
MAT240 Problem Set 5 Solutions

November 18, 2008

Note: There is often more than one solution to a given problem, and so do not interpret these solutions
as the only possible set. Also, only partial solutions are given for some problems when appropriate. Finally,
if you see any errors, you should let your TA know.

1. (a) Let f be the zero polynomial. Then, T (f)(x) = xf(x2 + 1) + f(1)(x3 − 1) = 0 + 0 = 0. If
f, g ∈ P (F ), then, for any x ∈ F ,

T (f + g)(x) = x(f + g)(x2 + 1) + (f + g)(1)(x3 − 1)

= xf(x2 + 1) + f(1)(x3 − 1) + xg(x2 + 1) + g(1)(x3 − 1)
= T (f)(x) + T (g)(x).

Finally, if c ∈ F , then,

T (cf)(x) = x(cf)(x2 + 1) + (cf)(1)(x3 − 1)

= c(xf(x2 + 1) + f(1)(x3 − 1)).

Thus, T is a linear transformation.
(b) This is a linear transformation. The only part that is not clear is checking whether T (A + B) =

T (A) + T (B), but the fact that (A + B)t = At + Bt is all that is needed.
(c) Let f(x) = x2. Then, T (2f)(x) = (2f(x))2 = 4(f(x))2 6= 2(f(x))2 = 2T (f)(x), and so T is not a

linear transformation.
(d) This is a linear transformation.
(e) This is a linear transformation. The proof is similar to that of (d).
(f) Consider the vector 2x1 ∈ F 3. Then, T (2x1) = (4, 0) 6= (2, 0) = 2(1, 0) = 2T (x1). Hence, T is not

a linear transformation.

2. The set
{[

0 1
−1 0

]
,

[
1 0
0 1

]
,

[
1 1
0 0

]
,

[
0 0
0 1

]}
is a basis for M2×2(R). In particular, any matrix

[
a b
c d

]
∈ M2×2(R) can be expressed as

[
a b
c d

]
= −c

[
0 1
−1 0

]
+ (a− b− c)

[
1 0
0 1

]
+ (b + c)

[
1 1
0 0

]
+ (−a + b + c + d)

[
0 0
0 1

]
.
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So,

T

([
a b
c d

])
= T

(
−c

[
0 1
−1 0

]
+ (a− b− c)

[
1 0
0 1

]
+ (b + c)

[
1 1
0 0

]
+ (−a + b + c + d)

[
0 0
0 1

])

= −cT

([
0 1
−1 0

])
+ (a− b− c)T

([
1 0
0 1

])

+ (b + c)T
([

1 1
0 0

])
+ (−a + b + c + d)T

([
0 0
0 1

])

= −c(x2 − x) + (a− b− c)(3x) + (b + c)(x2 + 4) + (−a + b + c + d)(−x2)

= (a− c− d)x2 + (3a− 3b− 2c)x + 4(b + c).

3. (a) T is linear in each component, and so is a linear transformation.
(b) dim(R(T )) = 3, and so R(T ) = C3. Thus, there are no conditions on (a, b, c) ∈ C3 for this to be in

the range. A basis of R(T ) is {T (1, 0, 0), T (0, 1, 0), T (0, 0, 1)} = {(1, 2,−1), (−1, 1,−2), (2, 0, 2)}.
(c) For T (a, b, c) = (0, 0, 0), we must have (a, b, c) = (0, 0, 0), which is immediate from the dimension

theorem and part (b). Thus, the empty set serves as the basis for N(T ).

4. (a) A basis for R(T ) is {[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
.

A basis for N(T ) is {[
0 1 0
1 0 0

]
,

[
0 0 0
0 1 0

]
,

[
0 0 0
0 0 1

]}
.

(b) Since any function of the form f(x) = cx for some constant c ∈ R completely describes any
element of N(T ), a basis for N(T ) is {x}. The range can be shown to be (x2 − 1)(x − 1)P (R),
which is spanned by {(x2 − 1)(x− 1), (x2 − 1)(x− 1)x, (x2 − 1)(x− 1)x2, ...}.

