
MAT 240, Fall 2008
Solutions to Problem Set 2

1. In this problem we need to determine if given V is a field.

(a) If V = {(a1, a2)|a1, a2 ∈ R}, F = R, (a1, a2)+(b1 +b2) = (a1 +b1, a2 +b2) and c(a1, a2) =
(ca1 + c−1, ca2 + c−1), then V is not a field since axioms (V S7) and (V S8) fail. Indeed,
c((a1, a2) + (b1, b2)) = c(a1 + b1, a2 + b2) = (c(a1 + b1) + c − 1, c(a2 + b2) + c − 1), but
c(a1, a2)+c(b1, b2)) = (c(a1+b1)+2c−1, 2(a2+b2)+2c−2). If we take, for example, c = 1,
a1 = a2 = b1 = b2 = 1, we get that c((a1, a2) + (b1, b2)) = (5, 5) 6= (6, 6) = c(a1, a2) +
c(b1, b2)), so the property (V S7) does not hold. Moreover, (c+d)(a1, a2) = (ca1+da1+c+
d−1, ca2da2+c+d−1) and c(a1, a2)+d(a1, a2) = (ca1+da1+c+d−2, ca2+da2+c+d−2),
which are not equal if we take, for example, c = d = 1, a1 = a2 = 1.

(b) If V = P (C), F = C, and (f + g)(z) = f(z) + g(z), (cf)(z) = f(cz) for c ∈ C, then
V is not a vector space over F since the axiom (V S8) fails. Indeed, for any c, d ∈ C,
((c+d)f)(z) = f((c+d)z) and ((cf)+(df))(z) = (cf)(z)+(df)(z) = f(cz)+f(dz). Take,
for example, f(z) = z2 and c = d = 1, then f((c+ d)z) = 4z2 6= 2z2 = f(cz) + f(dz).

(c) If V = {f : Z → R|f(n) > 0 for all n ∈ Z} with addition (f + g)(n) = f(n)g(n) and
scalar multiplication (cf)(n) = (f(n))c, c ∈ R, then V is a vector space over R. We check
all axioms in their order for any f, g, h ∈ V and c, d ∈ R:
(VS1) (f + g)(n) = f(n)g(n) = g(n)f(n) = (g + f)(n), since multiplication is commuta-
tive in R;
(VS2) ((f + g) + h)(n) = (f + g)(n)h(n) = (f(n)g(n))h(n) = f(n)(g(n)h(n)) = (f + (g+
h))(n), since multiplication is associative in R;
(VS3) zero vector is φ(n) = 1 since (f +φ)(n) = f(n)φ(n) = f(n) · 1 = f(n) (note, 1 > 0,
so φ ∈ V );
(VS4) let (−f)(n) = 1

f(n) which exists since f(n) > 0 and 1
f(n) > 0 for all all n ∈ Z, so

−f ∈ V ; then (f + (−f))(n) = 1 = φ(n);
(VS5) (1 · f)(n) = f1(n) = f(n);
(VS6) ((cd)f)(n) = f cd(n) = fdc(n) = (fd(n))c = (cfd)(n) = (c(d · f))(n), since multipli-
cation is commutative in R;
(VS7) (c(f + g))(n) = (f + g)c(n) = (f(n)g(n))c = f c(n)gc(n) = (cf + cg)(n);
(VS8) ((c+ d)f)(n) = f c+d(n) = f c(n)fd(n) = (cf + df)(n).

(d) Let V = {(a1, a2)|a1, a2 ∈ F5}, F = F5, (a1, a2) + (b1, b2) = (a1b1(mod5), a2 + b2(mod5))
and c(a1, a2) = (ca1(mod5), ca2(mod5)), c ∈ F5. Then, V is not a vector space over F
since axioms (VS4), (VS7) and (VS8) are not satisfied. We will assume that all operations
are done modulo 5. The zero vector is (1, 0) since for any (a1, a2) ∈ V , (a1, a2) + (1, 0) =
(a1 · 1, a2 + 0) = (a1, a2). Then any vector of form (0, a2) ∈ V does not have the
inverse since for any (b1, b2) ∈ V , (0, a2) + (b1, b2) = (0, a2 + b2) 6= (1, 0). Moreover, for
any c ∈ F5, and any (a1, a2), (b1, b2) ∈ V , c((a1, a2) + (b1, b2)) = (ca1b1, ca2 + cb2) and
c(a1, a2) + c(b1, b2) = (ca1, ca2) + (cb1, cb2) = (c2a1b1, ca2 + cb2). Hence, if we take, for
example, c = 2, a1 = b1 = 1, a2 = b2 = 0, we get that c((a1, a2) + (b1, b2)) = (2, 0) 6=
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(4, 0) = c(a1, a2) + c(b1, b2). Finally, if we take c = d = 1 and (a1, a2) = (1, 0), we have
that (c+ d)(a1, a2) = 2(1, 0) = (2, 0), but c(a1, a2) + d(a1, a2) = 1(1, 0) + 1(1, 0) = (1, 0).
However, (2, 0) 6= (1, 0), so axiom (VS8) fails.

