MAT 240, Fall 2008 Solutions to Problem Set 2

- 1. In this problem we need to determine if given V is a field.
 - (a) If $V = \{(a_1, a_2) | a_1, a_2 \in \mathbb{R}\}$, $F = \mathbb{R}$, $(a_1, a_2) + (b_1 + b_2) = (a_1 + b_1, a_2 + b_2)$ and $c(a_1, a_2) = (ca_1 + c 1, ca_2 + c 1)$, then V is not a field since axioms (VS7) and (VS8) fail. Indeed, $c((a_1, a_2) + (b_1, b_2)) = c(a_1 + b_1, a_2 + b_2) = (c(a_1 + b_1) + c 1, c(a_2 + b_2) + c 1)$, but $c(a_1, a_2) + c(b_1, b_2)) = (c(a_1 + b_1) + 2c 1, 2(a_2 + b_2) + 2c 2)$. If we take, for example, c = 1, $a_1 = a_2 = b_1 = b_2 = 1$, we get that $c((a_1, a_2) + (b_1, b_2)) = (5, 5) \neq (6, 6) = c(a_1, a_2) + c(b_1, b_2))$, so the property (VS7) does not hold. Moreover, $(c+d)(a_1, a_2) = (ca_1 + da_1 + c + d 1, ca_2da_2 + c + d 1)$ and $c(a_1, a_2) + d(a_1, a_2) = (ca_1 + da_1 + c + d 2, ca_2 + da_2 + c + d 2)$, which are not equal if we take, for example, c = d = 1, $a_1 = a_2 = 1$.
 - (b) If $V = P(\mathbb{C})$, $F = \mathbb{C}$, and (f + g)(z) = f(z) + g(z), (cf)(z) = f(cz) for $c \in \mathbb{C}$, then V is not a vector space over F since the axiom (VS8) fails. Indeed, for any $c, d \in \mathbb{C}$, ((c+d)f)(z) = f((c+d)z) and ((cf) + (df))(z) = (cf)(z) + (df)(z) = f(cz) + f(dz). Take, for example, $f(z) = z^2$ and c = d = 1, then $f((c+d)z) = 4z^2 \neq 2z^2 = f(cz) + f(dz)$.
 - (c) If $V = \{f : \mathbb{Z} \to \mathbb{R} | f(n) > 0 \text{ for all } n \in \mathbb{Z} \}$ with addition (f + g)(n) = f(n)g(n) and scalar multiplication $(cf)(n) = (f(n))^c, c \in \mathbb{R}$, then V is a vector space over \mathbb{R} . We check all axioms in their order for any $f, g, h \in V$ and $c, d \in \mathbb{R}$: (VS1) (f+g)(n) = f(n)g(n) = g(n)f(n) = (g+f)(n), since multiplication is commutative in \mathbb{R} ; (VS2) ((f+g)+h)(n) = (f+g)(n)h(n) = (f(n)g(n))h(n) = f(n)(g(n)h(n)) = (f+(g+1))h(n) = (f+(g+(h)(n), since multiplication is associative in \mathbb{R} ; (VS3) zero vector is $\phi(n) = 1$ since $(f + \phi)(n) = f(n)\phi(n) = f(n) \cdot 1 = f(n)$ (note, 1 > 0, so $\phi \in V$; (VS4) let $(-f)(n) = \frac{1}{f(n)}$ which exists since f(n) > 0 and $\frac{1}{f(n)} > 0$ for all all $n \in \mathbb{Z}$, so $-f \in V$; then $(f + (-f))(n) = 1 = \phi(n)$; (VS5) $(1 \cdot f)(n) = f^1(n) = f(n);$ (VS6) $((cd)f)(n) = f^{cd}(n) = f^{dc}(n) = (f^d(n))^c = (cf^d)(n) = (c(d \cdot f))(n)$, since multiplication is commutative in \mathbb{R} ; (VS7) $(c(f+g))(n) = (f+g)^c(n) = (f(n)g(n))^c = f^c(n)g^c(n) = (cf+cg)(n);$ (VS8) $((c+d)f)(n) = f^{c+d}(n) = f^c(n)f^d(n) = (cf+df)(n).$
 - (d) Let $V = \{(a_1, a_2) | a_1, a_2 \in \mathbb{F}_5\}$, $F = \mathbb{F}_5$, $(a_1, a_2) + (b_1, b_2) = (a_1b_1(mod5), a_2 + b_2(mod5))$ and $c(a_1, a_2) = (ca_1(mod5), ca_2(mod5))$, $c \in \mathbb{F}_5$. Then, V is not a vector space over F since axioms (VS4), (VS7) and (VS8) are not satisfied. We will assume that all operations are done modulo 5. The zero vector is (1, 0) since for any $(a_1, a_2) \in V$, $(a_1, a_2) + (1, 0) = (a_1 \cdot 1, a_2 + 0) = (a_1, a_2)$. Then any vector of form $(0, a_2) \in V$ does not have the inverse since for any $(b_1, b_2) \in V$, $(0, a_2) + (b_1, b_2) = (0, a_2 + b_2) \neq (1, 0)$. Moreover, for any $c \in \mathbb{F}_5$, and any $(a_1, a_2), (b_1, b_2) \in V$, $c((a_1, a_2) + (b_1, b_2)) = (ca_1b_1, ca_2 + cb_2)$ and $c(a_1, a_2) + c(b_1, b_2) = (ca_1, ca_2) + (cb_1, cb_2) = (c^2a_1b_1, ca_2 + cb_2)$. Hence, if we take, for example, c = 2, $a_1 = b_1 = 1$, $a_2 = b_2 = 0$, we get that $c((a_1, a_2) + (b_1, b_2)) = (2, 0) \neq (a_1, b_2) = (2, 0) \neq (a_1, b_2) = (a_2, b_2) = (a_1, b_1, b_2) = (a_2, b_2) = (a_1, b_1, b_2) = (a_2, b_2) = (a_2, b_2)$.

