MAT 240F - Problem Set 8

Not to be handed in.

Remark: With the exception of questions 5c) and 6d), the questions in this problem set can be used as review questions for the final exam.

- 1. A matrix $A = (a_{jk}) \in M_{n \times n}(F)$ is upper triangular if $a_{jk} = 0$ whenever j > k. (That is, all of the matrix entries below the diagonal are equal to 0.) The matrix A is lower triangular if $a_{jk} = 0$ whenever j < k.
 - a) Prove that the determinant of an upper or lower triangular matrix A is equal to the product $a_{11}a_{22}\cdots a_{nn}$ of the diagonal entries of A.
 - b) Suppose that $T \in \mathcal{L}(V)$, dim(V) = n, and there exists an ordered basis β for V such that $A = [T]_{\beta}$ is an upper triangular or lower triangular matrix. Prove that the eigenvalues of T are the diagonal entries $a_{11}, a_{22}, \ldots, a_{nn}$ of A.
- 2. Let $T \in \mathcal{L}(\mathbb{R}^6)$ be a linear transformation whose characteristic polynomial is equal to $f(t) = (t-4)(t+1)^3(t-2)^2$. Show that $T^3 + 2T^2 3T$ is invertible.
- 3. Let $T \in \mathcal{L}(P_3(\mathbb{R}))$ be defined by

$$T(ax^3 + bx^2 + cx + d) = ax^3 + (a - 3b + c + d)x^2 + (-2a - b - c - 2d)x + d, \qquad a, b, c, d \in \mathbb{R}.$$

- a) Find the characteristic polynomial and all eigenvalues of T.
- b) Compute rank $(T \lambda I_V)$ for each eigenvalue λ of T. (Here, I_V is the identity transformation: $I_V(f(x)) = f(x)$ for all $f(x) \in V = P_3(\mathbb{R})$.)
- c) Determine whether T is diagonalizable. Justify your answer.
- d) Find a basis for the eigenspace E_1 of T corresponding to the eigenvalue 1.
- 4. Let $T \in \mathcal{L}(M_{2 \times 2}(\mathbb{C}))$ be the linear transformation whose matrix $[T]_{\beta}$ relative to the ordered basis

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \right\}$$

is equal to

$$[T]_{\beta} = \begin{pmatrix} 1+2i & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 2-2i & 2-2i & -1+2i \end{pmatrix}.$$

- a) Find the characteristic polynomial and all eigenvalues of T.
- b) Compute rank $(T \lambda I_V)$ for each eigenvalue λ of T.
- c) Determine whether T is diagonalizable.

5. Let $V = P(\mathbb{C})$. Define $T \in \mathcal{L}(V)$ by $T(f(x)) = f(ix), f(x) \in V$.

- a) Prove that $T^4 = I_V$.
- b) Find all eigenvalues of T. (Be sure to explain why nullity $(T \lambda I_V) > 0$ for each $\lambda \in \mathbb{C}$ that you claim is an eigenvalue of T.)
- c) Find a basis for $N(T \lambda I_V)$ for each eigenvalue λ of T.

- 6. Suppose that $T \in \mathcal{L}(V)$.
 - a) Prove that if $\operatorname{nullity}(T^2 T) > 0$, then at least one of 0 and 1 is an eigenvalue of T. (Do not assume that V is finite-dimensional.)
 - For parts b)-d), assume that V is finite-dimensional.
 - b) Prove that $\operatorname{nullity}(T^2 T) \ge \operatorname{nullity}(T) + \operatorname{nullity}(T I_V)$. (*Hint*: Theorem 5.8 is useful here.)
 - c) For this part, assume that T is diagonalizable. Prove that $\operatorname{nullity}(T^2 T) = \operatorname{nullity}(T) + \operatorname{nullity}(T I_V)$.
 - d) Prove that $\operatorname{nullity}(T^2 T) = \operatorname{nullity}(T) + \operatorname{nullity}(T I_V)$ without assuming that T is diagonalizable. (*Hint*: Let β and γ be bases for N(T) and $N(T I_V)$, respectively. To prove the desired equality, it suffices to show that $\beta \cup \gamma$ is a basis for $N(T^2 T)$. The following may be useful: If $x \in V$, then x = (x T(x)) + T(x).)
- 7. Let $T \in \mathcal{L}(V)$, where V is a finite-dimensional vector space. Assume that T is invertible. Prove that T is diagonalizable if and only if T^{-1} is diagonalizable.
- 8. Let $T, U \in \mathcal{L}(V)$, where V is a finite-dimensional vector space. Assume that U is invertible. Prove that T is diagonalizable. if and only if $UTU^{-1} = U \circ T \circ U^{-1}$ is diagonalizable.
- 9. Let $U, T \in \mathcal{L}(V)$, where V is a finite-dimensional vector space. Let β be an ordered basis for $V, A = [T]_{\beta}$ and $B = [U]_{\beta}$. Assume that A and B are similar matrices. Prove that T is diagonalizable if and only if U is diagonalizable.
- 10. Let $T \in \mathcal{L}(V)$, where V is a finite-dimensional vector space over \mathbb{C} . Assume that T is diagonalizable. Prove that there exists a diagonalizable $U \in \mathcal{L}(V)$ such that $U^2 = T$.
- 11. Review problems from text: $\S5.1 \# 8$, 15, 17, 22 a); $\S5.2 \# 8$, 12.