5. (a) 0 ∈ V1 and T is a linear transformation, and so T (0) = 0 ∈ W1. If u, v ∈ W1, then there exist
u′, v′ ∈ V1 such that T (u′) = u and T (v′) = v. Now, u′ + v′ ∈ V1, and so T (u′ + v′) ∈ W1. But,
T (u′+v′) = T (u′)+T (v′) = u+v. Finally, let c ∈ F and v ∈ W1. Then, again, there is some v′ ∈ V1

such that T (v′) = v. Then, since cv′ ∈ V1 we have T (cv′) ∈ W1. But, T (cv′) = cT (v′) = cv.
(b) Let T1 be the restriction of T to V1, that is, T1 : V1 → W1 such that T1(x) = T (x) for all

x ∈ V1. Then T1 is a linear transformation on V1, and so we have from the dimension theorem
the following:

dim(V1) = dim(N(T1)) + dim(W1),

recalling that W1 is de�ned to be R(T1). So, the problem is reduced to N(T1) = {0} if and only
if V1 ∩N(T ) = {0}. Thus, in this light, assume N(T1) = 0. This means that if x ∈ V1 such that
T1(x) = 0, then x = 0. Since T1(x) = T (x), this is exactly saying that the only element of the
null space of T in V1 is 0, or V1 ∩ N(T ) = {0}. Conversely, if V1 ∩ N(T ) = {0}, then the only
x ∈ V1 such that 0 = T (x) = T1(x) is x = 0. Thus, N(T1) = {0}.

6. (a) Assume that T takes linearly independent sets to linearly independent sets. Then, if {v1, ..., vn}
is any �nite linearly independent set, {T (v1), ..., T (vn)} is also a �nite linearly independent set.
So, let x, y ∈ V such that T (x) = T (y). Let {v1, ..., vn} be a �nite linearly independent subset of
V such that x = a1v1 + ... + anvn and y = b1v1 + ... + bnvn (for some ai, bi ∈ F). Then,

T (a1v1 + ... + anvn) = T (b1v1 + ... + bnvn).
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Then,

0 = T (a1v1 + ... + anvn)− T (b1v1 + ... + bnvn)
= T ((a1 − b1)v1 + ... + (an − bn)vn)
= (a1 − b1)T (v1) + ... + (an − bn)T (vn).

Since {T (v1), ..., T (vn)} is linearly independent, ai − bi = 0 for each i. Thus, x = y. Conversely,
if T is one-to-one, and T (x) = 0, then x = 0. So, if x = a1v1 + ... + anvn where {v1, ..., vn} is a
linearly independent set, then 0 = T (x) = a1T (v1)+...+anT (vn) implies that a1v1+...+anvn = 0,
in which case 0 = a1 = ... = an, and so {T (v1), ..., T (vn)} is linearly independent.

(b) If S is linearly independent, then so is T (S) by part (a). Conversely, if {s1, ..., sn} is any �nite
subset of S then

0 = a1T (s1) + ... + anT (sn)

implies that a1 = ... = an. By the linearity of T , this implies that {s1, .., sn} is linearly indepen-
dent, and so S is linearly independent.

(c) The fact that T is onto means that R(T ) = W . So, using the dimension theorem, it su�ces to show
that N(T ) = {0}. Assume not. Then, there is some x ∈ V such that x 6= 0 and T (x) = T (0) = 0.
But this contradicts T being one-to-one.

7. Assume R(T ) ∩ N(T ) = {0}. Let x ∈ V such that T (T (x)) = 0. Then T (x) ∈ N(T ). But clearly
T (x) ∈ R(T ) and so T (x) ∈ R(T ) ∩ N(T ). Thus, by our assumption, T (x) = 0. Conversely, assume
T (T (x)) = 0 implies that T (x) = 0, and let y ∈ R(T ) ∩ N(T ). Then, since y ∈ R(T ), there is some
x ∈ V such that y = T (x). Since y ∈ N(T ), T (y) = 0, which is the same as saying T (T (x)) = 0. By
our assumption, 0 = T (x) = y.

8. (a) Take T (x1, x2, x3, x4, x5) = (x1 + x2 + x3, x1 − x2 + x4,−2x1 − x3 − x4, 2x2 − x3 + x4, x5). Then,
R(T ) is what we wanted, and as for the null space, setting (x1 +x2 +x3, x1−x2 +x4,−2x1−x3−
x4, 2x2 − x3 + x4, x5) = (0, 0, 0, 0, 0) we can see that any element of the null space must satisfy
the properties required of elements in R(T ).