 $(4,0) = c(a_1,a_2) + c(b_1,b_2)$. Finally, if we take c = d = 1 and $(a_1,a_2) = (1,0)$, we have that $(c+d)(a_1,a_2) = 2(1,0) = (2,0)$, but $c(a_1,a_2) + d(a_1,a_2) = 1(1,0) + 1(1,0) = (1,0)$. However, $(2,0) \neq (1,0)$, so axiom (VS8) fails.

- (e) Let $V = \{f | f : \mathbb{R} \to \mathbb{R}\}$ and $F = \mathbb{R}$, $(f + g)(t) = \frac{1}{2}(f(t) + f(-t) + g(t) + g(-t))$ and $(cf)(t) = c \cdot f(t), c \in \mathbb{R}$. Then V is not a vector space over F since axioms (VS3), (VS4), and (VS8) are not satisfied. If there were the zero vector ϕ then for f(t) = t + 1, $(f + \phi)(t) = f(t)$. So, $\frac{1}{2}(f(t) + f(-t) + \phi(t) + \phi(-t)) = \frac{1}{2}(2 + \phi(t) + \phi(-t)) = t + 1$, so $\frac{1}{2}(\phi(t) + \phi(-t)) = t$. But then also, if $g(t) = t^2 + 1$, we need that $(g + \phi)(t) = g(t)$. However, $(g + \phi)(t) = t^2 + 1 + \frac{1}{2}(\phi(t) + \phi(-t)) = t^2 + t + 1 \neq t^2 + 1$. Hence, there is no zero vector. If there is not zero vector, we cannot define the additive inverse. Also, if we take c = d = 1 and f(t) = t, we get that ((c + d)f)(t) = 2f(t) = 2t which is not equal to $(cf + df)(t) = \frac{1}{2}(ct ct + dt dt) \equiv 0$.
- (f) Given $V = \{(z_1, z_2) | z_1, z_2 \in \mathbb{C}\}, F = \mathbb{C}$ with addition $(z_1, z_2) + (z'_1, z'_2) = (z_1 + z'_1, z_2 + z'_2)$ and scalar multiplication $c(z_1, z_2) = (cz_1, \bar{c}z_2)$ is a vector space. Since addition is inherited from \mathbb{C}^2 , axioms (VS1)-(VS4) hold, and we will not check them here. (VS5) Multiplicative identity is 1 since for all $(z_1, z_2) \in V, 1 \cdot (z_1, z_2) = (1 \cdot z_1, \bar{1} \cdot z_2) =$ $(1 \cdot z_1, 1 \cdot z_2) = (z_1, z_2).$ (VS6) For any $c, d \in \mathbb{C}, (cd)(z_1, z_2) = ((cd)z_1, cdz_2) = (c(dz_1), c(dz_2)) = c(d(z_1, z_2)).$ (VS7) For any $c \in \mathbb{C}, c((z_1, z_2) + (z'_1, z'_2)) = c(z_1 + z'_1, z_2 + z'_2) = (c(z_1 + z'_1), c(z_2 + z'_2)) =$ $(cz_1 + cz'_1, cz_2 + cz'_2) = (cz_1, cz_2) + (cz'_1, cz'_2) = c(z_1, z_2) + c(z'_1, z'_2).$ (VS8) For any $c, d \in \mathbb{C}, (cd)(z_1, z_2) = ((cd)z_1, cdz_2) = (c(dz_1), c(dz_2)) = c(dz_1, dz_2) =$ $c(d(z_1, z_2)).$
- 2. Let V be a vector space over a field F. We need to show that inverse of a vector is unique. Let $x \in V$ and assume that there exist $y_1, y_2 \in V$ such that $x + y_1 = x + y_2 = 0$. Then we have that