(e) Let V = {f |f : R → R} and F = R, (f + g)(t) = 1
2(f(t) + f(−t) + g(t) + g(−t)) and

(cf)(t) = c · f(t), c ∈ R. Then V is not a vector space over F since axioms (VS3),
(VS4), and (VS8) are not satisfied. If there were the zero vector φ then for f(t) = t+ 1,
(f + φ)(t) = f(t). So, 1

2(f(t) + f(−t) + φ(t) + φ(−t)) = 1
2(2 + φ(t) + φ(−t)) = t + 1,

so 1
2(φ(t) + φ(−t)) = t. But then also, if g(t) = t2 + 1, we need that (g + φ)(t) = g(t).

However, (g + φ)(t) = t2 + 1 + 1
2(φ(t) + φ(−t)) = t2 + t+ 1 6= t2 + 1. Hence, there is no

zero vector. If there is not zero vector, we cannot define the additive inverse. Also, if we
take c = d = 1 and f(t) = t, we get that ((c+ d)f)(t) = 2f(t) = 2t which is not equal to
(cf + df)(t) = 1

2(ct− ct+ dt− dt) ≡ 0.
(f) Given V = {(z1, z2)|z1, z2 ∈ C}, F = C with addition (z1, z2)+(z′1, z

′
2) = (z1 +z′1, z2 +z′2)

and scalar multiplication c(z1, z2) = (cz1, c̄z2) is a vector space. Since addition is inherited
from C2, axioms (V S1)-(V S4) hold, and we will not check them here.
(VS5) Multiplicative identity is 1 since for all (z1, z2) ∈ V , 1 · (z1, z2) = (1 · z1, 1̄ · z2) =
(1 · z1, 1 · z2) = (z1, z2).
(VS6) For any c, d ∈ C, (cd)(z1, z2) = ((cd)z1, cdz2) = (c(dz1), c̄(d̄z2)) = c(d(z1, z2)).
(VS7) For any c ∈ C, c((z1, z2) + (z′1, z

′
2)) = c(z1 + z′1, z2 + z′2) = (c(z1 + z′1), c̄(z2 + z′2)) =

(cz1 + cz′1, c̄z2 + c̄z′2) = (cz1, c̄z2) + (cz′1, c̄z
′
2) = c(z1, z2) + c(z′1, z

′
2).

(VS8) For any c, d ∈ C, (cd)(z1, z2) = ((cd)z1, cdz2) = (c(dz1), c̄(d̄z2)) = c(dz1, d̄z2) =
c(d(z1, z2)).

2. Let V be a vector space over a field F . We need to show that inverse of a vector is unique.
Let x ∈ V and assume that there exist y1, y2 ∈ V such that x + y1 = x + y2 = 0. Then we
have that
y1 = y1 + 0 (0 is the zero vector in V )

= y1 + (x+ y2) (by our assumption)
= (y1 + x) + y2 (associativity of addition in V )
= (x+ y1) + y2 (commutativity of addition in V )
= 0 + y2 (by our assumption)
= y2 + 0 (commutativity of addition in V )
= y2 (0 is the zero vector in V ).

3. For a given subset W ⊂ V , where V = Rn, n ≥ 3, we need to determine if W is a subspace
of V . In each part of the problem, we will demonstrate that requirements of Theorem 1.3 are
either satisfied or not satisfied. Let x = (a1, a2, . . . , an), and y = (b1, b2, . . . , bn).

(a) The subset W = {x ∈ V |a1 + a2 + · · · + an−1 = an} is a subspace. Obviously, 0 =
(0, 0, ...., 0) is in W since 0 + 0 + · · ·+ 0 = 0. Let x, y ∈W . Then, x+ y = (a1 + b1, a2 +
b2, . . . , an +bn) and (a1 +b1)+(a2 +b2)+ · · ·+(an−1 +bn−1) = (a1 +a2 + · · ·+an−1)+(b1 +
b2+· · ·+bn−1) = an+bn, since x, y ∈W . So x+y ∈W . Finally, for above x and c ∈ R, we
have that cx = (ca1, ca2, . . . , can) and ca1+ca2+· · ·+can−1 = c(a1+a2+· · ·+an−1) = can,
since x ∈W . Hence cx ∈W . Therefore, by Theorem 1.3, W is a subspace of V .

