
MAT 240, Fall 2008
Solutions to Problem Set 6

1.

At =
(

2 −3 4
5 1 2

)
AtB =

(
23 19 0
26 −1 10

)
BCt =

 12
16
29


CB =

(
27 7 9

)
CA =

(
20 26

)
2. (a) Assume that UT is one-to-one. If for some v1, v2 ∈ V , T (v1) = T (v2), then

U(T (v1)) = U(T (v2))
⇒ UT (v1) = UT (v2)

⇒ v1 = v2 (since UT is one-to-one).

Therefore, T is one-to-one. However, U does not need to be one-to-one. Indeed, consider
the following example. Let V = R2, W = R3 and Z = R2, and let T and U be given by
the image of standard basis vectors,

T

((
1
0

))
=

 1
0
0

 , T

((
0
1

))
=

 0
1
0



U

 1
0
0

 =
(

1
0

)
, U

 0
1
0

 =
(

0
1

)
, U

 0
0
1

 =
(

0
1

)
.

Then, UT is the identity map, so it is one-to-one. However, U is not one-to-one.

(b) Assume that UT is onto, and let z ∈ Z. Then, there exists v ∈ V such that UT (v) = z,
i.e. U(T (v)) = z. Let w = T (v) ∈ W . Then, we have that U(w) = z, so U is onto.
However, T does not need to be onto. Look at the example in part a).

3. (a) ⇒: Assume that T 2 = −T , and let x ∈ R(T ). Then, there exists v ∈ V such that
x = T (v). So T (x) = T (T (v)) = T 2(v) = −T (v) = −x.
⇐: Assume that for all x ∈ R(T ), T (x) = −x. Let v ∈ V . Then, x = T (v) ∈ R(T ), so
T 2(v) = T (x) = −x = −T (v).

(b) Assume that T 2 = −T . Let x ∈ N(T ) ∩ R(T ). Since x ∈ R(T ), there exists v ∈ V such
that T (v) = x. Also, x ∈ N(T ), implying that T (x) = 0, ie. 0 = T (x) = T (T (v)) =
T 2(v) = −T (v) = −x. Hence, x = 0.
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(c) ⇒: Assume that dim(V ) = n and T 2 = −T . Let {x1, ..., xm} be a basis of N(T ). Let
{y1, ...., yr} be a basis of R(T ) (note, r = rank(T )). By Dimension Theorem, n = r+m.
Since R(T ) ∩ N(T ) = {0} by part (b), we have that {y1, ...., yr, x1, ..., xm} is a linearly
independent set (proved in previous homeworks) of order n, so it is a basis of V . Moreover,
by part (a), T (yi) = −yi for all i = 1, . . . , r. Therefore,

[T ]β =
(
−Ir 0

0 0

)
.

Second method which does not use part a) and b):
We have that N(T ) is finite dimensional vector space with some basis {x1, x2, . . . , xm}. By
Dimension Theorem, we know that rank(T ) = dim(V )−nullity(T ), so r = n−m. We can
extend set {x1, x2, . . . , xm} to an ordered basis of V , {y1, y2, . . . , yr, x1, x2, . . . , xm}. Now,
R(T ) = span(T (β)) = span({T (y1), . . . , T (yr), 0, 0, . . . , 0}) = span({T (y1), . . . , T (yr)}).
Since rank(T ) = r, vectors T (y1), . . . , T (yr) are linearly independent. We claim that
β = {T (y1), T (y2), . . . , T (yr), x1, x2, . . . , xm} is a linearly independent set in V . Indeed,
let ai ∈ F , bj ∈ F , i = 1, . . . , r, j = 1, . . . ,m be such that

a1T (y1) + · · ·+ arT (yr) + b1x1 + · · ·+ bmxm = 0⇒
T (T (a1y1 + · · ·+ aryr) + b1x1 + · · ·+ bmxm) = T (0) = 0⇒

T 2(a1y1 + · · ·+ aryr) + b1T (x1) + · · ·+ bmT (xm) = 0⇒
−T (a1y1 + · · ·+ aryr) = 0⇒

−a1T (y1)− · · · − arT (yr) = 0⇒
a1 = · · · = ar = 0⇒

b1x1 + · · ·+ bmxm = 0⇒
b1 = · · · = bm = 0.

