
MAT240 Problem Set 7 Solutions

November 29, 2008

Note: There is often more than one solution to a given problem, and so do not interpret these solutions
as the only possible set. Also, only partial solutions are given for some problems when appropriate. Finally,
if you see any errors, you should let your TA know.

1. Let {v1, ..., vn} be a basis for the null space of T . Since U1 is an isomorphism, there exist w1, ..., wn ∈ W1

such that U1(wi) = vi for each i, and the set of wi form a linearly independent set. Since U1 is an
isomorphism, its null space is just {0}, and so the null space of TU1 is spanned by {w1, ..., wn}. Since
the null space of U2 is {0}, then the null space of U2TU1 is spanned by {w1, ..., wn} as well. Hence,
the nullities of T and U2TU1 agree.

2. (a) This is just question 1 with V1 = V2 = W1 = W2 = Fn. Fix a basis of Fn, and let A be the
matrix representation of T in this basis, U1 and U2 be C and C−1, respectively, and B be the
matrix representation of U2TU1 (that is, B = C−1AC). Then, A and B have the same nullities,
and hence by the dimension theorem, the same ranks.

(b) The composition of invertible matrices is invertible. If A is invertible, and B = C−1AC for some
invertible C, then B is such a composition. Similarly, A = CBC−1, and so is invertible if B is.

(c) If A is similar to B, then for some invertible C, A = CBC−1. Hence, A−1 = (CBC−1)−1 =
CB−1C−1, and so A−1 and B−1 are similar. For the converse, replace A and B in the argument
with A−1 and B−1, respectively.

(d) If A is similar to B, then for some invertible C, A = CBC−1. Hence,
Am = (CBC−1)m

= CBC−1CBC−1...CBC−1 (m times)
= CBmC−1.

(e) From part (d), we know that if A = CBC−1, then, A3 = CB3C−1, and so B3 = C−1A3C. Thus,
B3 = C−1(−A)C = −B.

3. (a) T−1(a + bx + cx2) = a + (a(1+i)
2 − b(i+1)

2 )x + (a
2 − b(i+1)

2 − c
2 )x2

(b) T−1

([
a b
c d

])
= −bx3 − cx2 − x + a + d To see this, identify both P3(R) and M2×2(R) with

R4. Then T has the following representation in the standard bases:



1 1 0 0
0 0 0 −1
0 0 −1 0
0 −1 0 0


 .

Calculate its inverse in the usual way to obtain



1 0 0 1
0 0 0 −1
0 0 −1 0
0 −1 0 0


 .
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Act this on a vector (a, b, c, d), and we get the vector corresponding to the polynomial above.
(c) T−1(a, b, c) = (a + b

2 − 3c
2 ,−a + b

2 + 3c
2 , −b

2 + c
2 )

4. (a) rank(T ) = 4

(b) rank(T ) = 2

(c) rank(T ) = 4. The matrix representation of T with respect to the standard bases is



4 −1 1 0
0 1 0 3
3 0 1 1
0 0 1 −1
0 1 1 2




.

Reduce this matrix to obtain 


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




.

5. Since A and B are invertible, they have full rank, and so does their reduced row echelon counterparts;
that is, they can be reduced via elementary matrices to the identity matrix. Let Ei and E′

j (i = 1, ..., k
and j = 1, ..., l) be elementary matrices such that

Ek...E1A = In = E′
l ...E

′
1B.

Since elementary matrices are invertible, and their inverses are also elementary, we have the following
chain of elementary matrices (and hence elementary row operations) taking A to B:

(E′
1)
−1...(E′

l)
−1Ek...E1A = B.

6. Since A and B have the same rank, they can both be reduced to the same matrix D, where the �rst
r = rank(A) entries on the main diagonal are 1, and the rest of the entries are 0. In particular, there
exist elementary matrices E1, ..., Ek ∈ Mm×m(F ) and E′

1, ..., E
′
l ∈ Mn×n(F ) such that

Ek...E1A = D = BE′
1...E

′
l .

Note that the elementary matrices acting on A correspond to elementary row operations, and those on
B to elementary column operations. Since elementary matrices are invertible, so are their compositions,
and so letting P = Ek...E1 and Q = (E′

1...E
′
l)
−1, we have PAQ = B.

7. (a) Let x ∈ R(T + U). Then there is some y ∈ V such that x = T (y) + U(y). Since T (y) ∈ R(T ) and
U(y) ∈ R(U), x = T (y) + U(y) ∈ R(T ) + R(U).

(b) Note that if X and Y are subspaces of W , then dim(X + Y ) = dim(X) + dim(Y )− dim(X ∩ Y ).
Thus, from part (a) we have dim(R(T + U)) ≤ dim(R(T ) + R(U)) and from the note we have
dim(R(T ) + R(U)) ≤ dim(R(T )) + dim(R(U)).

(c) Replace T and U above with matrices A and B respectively.

8. Let E1, ..., Ek be n × n elementary matrices such that AE1...Ek = D where D is the reduced row
echelon form of A (the main diagonal being all 1's, and the rest of the entries 0). Now, multiply on
the right by Dt (the transpose of D). Since DDt = Im, we are done. B = E1...EkDt.
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