(b) If W = {x ∈ V |a2
1a3 = −a2}, then W is not a subspace of V since. Let x ∈ V . Then,

cx = (ca1, ca2, ca3, . . . , can), and we know that a2
1a3 = −a2 since x ∈ W . However,

(ca1)2(ca3) = c3a1a3 6= ca2 for, for example, c = 2, a1 = a2 = a3 = 1.
(c) Let W = {x ∈ V |a1−

√
3a2 = 4a3}. Then W is a subspace of V . Indeed, 0 = (0, 0, ...., 0) ∈

W since 0−
√

30 = 0 = 4 · 0. Let x, y ∈ W . Then x+ y = (a1 + b1, a2 + b2, . . . , an + bn)
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and (a1 + b1) −
√

3(a2 + b2) = (a1 −
√

3a2) + (b1 −
√

3b2) = 4a3 + 4b3 = 4(b1 + b3), so
x + y ∈ W . Finally, for any c ∈ R, cx = (ca1, ca2, ca3, . . . , can) and (ca1) −

√
3(ca2) =

c(a1 −
√

3a2) = c(4a3) = 4(ca3), so cx ∈W . By Theorem 1.3, W is a subspace of V .

(d) If W = {x ∈ V |
√

2a3 ∈ Q}, W is not a subspace of V . Indeed, W needs to be a vector
space over R. However, if c =

√
3, then cx 6∈ W since

√
2(ca3) =

√
3(
√

2a3) 6∈ Q because√
2a3 ∈ Q.

(e) If W = {x ∈ V |a1 ≤ 1}, W is not a subspace of V . Let x ∈ W be such that 0 < a1 < 1.
Then take c > 1

a1
∈ R. Then ca1 >

1
a1
a1 > 1, so cx 6∈W .

4. Let V = P (C). For given W ⊂ V , we need to determine if W is a subspace of V .

(a) If W = {f ∈ V |f(1 + i) = if(1 − i)}, W is a subspace of V . Obviously, zero vector of
V is ζ(z) ≡ 0 and ζ(1 + i) = 0 = iζ(1 − i), so ζ ∈ W . Assume that f, g ∈ W . Then
(f + g)(1 + i) = f(1 + i) + g(1 + i) = if(1 − i) + ig(1 − i) = i((f + g)(1 − i)). Hence,
f + g ∈W . Given c ∈ C, (cf)(1 + i) = c · f(1 + i) = c · if(1− i) = i((cf)(1− i)), implying
that cf ∈W . Therefore, by Theorem 1.3, W is a subspace of V .

(b) If W = {f ∈ V |f(i)2 = f(−1)2}, then W is not a subspace of V . To show this, let
f(z) = 1 and g(z) = z2. Then f(i)2 = 1 = f(−1)2 and g(i)2 = (−1)2 = 1 = g(−1)2, so
f, g ∈ W . However, f + g 6∈ W . Indeed, (f + g)(z) = 1 + z2, so (f + g)(i) = 1 + i2 = 0
and (f + g)(−1) = 1 + (−1)2 = 2. But 02 6= 22.

(c) Let W = {f ∈ V |f(iz) = if(z) + f(−z)}. To prove that W is a subspace of V , first
we check that zero function, which is the zero vector in P (C) belongs to W . Indeed, if
φ(z) = 0 for all z ∈ C, then φ(iz) = 0 = i · 0 + 0 = iφ(z) + φ(−z). Hence, φ ∈W . Then,
assume that f, g ∈ W , that is f(iz) = if(z) + f(−z) and g(iz) = ig(z) + g(−z) for all
z ∈ C. Then, (f + g)(iz) = f(iz) + g(iz) = (if(z) + f(−z)) + (ig(z) + g(−z)) = i(f(z) +
g(z)) + (f(−z) + g(−z)) = i((f + g)(z)) + (f + g)(−z), so f + g ∈W . Finally, let c ∈ C.
Then (cf)(iz) = c · f(iz) = c(if(z) + f(−z)) = icf(z) + cf(−z) = i((cf)(z)) + (cf)(−z),
which implies that cf ∈W . By Theorem 1.3, W is a subspace of V .