Also, |β| = r + m = n, so β is a basis of V . Moreover, since T 2 = −T , so T (T (yi)) =
T 2(yi) = −T (y1), we have that

[T ]β =
(
−Ir 0

0 0

)
.

Note, r = rank(T ).
⇐: Assume that there exists a finite basis β of V such that

[T ]β =
(
−Ir 0

0 0

)
.

Then,

[T 2]β = [T ]2β =
(
Ir 0
0 0

)
= −[T ]β.

Hence, T 2 = −T . Moreover, rank(T ) = rank([T ]) = r.

4. (a) Transformation T is invertible if and only if it is one-to-one and onto (that is bijective).
To check if T is one-to-one, let

T

(
a b
c d

)
=
(

5a 4b+ c
4c+ b 5d

)
=
(

0 0
0 0

)
.
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We get that a = b = c = d = 0, so T is one-to-one. This also implied that T is onto,
since by dimension theorem rank(T ) = 4− 0 = dim(M2×2(R). Since T is a bijection, it
is invertible.

Now, we will try to find a preimage of a matrix
(
a′ b′

c′ d′

)
, ie.

T

(
a b
c d

)
=
(

5a 4b+ c
4c+ b 5d

)
=
(
a′ b′

c′ d′

)
.

We get that (
a b
c d

)
=
(

a′

5
4b′−c′

15
4c′−b′

15
d′

5

)
.

Let

T−1

(
a b
c d

)
=
(

a
5

4b−c
15

4c−b
15

d
5

)
.

We easily check that

T

(
T−1

(
a b
c d

))
= T

(
a
5

4b−c
15

4c−b
15

d
5

)
=
(

5a5
16b−4c+4c−b

15
16c−4b+4b−c

15 5d5

)
=
(
a b
c d

)
.

Similarly, T−1(T (A)) = A.

(b) Since T
(

0 0
0 1

)
= 0, T is not one-to-one, and hence it is not invertible.

(c) Let g(x) ∈ P (C). If there exists f ∈ P (C) such that T (f) = g, then f(2x + i) = g(x).
Let t = 2x+ i, so x = t−i

2 . Then, f(t) = g( t−i2 ). Let T−1(f(x)) = f( t−i2 ). We can easily
check that T ◦ T−1(f(x)) = T−1 ◦ T (f(x)) = f(x).

(d) Let U ′ ∈ L(V1, V2). If there exists U ∈ L(V1, V2), such that T (U) = U ′, then T2UT1 = U ′,
so U = T−1

2 U ′T−1
1 . Let T−1(U) = T−1

2 U ′T−1
1 . We can check that T ◦ T−1(U) = T−1 ◦

T (U) = U .

5. For the parts of this question in which the subspaces are finite dimensional, it is enough to
check if there dimensions are equal. If they are, subspaces are isomorphic. Otherwise, they
are not isomorphic.

(a) To determine dim(V ), let A ∈ M3×3(C), A =

 a b c
d e f
g h j

 . Then, if A ∈ V , we have

that

A =

 a b c
d e f
g h j

 =

 a d g
b e h
c f j

 = At ⇒

d = b, g = c, h = f ⇒

A =

 a b c
b e f
c f j

 = a

 1 0 0
0 0 0
0 0 0

+ b

 0 1 0
1 0 0
0 0 0

+ c

 0 0 1
0 0 0
1 0 0

+

+ e

 0 0 0
0 1 0
0 0 0

+ f

 0 0 0
0 0 1
0 1 0

+ j

 0 0 0
0 0 0
0 0 1
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Hence, dim(V ) = 6.

Similarly, we can determine that if A ∈W , A =

 0 b c
−b 0 f
−c −f 0

, so dim(W ) = 3. Since

dim(V ) = 6 6= 3 = dim(W ), V and W are not isomorphic.