y_1	=	$y_1 + 0$	(0 is the zero vector in V)
	=	$y_1 + (x + y_2)$	(by our assumption)
	=	$(y_1 + x) + y_2$	(associativity of addition in V)
	=	$(x+y_1)+y_2$	(commutativity of addition in V)
	=	$0 + y_2$	(by our assumption)
	=	$y_2 + 0$	(commutativity of addition in V)
	=	y_2	(0 is the zero vector in V).

- 3. For a given subset $W \subset V$, where $V = \mathbb{R}^n$, $n \geq 3$, we need to determine if W is a subspace of V. In each part of the problem, we will demonstrate that requirements of Theorem 1.3 are either satisfied or not satisfied. Let $x = (a_1, a_2, \ldots, a_n)$, and $y = (b_1, b_2, \ldots, b_n)$.
 - (a) The subset $W = \{x \in V | a_1 + a_2 + \dots + a_{n-1} = a_n\}$ is a subspace. Obviously, $0 = (0, 0, \dots, 0)$ is in W since $0 + 0 + \dots + 0 = 0$. Let $x, y \in W$. Then, $x + y = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$ and $(a_1 + b_1) + (a_2 + b_2) + \dots + (a_{n-1} + b_{n-1}) = (a_1 + a_2 + \dots + a_{n-1}) + (b_1 + b_2 + \dots + b_{n-1}) = a_n + b_n$, since $x, y \in W$. So $x + y \in W$. Finally, for above x and $c \in \mathbb{R}$, we have that $cx = (ca_1, ca_2, \dots, ca_n)$ and $ca_1 + ca_2 + \dots + ca_{n-1} = c(a_1 + a_2 + \dots + a_{n-1}) = ca_n$, since $x \in W$. Hence $cx \in W$. Therefore, by Theorem 1.3, W is a subspace of V.
 - (b) If $W = \{x \in V | a_1^2 a_3 = -a_2\}$, then W is not a subspace of V since. Let $x \in V$. Then, $cx = (ca_1, ca_2, ca_3, \dots, ca_n)$, and we know that $a_1^2 a_3 = -a_2$ since $x \in W$. However, $(ca_1)^2(ca_3) = c^3 a_1 a_3 \neq ca_2$ for, for example, c = 2, $a_1 = a_2 = a_3 = 1$.
 - (c) Let $W = \{x \in V | a_1 \sqrt{3}a_2 = 4a_3\}$. Then W is a subspace of V. Indeed, $0 = (0, 0, ..., 0) \in W$ since $0 \sqrt{3}0 = 0 = 4 \cdot 0$. Let $x, y \in W$. Then $x + y = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$

and $(a_1 + b_1) - \sqrt{3}(a_2 + b_2) = (a_1 - \sqrt{3}a_2) + (b_1 - \sqrt{3}b_2) = 4a_3 + 4b_3 = 4(b_1 + b_3)$, so $x + y \in W$. Finally, for any $c \in \mathbb{R}$, $cx = (ca_1, ca_2, ca_3, \dots, ca_n)$ and $(ca_1) - \sqrt{3}(ca_2) = c(a_1 - \sqrt{3}a_2) = c(4a_3) = 4(ca_3)$, so $cx \in W$. By Theorem 1.3, W is a subspace of V.