(d) If W = {f ∈ V |f(1) − f(i) = 0}, then W is not a subspace of V . To see this, let
f(z) = (z−1)(z−i)+1. It is easy to check that f ∈W . Let c = i. Then (cf)(1)−(cf)(i) =
i− i = i− (−i) = 2i 6= 0. Hence, cf 6∈W .

(e) If W = {f ∈ V |f(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, and aj = 0 for all j even: a0 =
a2 = a4 = a6 = · · · = 0}, then W is a subspace of V . Obviously, zero function is in W .
Without loss of generality, let n ≥ m and f(z) = a2m+1z

2m+1 +a2m−1z
2m−1 + · · ·+a3z

3 +
a1z and g(z) = b2n+1z

2n+1+b2n−1z
2n−1+· · ·+b2m+1z

2m+1+b2m−1z
2m−1+· · ·+b3z3+b1z,

where a2i+1 ∈ C, for i = 0, 1, . . . ,m, b2j+1 ∈ C, for j = 0, 1, . . . , n. Then f, g ∈ W
and (f + g)(z) = b2n+1z

2n+1 + b2n−1z
2n−1 + · · · + (a2m+1 + b2m+1)z2m+1 + (a2m−1 +

b2m−1)z2m−1+· · ·+(a3+b3)z3+(a1+b1)z, so f+g ∈W . Also, (cf)(z) = (ca2m+1)z2m+1+
(ca2m−1)z2m−1 + · · ·+ (ca3)z3 + (ca1)z, so cf ∈W when c ∈ C.

5. Given W1 and W2 subspaces of a vector space V , we need to prove that W1 ∪W2 = {x ∈
V |x ∈W1 of x ∈W2} if and only if W1 ⊂W2 or W2 ⊂W1.
⇐: Without loss of generality, assume that W2 ⊂ W1. Then, W1 ∪ W2 = W1 which is a
subspace of V .
⇒: We will prove this direction by contra-position. That is, if W1 is not a subset of W2 and
W2 is not a subset of W1, then W1 ∪W2 does not have to be a subspace of V . Indeed, if
W1 6⊂ W2, there exists w1 ∈ W1 such that w1 6∈ W2, and if W2 6⊂ W1, there exists w2 ∈ W2
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such that w2 6∈ W1. Assume that W1 ∪W2 is a subspace of V . Then w1, w2 ∈ W1 ∪W2, so
w1 + w2 ∈ W1 ∪W2, so w1 + w2 ∈ W1 or w1 + w2 ∈ W2. Without loss of generality, assume
that w1 + w2 = a ∈ W1. Then w2 = a + (−w1). Since W1 is a subspace of V , inverse of w1,
−w1, belongs to W1, as well as sum of two vectors from W1. So, w2 = a+(−w1) ∈W1, which
is a contradiction to w2 ∈W2\W1. Therefore, W1 ∪W2 is not a subspace of V .

6. Let W1 and W2 be subspaces of a vector space V .

(a) Then W1 + W2 = {x + y|x ∈ W1, y ∈ W2} is a subspace of V . Indeed, 0 ∈ W1 and
0 ∈ W2 since W1 and W2 are subspaces of V . Hence, 0 + 0 = 0 ∈ W1 + W2. Let
x1, x2 ∈W1 and y1, y2 ∈W2. Then x1 +y1, x2 +y2 ∈W1 +W2 and (x1 +y1)+(x2 +y2) =
(x1 + x2) + (y1 + y2) ∈W1 +W2 since x1 + x2 ∈W1 and y1 + y2 ∈W2, as W1 and W2 are
subspaces of V . Also, if c is a scalar, c(x1 + y1) = (cx1 + cy1) ∈W1 +W2 since cx1 ∈W1

and cy1 ∈ W2. Therefore, by Theorem 1.3, W1 + W2 is a subspace of V . Since 0 ∈ W1,
W2 = {y = 0 + y|y ∈W2} ⊂W1 +W2. Similarly, W1 ⊂W1 +W2.

(b) Let Z be a subspace of V such that W1 ⊂ Z and W2 ⊂ Z. We want to show that
W1 + W2 ⊂ Z. Indeed, since W1 ⊂ Z, for any x ∈ W1, also x ∈ Z. Similarly, for any
y ∈W2, also y ∈ Z. Hence, x+ y ∈ Z because Z is a subspace of V . But this means that
W1 +W2 = {x+ y|x ∈W1, y ∈W2} ⊂ Z.
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