(b) We know that dim(W ) = 4. If f(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 ∈ V , then

f(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 =
= −a5x

5 − a4x
4 − a3x

3 − a2x
2 − a1x− a0 = −f(x)⇒

a5 = a3 = a1 = 0.

So, f(x) = a4x
4 + a2x

2 + a0, and dim(V ) = 3. Therefore, V is not isomorphic to W .

(c) Since these are infinite dimensional spaces, we need to construct an isomorphism between
them. If f(x) ∈W , then f(x) = anx

n + an−1x
n−1 + · · ·+ a1x− (an + an−1 + · · ·+ a1) =

an(xn−1)+an−1(xn−1−1)+· · ·+a1(x−1). Therefore, W = span({xn−1 | n ∈ N, n 6= 0}).
Let T : V →W be T (anxn + an−1x

n−1 + · · ·+ a1x+ a0) = an(xn+1− 1) + an−1(xn− 1) +
· · ·+a0(x−1) and T−1 : W → V be T−1(an(xn−1)+an−1(xn−1−1)+ · · ·+a1(x−1)) =
anx

n−1 +an−1x
n−2 + · · ·+a1. Check that T ◦T−1(f) = f , for f ∈W , and T−1 ◦T (g) = g,

for g ∈ V . Hence, V and W are isomorphic.

(d) We have that dim(V ) = dim(P2(C)) · dim(M2×2(C) = 3 · 4 = 12. Similarly, dim(W ) =
6 · 2 = 12. Since dim(V ) = dim(W ), V is isomorphic to W .

(e) Let Φβ : L(V ) → M3×3(F ) where Φβ(T ) = [T ]β. We know that Φβ is invertible. There-

fore, dim(V ) = dim({[T ]β ∈ M3×3(F ) | [T ]β is diagonal }). Then, [T ]β =

 a 0 0
0 b 0
0 0 c


for some a, b, c ∈ F . That is,

[T ]β =

 a 0 0
0 b 0
0 0 c

 = a

 1 0 0
0 0 0
0 0 0

+ b

 0 0 0
0 1 0
0 0 0

+ c

 0 0 0
0 0 0
0 0 1

 .

Hence, dim(V ) = 3.
On the other hand, if T ∈W , then for some a, b, c ∈ F ,

[T ]β =

 a a a
b b b
c c c

 = a

 1 1 1
0 0 0
0 0 0

+ b

 0 0 0
1 1 1
0 0 0

+ c

 0 0 0
0 0 0
1 1 1

 .

Therefore, dim(W ) = 3. Since dim(V ) = dim(W ), V is isomorphic with W .

6. (a) We shall prove this statement by contradiction. Assume that both T + IV and T − IV
are invertible. Then, we have that (T + IV ) ◦ (T − IV ) = T 2 − T ◦ IV + IV ◦ T − I2

V =
T 2 − T + T − IV = T 2 − IV = 0, which is the zero map, and it is not invertible.
However, in general, a composition of invertible maps is invertible. Indeed, if f and g
are invertible maps, then (f ◦ g) ◦ (g−1 ◦ f−1) = f ◦ (g ◦ g−1) ◦ f−1 = f ◦ f−1 = id and
(g−1 ◦ f−1) ◦ (f ◦ g) = g−1 ◦ (f−1 ◦ f) ◦ g = g−1 ◦ g = id. Hence, we get a contradiction.
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(b) Let dim(V ) = n, and let β be a basis of V . Then let T be a map given by the following
n× n matrix:

[T ]β =



0 0 · · · 0 1
0 0 1 0
· 1 0 0
· · ·
· · ·
0 · ·
1 0 · · · 0 0


.

That is, [T ]β = (aij) where aij = 1 if i+j = n+1, otherwise aij = 0, for all i = 1, 2, . . . , n
and j = 1, 2, . . . , n. Then, [T 2]β = [T ]2β = In, so T 2 = IV .
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