- (d) If $W = \{x \in V | \sqrt{2}a_3 \in \mathbb{Q}\}$, W is not a subspace of V. Indeed, W needs to be a vector space over \mathbb{R} . However, if $c = \sqrt{3}$, then $cx \notin W$ since $\sqrt{2}(ca_3) = \sqrt{3}(\sqrt{2}a_3) \notin \mathbb{Q}$ because $\sqrt{2}a_3 \in \mathbb{Q}$.
- (e) If $W = \{x \in V | a_1 \leq 1\}$, W is not a subspace of V. Let $x \in W$ be such that $0 < a_1 < 1$. Then take $c > \frac{1}{a_1} \in \mathbb{R}$. Then $ca_1 > \frac{1}{a_1}a_1 > 1$, so $cx \notin W$.
- 4. Let $V = P(\mathbb{C})$. For given $W \subset V$, we need to determine if W is a subspace of V.
 - (a) If $W = \{f \in V | f(1+i) = if(1-i)\}$, W is a subspace of V. Obviously, zero vector of V is $\zeta(z) \equiv 0$ and $\zeta(1+i) = 0 = i\zeta(1-i)$, so $\zeta \in W$. Assume that $f, g \in W$. Then (f+g)(1+i) = f(1+i) + g(1+i) = if(1-i) + ig(1-i) = i((f+g)(1-i)). Hence, $f+g \in W$. Given $c \in \mathbb{C}$, $(cf)(1+i) = c \cdot f(1+i) = c \cdot if(1-i) = i((cf)(1-i))$, implying that $cf \in W$. Therefore, by Theorem 1.3, W is a subspace of V.
 - (b) If $W = \{f \in V | f(i)^2 = f(-1)^2\}$, then W is not a subspace of V. To show this, let f(z) = 1 and $g(z) = z^2$. Then $f(i)^2 = 1 = f(-1)^2$ and $g(i)^2 = (-1)^2 = 1 = g(-1)^2$, so $f, g \in W$. However, $f + g \notin W$. Indeed, $(f + g)(z) = 1 + z^2$, so $(f + g)(i) = 1 + i^2 = 0$ and $(f + g)(-1) = 1 + (-1)^2 = 2$. But $0^2 \neq 2^2$.
 - (c) Let $W = \{f \in V | f(iz) = if(z) + f(-z)\}$. To prove that W is a subspace of V, first we check that zero function, which is the zero vector in $P(\mathbb{C})$ belongs to W. Indeed, if $\phi(z) = 0$ for all $z \in \mathbb{C}$, then $\phi(iz) = 0 = i \cdot 0 + 0 = i\phi(z) + \phi(-z)$. Hence, $\phi \in W$. Then, assume that $f, g \in W$, that is f(iz) = if(z) + f(-z) and g(iz) = ig(z) + g(-z) for all $z \in \mathbb{C}$. Then, (f + g)(iz) = f(iz) + g(iz) = (if(z) + f(-z)) + (ig(z) + g(-z)) = i(f(z) + g(z)) + (f(-z) + g(-z)) = i((f + g)(z)) + (f + g)(-z), so $f + g \in W$. Finally, let $c \in \mathbb{C}$. Then $(cf)(iz) = c \cdot f(iz) = c(if(z) + f(-z)) = icf(z) + cf(-z) = i((cf)(z)) + (cf)(-z)$, which implies that $cf \in W$. By Theorem 1.3, W is a subspace of V.
 - (d) If $W = \{f \in V | f(1) \overline{f(i)} = 0\}$, then W is not a subspace of V. To see this, let f(z) = (z-1)(z-i)+1. It is easy to check that $f \in W$. Let c = i. Then $(cf)(1) \overline{(cf)(i)} = i \overline{i} = i (-i) = 2i \neq 0$. Hence, $cf \notin W$.
 - (e) If $W = \{f \in V | f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0, \text{ and } a_j = 0 \text{ for all } j \text{ even: } a_0 = a_2 = a_4 = a_6 = \dots = 0\}$, then W is a subspace of V. Obviously, zero function is in W. Without loss of generality, let $n \ge m$ and $f(z) = a_{2m+1} z^{2m+1} + a_{2m-1} z^{2m-1} + \dots + a_3 z^3 + a_1 z$ and $g(z) = b_{2n+1} z^{2n+1} + b_{2n-1} z^{2n-1} + \dots + b_{2m+1} z^{2m+1} + b_{2m-1} z^{2m-1} + \dots + b_3 z^3 + b_1 z$, where $a_{2i+1} \in \mathbb{C}$, for $i = 0, 1, \dots, m$, $b_{2j+1} \in \mathbb{C}$, for $j = 0, 1, \dots, n$. Then $f, g \in W$ and $(f + g)(z) = b_{2n+1} z^{2n+1} + b_{2n-1} z^{2n-1} + \dots + (a_{2m+1} + b_{2m+1}) z^{2m+1} + (a_{2m-1} + b_{2m-1}) z^{2m-1} + \dots + (a_3 + b_3) z^3 + (a_1 + b_1) z$, so $f + g \in W$. Also, $(cf)(z) = (ca_{2m+1}) z^{2m+1} + (ca_{2m-1}) z^{2m-1} + \dots + (ca_3) z^3 + (ca_1) z$, so $cf \in W$ when $c \in \mathbb{C}$.
- 5. Given W_1 and W_2 subspaces of a vector space V, we need to prove that $W_1 \cup W_2 = \{x \in V | x \in W_1 \text{ of } x \in W_2\}$ if and only if $W_1 \subset W_2$ or $W_2 \subset W_1$. \Leftarrow : Without loss of generality, assume that $W_2 \subset W_1$. Then, $W_1 \cup W_2 = W_1$ which is a

