MAT 240 - Problem Set 2

Due Thursday, October 2

Questions 1c), 1d), 1e), 3a), 4b), 4c), and 5 will be marked.

- 1. In each of the following parts, determine whether or not the set V with the given operations of addition and scalar multiplication, is a vector space over the given field F. If so, show that each of the axioms holds. If not, say which axioms fail to hold (and explain why).
 - a) $V = \{(a_1, a_2) \mid a_1, a_2 \in \mathbb{R}\}, F = \mathbb{R}$, with vector sum $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ and scalar multiplication $c(a_1, a_2) = (ca_1 + c - 1, ca_2 + c - 1)$.
 - b) $V = P(\mathbb{C})$ (the space of polynomial functions over \mathbb{C}), $F = \mathbb{C}$, with vector sum (f+q)(z) =f(z) + g(z), and scalar multiplication $(cf)(z) = f(cz), c \in \mathbb{C}$.
 - c) Let V be the set of functions $f: \mathbb{Z} \to \mathbb{R}$ such that f(n) > 0 for every integer n, with vector sum (f+q)(n) = f(n)q(n) and scalar multiplication $(cf)(n) = (f(n))^c, c \in \mathbb{R}$. (Notice that if t is a positive real number, then $t = e^u$ for some real number u, and if c is a real number, then $t^c = e^{cu}$.)
 - d) $V = \{(a_1, a_2) \mid a_1, a_2 \in \mathbb{F}_5\}, F = \mathbb{F}_5$, with vector sum $(a_1, a_2) + (b_1, b_2) = (a_1b_1 \pmod{5}), (a_2 + b_2) + (b_2 + b_2) +$ $(b_2) \pmod{5}$, and scalar multiplication $c(a_1, a_2) = (ca_1 \pmod{5}, ca_2 \pmod{5}), c \in \mathbb{F}_5$.
 - e) Let V be the set of functions $f: \mathbb{R} \to \mathbb{R}, F = \mathbb{R}$, with vector sum $(f+g)(t) = \frac{1}{2}(f(t) + f(t))$ f(-t) + g(t) + g(-t), and scalar multiplication $(cf)(t) = c \cdot f(t), c \in \mathbb{R}$.
 - f) Let $V = \{ (z_1, z_2) \mid z_1, z_2 \in \mathbb{C} \}, F = \mathbb{C}$, with vector sum $(z_1, z_2) + (z'_1, z'_2) = (z_1 + z'_1, z_2 + z'_2)$ and scalar multiplication $c(z_1, z_2) = (cz_1, \bar{c}z_2), c \in \mathbb{C}$. (Here, \bar{c} is the complex conjugate of c.)
- 2. Let V be a vector space over a field F. Using properties of fields and the axioms in the definition of a vector space, prove that for each choice of vector $x \in V$, the element $y \in V$ such that $x + y = \mathbf{0}$ is unique.
- 3. Assume that $n \in \mathbb{Z}$ and $n \geq 3$. Which of the following sets W of vectors $x = (a_1, a_2, \ldots, a_n) \in$ $V = \mathbb{R}^n$ are subspaces of V? If W is a subspace of V, prove it. If not, demonstrate how some property of subspace is not satisfied.
 - a) $W = \{ x \in V \mid a_1 + a_2 + \dots + a_{n-1} = a_n \}$
 - b) $W = \{ x \in V \mid a_1^2 a_3 = -a_2 \}$

 - c) $W = \{x \in V \mid a_1 \sqrt{3}a_2 = 4a_3\}$ d) $W = \{x \in V \mid \sqrt{2}a_3 \in \mathbb{Q}\}$. (Here, \mathbb{Q} is the field of rational numbers.)
 - e) $W = \{ x \in V \mid a_1 \le 1 \}$
- 4. Let $V = P(\mathbb{C})$ be the complex vector space of polynomials in one variable with complex coefficients. Which of the following subsets W of V is a subspace of V? If the subset is a subspace, prove it. If not, demonstrate how some property of subspace is not satisfied by the subset.
 - a) $W = \{ f \in V \mid f(1+i) = i f(1-i) \}$
 - b) $W = \{ f \in V \mid f(i)^2 = f(-1)^2 \}$
 - c) $W = \{ f \in V \mid f(iz) = i f(z) + f(-z) \text{ for all } z \in \mathbb{C} \}$
 - d) $W = \{ f \in V \mid f(1) \overline{f(i)} = 0 \}$
 - e) $W = \{ f \in V \mid f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0, \text{ and } a_j = 0 \text{ for } j \text{ even} : a_0 = 0 \}$ $a_2 = a_4 = a_6 = \dots = 0$
- 5. Let W_1 and W_2 be subspaces of a vector space V. Let $W_1 \cup W_2 = \{x \in V \mid x \in W_1 \text{ or } x \in W_2\}$. Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subset W_2$ or $W_2 \subset W_1$.
- 6. $\S1.3, \#23.$