MAT 240, Fall 2008
Solutions to Problem Set 2

1. In this problem we need to determine if given V is a field.

(a)

IfV ={(a1,az2)|a1,as € R}, F =R, (a1,a2)+ (b1 +b2) = (a1 +b1,a2+b2) and c(ay, az) =
(cap+c—1,cas+c—1), then V is not a field since axioms (V.S7) and (V' S8) fail. Indeed,
c((a1,a2) + (b1,b2)) = c(a1 + by, a2 + b2) = (c(a; +b1) + ¢ — 1,¢c(az + b2) + ¢ — 1), but
c(ay,az)+c(bi, b)) = (c(ar+b1)+2c—1,2(az+b2)+2¢—2). If we take, for example, ¢ = 1,
a; = az = by = by = 1, we get that c¢((a1,a2) + (b1,b2)) = (5,5) # (6,6) = c(a1,a2) +
¢(b1,b2)), so the property (V.S7) does not hold. Moreover, (c+d)(a1,as) = (ca;+da; +c+
d—1, cagdag+c+d—1) and c¢(ay, a2)+d(a1,a2) = (cay +day +c+d—2, cay+dag+c+d—2),
which are not equal if we take, for example, c=d =1, a1 = a9 = 1.

IfV =PC), F=C,and (f+9g)(2) = f(2) + g(2), (cf)(z) = f(cz) for ¢ € C, then
V is not a vector space over F since the axiom (V' S8) fails. Indeed, for any ¢,d € C,
((c+d)f)(2) = f((c+d)z) and ((cf)+(df))(2) = (cf)(2) +(df)(2) = f(cz) + f(dz). Take,
for example, f(z) = 22 and ¢ = d = 1, then f((c+d)z) = 422 # 22% = f(cz) + f(dz).
UV ={f:7Z — R|f(n) > 0forall n € Z} with addition (f + ¢g)(n) = f(n)g(n) and
scalar multiplication (cf)(n) = (f(n))¢, ¢ € R, then V is a vector space over R. We check
all axioms in their order for any f,g,h € V and ¢,d € R:

(VS1) (f 4+ 9)(n) = f(n)g(n) = g(n)f(n) = (g + f)(n), since multiplication is commuta-
tive in R;

(VS2) ((f +g) +B)(n) = (F + ) (m)h(n) = (f(n)g(n))h(n) = F(n)(g(n)h(n)) = (F + (g +
h))(n), since multiplication is associative in R;

(VS3) zero vector is ¢p(n) = 1 since (f +¢)(n) = f(n)p(n) = f(n)-1= f(n) (note, 1 > 0,
sopeV);

(VS4) let (—f)(n) = n) which exists since f(n) > 0 and ( 5 >0 for all all n € Z, so
—f € Vi then (f + (=f))(n) = 1 = ¢(n);

(VS5) (1- f)(n) = fl(n) = f(n);

(V86) ((cd)f)(n) = f(n) = f*(n) = (f(n))° = (cf))(n) = (c(d- ))(n), since multipli-

cation is commutative in R;

(VST) (c(f + 9))(n) = (f + 9)°(n) = (f(n)g(n))® = f(n)g°(n) = (cf + cg)(n);

(VS8) ((c+d)f)(n) = fH(n) = f(n)f4(n) = (cf + df)(n).

Let V = {(a1,az2)|a1,as € F5}, F =5, (a1,a2) + (b1,b2) = (a1b1(modb), az + ba(mod5))
and c(aq,az) = (caj(modb), caz(mods)), ¢ € F5. Then, V is not a vector space over F
since axioms (VS4), (VST7) and (VS8) are not satisfied. We will assume that all operations
are done modulo 5. The zero vector is (1,0) since for any (a1,a2) € V, (a1,a2) + (1,0) =
(a1 - 1,a2 + 0) = (a1,a2). Then any vector of form (0,a2) € V does not have the
inverse since for any (b1,b2) € V, (0,az2) + (b1,b2) = (0,a2 + b2) # (1,0). Moreover, for
any ¢ € F5, and any (aq,as2), (b1,b2) € V, ¢((a1,a2) + (b1,b2)) = (ca1by, caz + cby) and
c(ay,az) + c(by,b2) = (ca1,cas) + (cby, cha) = (c?a1by, cas + cby). Hence, if we take, for
example, ¢ = 2, a1 = by = 1, ag = by = 0, we get that c¢((a1,a2) + (b1,b2)) = (2,0) #



