MAT 240F - Problem Set 7

Due Thursday, November 20th

Questions 1, 3 b), 4 c) and 5 will be marked.

- 1. Let V_1, V_2, W_1 and W_2 be vector spaces over a field F. Let $T \in \mathcal{L}(V_1, V_2), U_1 \in \mathcal{L}(W_1, V_1)$ and $U_2 \in \mathcal{L}(V_2, W_2)$. Suppose that $\operatorname{nullity}(T)$ is finite and U_1 and U_2 are isomorphisms. (For full marks, do not assume that the vector spaces V_j and W_j are finite-dimensional.) Prove that $\operatorname{nullity}(U_2TU_1) = \operatorname{nullity}(T)$.
- 2. Let F be a field and let n be an integer such that $n \ge 2$. Suppose that $A, B \in M_{n \times n}(F)$. We say that A is similar to B if there exists an invertible matrix $C \in M_{n \times n}(F)$ such that $A = C^{-1}BC$.
 - a) Show that if A is similar to B, then rank(A) = rank(B).
 - b) Show that if A is similar to B, then A is invertible if and only if B is invertible.
 - c) Suppose that A and B are invertible. Show that A is similar to B if and only if A^{-1} is similar to B^{-1} .
 - d) Show that if A is similar to B, then A^m is similar to B^m for all positive integers m.
 - d) Show that if A is similar to B and $A^3 = -A$, then $B^3 = -B$.
- 3. For each $T \in \mathcal{L}(V, W)$ as defined below, find $T^{-1}(y)$ for each vector $y \in W$.
 - a) Let $V = W = P_2(\mathbb{C})$ and let $(Tf)(x) = f(ix) f(x-1) + f(0), f \in P_2(\mathbb{C})$.
 - b) Let $V = P_3(\mathbb{R})$ and $W = M_{2 \times 2}(\mathbb{R})$, and let

$$T(ax^3 + bx^2 + cx + d) = \begin{pmatrix} d+c & -a \\ -b & -c \end{pmatrix}, \qquad a, b, c, d \in \mathbb{R}$$

c) Let $V = W = \mathbb{F}_5^3$ and

 $T(a, b, c) = ((2a + b + 3c) \mod 5, (a + b) \mod 5, (a + b + 2c) \mod 5), \qquad a, b, c \in \mathbb{F}_5.$

- 4. Compute $\operatorname{rank}(T)$ for each linear transformation T. Explain your answer fully.
 - a) Let $T: M_{2\times 2}(\mathbb{C}) \to \mathbb{C}^4$ be defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+ic+d, 2ia-b+id, a-3c, b-(1+3i)c+(1-i)d), a, b, c \text{ and } d \in \mathbb{C}.$
 - b) Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be defined by $T(a + bx + cx^2) = a + 2b + c + (a + 3b + 4c)x + (2a + 3b c)x^2$, $a, b, c \in \mathbb{R}$.
 - c) Let $T : \mathbb{R}^4 \to \mathbb{R}^5$ be defined by T(a, b, c, d) = (4a b + c, b + 3d, 3a + c + d, c d, b + c + 2d), $a, b, c, d \in \mathbb{R}$.
- 5. Suppose that $A, B \in M_{n \times n}(F)$ are invertible. Prove that it is possible to transform A into B using elementary row operations. (Note: Elementary column operations should not be used.)
- 6. Suppose that $A, B \in M_{m \times n}(F)$, and $\operatorname{rank}(A) = \operatorname{rank}(B)$. Prove that there exist invertible matrices $P \in M_{m \times m}(F)$ and $Q \in M_{n \times n}(F)$ such that B = PAQ.
- 7. #14, §3.2.
- 8. # 21, §3.2.