to A~!. We will prove that E(T)y C E(T 1)y
and E(T71)y-1 € E(T)x. Let x € E(T),. Then T(x) = Az, that is = T™YT(z)) =
AT~ Y(z), so T7Y(x) = Ao, so x € E(T~!)y-1. Similarly we prove another inclusion.
Hence, E(T)y = E(T™1),-1.

(b) Look at problem 7. in these solutions.