(b) Assume that there is a linear transformation T : V → V such that N(T ) ⊆ R(T ). Then,

dim(V ) = dim(N(T )) + dim(R(T )) (dimension theorem)
≤ dim(R(T )) + dim(R(T )).

Conversely, assume W is a subspace of V such that dim(W ) ≥ dim(V )/2. Let {v1, ..., vm} be a
basis for W (where m = dim(W )), and let {v1, ..., vn} be an extension of this basis to a basis
of V (where dim(V ) = n). Then, consider the transformation de�ned by T (vk) = vk−n+m for
k = n−m + 1, ..., n, and T (vl) = 0 for l = 1, ..., n−m. Extend this linearly over all �nite linear
combinations, and we obtain a linear map T : V → V . Then, N(T ) = span({v1, ..., vn−m}) and
R(T ) = span({v1, ..., vm}). Thus, we have N(T ) ⊆ R(T ) and R(T ) = W .

9. (a) This is both one-to-one and onto. (This in fact is the identity transformation on P (R).)
(b) This is one-to-one but not onto: all elements of the range must be divisible by (x + 1).

10. (a) Let T (x) = a1y1 + ... + aryr. Choose ci = −ai for i = 1, ..., r. Then,

T (x + c1z1 + ... + crzr) = T (x) + c1y1 + ... + cryr

= a1y1 + ... + aryr − a1y1 − ...− aryr

= 0.

3



(b) Consider x as described in part (a). What we showed is that x can be expressed as a sum of a
vector in N(T ) and a vector in span({z1, ..., zr}). Since N(T ) = span({x1, ..., xd}), we have that
x ∈ span({x1, ..., xd, z1, ..., zr}). Since x is any vector in V , we have that V is spanned by d + r
vectors, and so dim(V ) ≤ d + r.

11. (a) We can identify the vector space P2(C) with R3 and M2×2(C) with R4. We get the following:

T (1) =
[

3 i
1 0

]
, T (x− 1) =

[
3(−i− 1) −i

i− 1 1

]
, T (x2 − ix) =

[ −6 0
0 −i

]
.

Converting these results to the basis γ, we have:

[T (1)]γ =
[

(i− 1)/2 (i + 1)/2
3 0

]
, [T (x−1)]γ =

[
1/2− i −1/2
−3(i + 1) 1

]
, [T (x2−ix)]γ =

[
0 0
−6 −i

]
.

Thus, we can conclude that

[T ]γβ =




(i− 1)/2 1/2− i 0
(i + 1)/2 −1/2 0

3 −3(i + 1) −6
0 1 −i


 .

(b) T (a, b, c) = (a− b, 3a + b− c,−2a + c).

12. T (x2 + x + i) = (i/2, i,−i/2, 2− i).

13.

[T ]β =




1 1 0 ... 0 0

0 1 1
. . . 0 0

0 0 1
. . . 0 0

...
... ...

. . . . . . ...
0 0 0 ... 1 1
0 0 0 ... 0 1




14. Let a, b ∈ F such that aT + bU = 0. That is, for any v ∈ V , aT (v) + bU(v) = 0. Then, since T
and U are linear, T (av) = U(−bv). But then, we have aT (v),−bU(v) ∈ R(T ) ∩ R(U). But since
R(T ) ∩ R(U) = {0}, then aT (v) = −bU(v) = 0. Since v is arbitrary and T, U are both nonzero linear
transformations, we must have that a = b = 0, and so T, U are linearly independent in L(V, W ).

15. (a) Let γ′ = {w1, ..., wr} be a basis for R(T ) ⊆ W , and let γ = {w1, ..., wn} be a basis of W that
extends γ′. Choose v1, ..., vr ∈ V such that T (vi) = wi for each i = 1, ..., r. Then it is easy to
show that {v1, ..., vr} is linearly independent, and extending this set to a basis {v1, ..., vn} of V ,
which we shall denote β. Then, T (vi) = 0 for each i = r + 1, ..., n, and the matrix representation
[T ]γβ of T is the diagonal matrix desired.

(b) The number of nonzero entries in A is r, which is the dimension of R(T ), which in turn is the
rank of T .
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