(4,0) = c(a1,az2) + c(by, bz). Finally, if we take ¢ = d = 1 and (a1,a2) = (1,0), we have
that (¢ + d)(a1, a2) = 2(1,0) = (2,0), but c¢(ay, az) + d(ar, a2) = 1(1,0) +1(1,0) = (1,0).
However, (2,0) # (1,0), so axiom (VS8) fails.

Let V = {fIf : R — R} and F = R, (f + g)(t) = 3(/(t) + f(—t) + g(t) + g(—1)) and
(cf)(t) = c- f(t), c € R. Then V is not a vector space over F' since axioms (VS3),
(VS4), and (VS8) are not satisfied. If there were the zero vector ¢ then for f(t) =t + 1,
( +O)(t) = F(1). S0, L(F(1) + F(—t) + 6(t) + H(—1) = S+ 6(t) + S(~1) = t + 1,
0 3(¢(t) + ¢(—t)) = t. But then also, if g(t) = t* + 1, we need that (g + ¢)(t) = g(t).
However, (g + ¢)(t) = >+ 1+ 1(¢(t) + ¢(—t)) = t> + t + 1 # t> + 1. Hence, there is no
zero vector. If there is not zero vector, we cannot define the additive inverse. Also, if we
take c=d =1 and f(t) =t, we get that ((c+d)f)(t) = 2f(t) = 2t which is not equal to
(cf +df)(t) = %(ct —ct+dt —dt) = 0.
Given V = {(z1, 22)|21, 22 € C}, F = C with addition (21, z2) + (21, 25) = (21 + 2}, 22+ 25)
and scalar multiplication ¢(z1, z2) = (cz1, ¢z2) is a vector space. Since addition is inherited
from C?, axioms (V. S1)-(VS4) hold, and we will not check them here.
(VS5) Multiplicative identity is 1 since for all (21,22) € V, 1+ (21,22) = (1- 21,1 - 29) =
(1'21,1-22):(21,22). o B
(VS6) For any c,d € C, (cd)(z1,22) = ((cd)z1, cdze) = (c(dz1), E(dz2)) = c(d(z1, 22)).-
(VST) For any ¢ € C, ¢((21,22) + (21, 25)) = c(z1+ 21, 22 + 24) = (c(21 + 21),E(z2 + 24)) =
(cz1 + ¢z, Cz2 + €2h) = (cz1,C22) + (c2), ¢28) = (21, 22) + c(2], 25).
(VS8) For any c,d € C, (cd)(z1,22) = ((cd)z1,cdzs) = (c(dz1),e(dze)) = c(dz1,dz) =
c(d(z1,22)).

2. Let V be a vector space over a field F'. We need to show that inverse of a vector is unique.
Let x € V and assume that there exist y;1,y2 € V such that x + y; = 4+ y2 = 0. Then we
have that

y1 = 3 +0 (0 is the zero vector in V)
= y1+ (z+y2) (by our assumption)
= (y1+x)+y2 (associativity of addition in V)
= (x+y1)+y2 (commutativity of addition in V')
= 0+ (by our assumption)
= 12+0 (commutativity of addition in V')
= Y (0 is the zero vector in V).

. For a given subset W C V, where V = R", n > 3, we need to determine if W is a subspace

of V. In each part of the problem, we will demonstrate that requirements of Theorem 1.3 are
either satisfied or not satisfied. Let = = (a1, aq,...,a,), and y = (b1, ba, ..., by).