 \Leftarrow : Without loss of generality, assume that $W_2 \subset W_1$. Then, $W_1 \cup W_2 = W_1$ which is a subspace of V.

 \Rightarrow : We will prove this direction by contra-position. That is, if W_1 is not a subset of W_2 and W_2 is not a subset of W_1 , then $W_1 \cup W_2$ does not have to be a subspace of V. Indeed, if $W_1 \not\subset W_2$, there exists $w_1 \in W_1$ such that $w_1 \notin W_2$, and if $W_2 \not\subset W_1$, there exists $w_2 \in W_2$

such that $w_2 \notin W_1$. Assume that $W_1 \cup W_2$ is a subspace of V. Then $w_1, w_2 \in W_1 \cup W_2$, so $w_1 + w_2 \in W_1 \cup W_2$, so $w_1 + w_2 \in W_1$ or $w_1 + w_2 \in W_2$. Without loss of generality, assume that $w_1 + w_2 = a \in W_1$. Then $w_2 = a + (-w_1)$. Since W_1 is a subspace of V, inverse of w_1 , $-w_1$, belongs to W_1 , as well as sum of two vectors from W_1 . So, $w_2 = a + (-w_1) \in W_1$, which is a contradiction to $w_2 \in W_2 \setminus W_1$. Therefore, $W_1 \cup W_2$ is not a subspace of V.

- 6. Let W_1 and W_2 be subspaces of a vector space V.
 - (a) Then $W_1 + W_2 = \{x + y | x \in W_1, y \in W_2\}$ is a subspace of V. Indeed, $0 \in W_1$ and $0 \in W_2$ since W_1 and W_2 are subspaces of V. Hence, $0 + 0 = 0 \in W_1 + W_2$. Let $x_1, x_2 \in W_1$ and $y_1, y_2 \in W_2$. Then $x_1 + y_1, x_2 + y_2 \in W_1 + W_2$ and $(x_1 + y_1) + (x_2 + y_2) = (x_1 + x_2) + (y_1 + y_2) \in W_1 + W_2$ since $x_1 + x_2 \in W_1$ and $y_1 + y_2 \in W_2$, as W_1 and W_2 are subspaces of V. Also, if c is a scalar, $c(x_1 + y_1) = (cx_1 + cy_1) \in W_1 + W_2$ since $cx_1 \in W_1$ and $cy_1 \in W_2$. Therefore, by Theorem 1.3, $W_1 + W_2$ is a subspace of V. Since $0 \in W_1$, $W_2 = \{y = 0 + y | y \in W_2\} \subset W_1 + W_2$.
 - (b) Let Z be a subspace of V such that $W_1 \subset Z$ and $W_2 \subset Z$. We want to show that $W_1 + W_2 \subset Z$. Indeed, since $W_1 \subset Z$, for any $x \in W_1$, also $x \in Z$. Similarly, for any $y \in W_2$, also $y \in Z$. Hence, $x + y \in Z$ because Z is a subspace of V. But this means that $W_1 + W_2 = \{x + y | x \in W_1, y \in W_2\} \subset Z$.