(a)

The subset W = {x € Vl]a; +as + -+ + ap—1 = a,} is a subspace. Obviously, 0 =
(0,0,....,0) isin W since 0+0+---+0=0. Let z,y € W. Then, x +y = (a1 + b1,a2 +
ba,...,an+by) and (a1 +b1)+(az+b2)+- -+ (an—1+bn—1) = (a1 +as+---+ap—1)+ (b1 +
ba+--+bp_1) = an+by, since z,y € W. So x4y € W. Finally, for above z and ¢ € R, we
have that cz = (cay, cag, ..., cay) and ca;+cag+- - -+can—1 = c(a1+ag+- - -+an—1) = cap,
since z € W. Hence cx € W. Therefore, by Theorem 1.3, W is a subspace of V.

If W = {z € V]a?a3 = —as}, then W is not a subspace of V since. Let x € V. Then,
cx = (cay,caz,cas,...,ca,), and we know that a?a3 = —ay since + € W. However,
(ca1)?(ca3) = cajas # cas for, for example, ¢ =2, a; = az = a3 = 1.

Let W = {2z € V]a;—+/3az = 4a3}. Then W is a subspace of V. Indeed, 0 = (0,0, ....,0) €
W since 0 — /30 =0=14-0. Let ,y € W. Then = +y = (a1 + by, a0 + bo, . .. an+bn)



and (ay + b1) — V3(az + b2) = (a1 — V3az) + (b1 — V/3ba) = dag + 4bs = 4(by + b3), so
x4y € W. Finally, for any ¢ € R, cx = (ca1, cas, cas, ..., cay) and (cay) — V/3(cas) =
c(a1 — v/3az) = c(4a3) = 4(caz), so cx € W. By Theorem 1.3, W is a subspace of V.

(d) If W = {2 € V|V/2a3 € Q}, W is not a subspace of V. Indeed, W needs to be a vector
space over R. However, if ¢ = v/3, then cx ¢ W since v/2(ca3) = v/3(v/2a3) € Q because
\/§a3 €Q.

(e) T W ={z € Vl|ag <1}, W is not a subspace of V. Let € W be such that 0 < a; < 1.
Then take ¢ > a—ll € R. Then ca; > a—llal >1,s0crgW.

. Let V= P(C). For given W C V, we need to determine if W is a subspace of V.

(a) W ={f e V|f(14+1i) =if(1 —4)}, W is a subspace of V. Obviously, zero vector of
Vis((z) =0and {(1+4) =0=1i¢(1—1i),so¢ e W. Assume that f,g € W. Then
(f+9) (1 +19) = f(1+1i)+g(1+i) =if(1 —4) +ig(l —i) = i((f + g)(1 — ). Hence,
f+geW. GivenceC, (¢f)(1+i)=c- f(1+i) =c-if(1—1) =i((cf)(1 —1i)), implying
that ¢f € W. Therefore, by Theorem 1.3, W is a subspace of V.

(b) If W = {f € V|f(i)> = f(—1)?}, then W is not a subspace of V. To show this, let
f(z) =1and g(z) = 22. Then f(i)2 =1 = f(—1)? and g(i)? = (-1)> = 1 = g(—1)?, so
f,g € W. However, f +g & W. Indeed, (f +g)(2) =1+ 2% 50 (f +g)(i) =1+i2 =0
and (f +g)(—1) =1+ (—1)? = 2. But 0? # 22.

(c) Let W = {f € V|f(iz) = if(z) + f(—=2)}. To prove that W is a subspace of V, first
we check that zero function, which is the zero vector in P(C) belongs to W. Indeed, if
¢(z) =0 for all z € C, then ¢(iz) =0=14-04+ 0 =i¢(2) + ¢(—=2). Hence, ¢ € W. Then,
assume that f,g € W, that is f(iz) = if(z) + f(—2) and g(iz) = ig(z) + g(—=z) for all
z € C. Then, (f +9)(iz) = f(iz) + g(iz) = (if (2) + f(=2)) + (ig(z) + 9(=2)) = i(f(z) +
9(2)) + (f(=2) + g(=2)) = i((f + 9)(2)) + (f + 9)(==2), s0 f + g € W. Finally, let c € C.
Then (cf)(iz) = c- f(iz) = c(if(2) + [(=2)) = icf(2) + cf(=2) = i((c[)(2)) + (c[)(=2),
which implies that c¢f € W. By Theorem 1.3, W is a subspace of V.

(d) f W = {f € V|f(1) — f(i) = 0}, then W is not a subspace of V. To see this, let
f(z) = (z—1)(z—i)+1. It is easy to check that f € W. Let ¢ = i. Then (c¢f)(1)—(cf)(i) =
i—i=1— (—i)=2i#0. Hence, cf ¢ W.

(e) UW ={f € V|f(2) = anz" +an_12""' + -+ a1z +agp, and a; = 0 for all j even: ap =
ag = a4 = ag = --- = 0}, then W is a subspace of V. Obviously, zero function is in W.
Without loss of generality, let n > m and f(2) = a2ms122™ ! +agm_ 122" 14 +azz +
a1z and g(z) = bop 122" 4-bop 122 o bo 1 22 o bgyy 1 22T 323 0y 2,
where a1 € C, for i = 0,1,...,m, bgj;1 € C, for j = 0,1,...,n. Then f,g € W
and (f + 9)(2) = bopy122" + by 122" L+ oo + (a2ma1 + boma1)2?™ T + (a2m_1 +
bom—1)z2" "4+ 4 (ag+bs) 23+ (a1 +b1)z, 50 f+g € W. Also, (cf)(2) = (cagmy1)z>™ 1+
(cagm-1)z*""1 + .-+ (caz)z® + (cay)z, so cf € W when ¢ € C.

. Given W; and W subspaces of a vector space V', we need to prove that Wi, U Wy = {z €
V0z € Wy of x € Wa} if and only if Wy € Wy or Wy C W

<: Without loss of generality, assume that Wy C W7. Then, W7 U Wy = W which is a
subspace of V.

=: We will prove this direction by contra-position. That is, if W] is not a subset of W5 and
Ws is not a subset of W7, then W7 U W5 does not have to be a subspace of V. Indeed, if
W1 ¢ Wy, there exists w1 € Wy such that wi; € Wo, and if Wa ¢ W7, there exists wo € Wo



such that we € Wy. Assume that Wi U Ws is a subspace of V. Then wi,ws € W1 U Wa, so
wy + wg € W1 UWs, so wy +we € Wy or wi + we € Wy, Without loss of generality, assume
that w1 +we = a € Wi. Then we = a + (—w1). Since W is a subspace of V', inverse of w,
—w1, belongs to W7, as well as sum of two vectors from Wi. So, we = a+ (—w;) € Wi, which
is a contradiction to we € Wo\Wj. Therefore, Wi U W5 is not a subspace of V.

. Let W7 and W5 be subspaces of a vector space V.

(a) Then Wy + Wy = {x + ylz € Wi,y € Wa} is a subspace of V. Indeed, 0 € W; and
0 € Wy since Wy and Wy are subspaces of V. Hence, 0 + 0 = 0 € W7 + Wy, Let
x1,x2 € Wi and y1,y2 € Wo. Then 1 +y1, 22 +y2 € Wi +Ws and (x14+y1) + (22 +y2) =
(x1+22) + (y1 + y2) € Wi + W since 21 + 22 € Wi and y1 +y2 € Wa, as Wi and Ws are
subspaces of V. Also, if ¢ is a scalar, c(x1 +y1) = (cx1 + cy1) € Wi + Wy since cx; € W
and cy; € Wy. Therefore, by Theorem 1.3, W1 + W5 is a subspace of V. Since 0 € W1,
Wy = {y =0+ y\y € Wg} C W1 + Ws. Similarly, W1 € W; + Ws.

(b) Let Z be a subspace of V such that W; C Z and Wy C Z. We want to show that
W1+ Ws C Z. Indeed, since Wi C Z, for any x € Wy, also x € Z. Similarly, for any

y € Wo, also y € Z. Hence, x +y € Z because Z is a subspace of V. But this means that
Wi+ Wy ={z+ylr e Wi,y e Wa} C Z.



