Mat 240 : Notes on bases and dimension

(Material related to Section 1.6 of the text.)

Throughout these notes, assume that V is a vector space over a field F. Some useful results that appear in the text and not in these notes: Theorem 1.8; Theorem 1.11; Corollary appearing after Example 19.

Lemma 1. Let S be a subset of V and let S_0 be a subset of V such that $V = \text{span}(S_0)$. If $V \neq \text{span}(S)$, then there exists $x \in S_0$ such that $x \notin \text{span}(S)$.

Proof. Suppose that $S_0 \subset \text{span}(S)$. Then, according to an earlier theorem (Theorem 1.5 in the text: it says that if $S' \subset W$ and W is a subspace of V, then $\text{span}(S') \subset W$), since span(S) is a subspace, we must have $\text{span}(S_0) \subset \text{span}(S)$. But $V = \text{span}(S_0)$, by assumption. Therefore $V \subset \text{span}(S)$. Since $\text{span}(S) \subset V$ (by definition), we must have V = span(S). This contradicts one of the assumptions of the lemma. Therefore it is not possible to have $S_0 \subset \text{span}(S)$. Thus there exists at least one $x \in S_0$ such that $x \notin \text{span}(S)$. qed

The next lemma is one half of Theorem 1.7 in Section 1.5 of the text.

Lemma 2. Let S be a linearly independent subset of V such that $V \neq \text{span}(S)$. If $x \in V$ and $x \notin \text{span}(S)$, then the union $S \cup \{x\}$ is linearly independent.

Proof. Suppose that $x_1, x_2, \ldots, x_n \in S$ are distinct vectors in $S, c_1, c_2, \ldots, c_{n+1} \in F$, and

$$c_1x_1 + c_2x_2 + \dots + c_nx_n + c_{n+1}x = \mathbf{0}.$$

We need to show that $c_1 = c_2 = \cdots = c_{n+1} = 0$. First, suppose that $c_{n+1} = 0$. Then we have

$$c_1x_1 + c_2x_2 + \dots + c_nx_n = \mathbf{0}$$

and, from linear independence of S, we must have $c_1 = c_2 = \cdots = c_n = 0$.

To finish the proof of the lemma, we must show that c_{n+1} cannot be nonzero. Suppose that $c_{n+1} \neq 0$. Then, solving for x in terms of the vectors x_1, \ldots, x_n , we get

$$x = -c_{n+1}^{-1}c_1x_1 - c_{n+1}^{-1}c_2x_2 - \dots - c_{n+1}^{-1}c_nx_n$$

This tells us that $x \in \text{span}(S)$ (because $x_1, \ldots, x_n \in S$). But we assumed that $x \notin \text{span}(S)$. Therefore, the assumption $c_{n+1} \neq 0$ was incorrect. The only possibility is $c_{n+1} = 0$. We showed above that $c_{n+1} = 0$ implies $c_1 = \cdots = c_n = 0$. Therefore the set $S \cup \{x\}$ is linearly independent. qed

Theorem 1. Suppose $S \subset V$ is linearly independent, and $S_0 \subset V$ is a finite set such that span $(S_0) = V$. Then there is a subset S_1 of S_0 such that $S \cup S_1$ is a basis of V.

Proof. Suppose that span (S) = V. By assumption, S is linearly independent, so we have that S is linearly independent and spans (generates) V. That is, S is a basis of V.

Suppose that span $(S) \neq V$. Apply Lemma 1 to conclude that there exists $x_1 \in S_0$ such that $x_1 \notin \text{span}(S)$. Then apply Lemma 2 to conclude that since S was assumed to be linearly

1

independent, and $x_1 \notin \text{span}(S)$, the set $S \cup \{x_1\}$ is linearly independent. If $\text{span}(S \cup \{x_1\}) = V$, then $S \cup \{x_1\}$ is a linearly independent set that spans V, and the conclusion of the theorem holds if we take $S_1 = \{x_1\}$.

If span $(S \cup \{x_1\}) \neq V$, then we apply Lemma 1, relative to the set $S \cup \{x_1\}$ (instead of S) to conclude that there exists $x_2 \in S_0$ such that $x_2 \notin \text{span}(S)$. Then, according to Lemma 2, we have that $(S \cup \{x_1\}) \cup \{x_2\} = S \cup \{x_1, x_2\}$ is linearly independent. If span $(S \cup \{x_1, x_2\}) = V$, then the conclusion of the theorem holds if we take $S_1 = \{x_1, x_2\}$. Otherwise, we apply Lemmas 1 and 2 to produce $x_3 \in S_0$ such that $S \cup \{x_1, x_2, x_3\}$ is linearly independent. Because the set S_0 is finite, this process cannot continue beyond finitely many steps. That is, there exists a subset $S_1 = \{x_1, x_2, \ldots, x_m\}$ of S_0 such that $S \cup S_1$ is linearly independent and spans V. Thus $S \cup S_1$ is a basis of V and

The next theorem is related to Theorem 1.8 of Section 1.6 of the text.

Theorem 2. A finite-dimensional vector space V has a finite basis.

Proof. Take $S = \emptyset$ and S_0 a finite subset of V such that $V = \text{span}(S_0)$. Apply Theorem 1 to conclude that there exists a subset S_1 of S_0 such that $S \cup S_1$ is a basis of V. Note that $S \cup S_1 = S_1 \subset S_0$, so S_1 is a finite basis of V. qed

Theorem 3. Suppose that $V = \text{span}(S_0)$ for a subset S_0 of V that contains exactly n vectors. If S is a linearly independent subset of V, then S contains at most n vectors.

Proof. Assume that $S_0 = \{x_1, \ldots, x_n\}$. Let $S = \{y_1, \ldots, y_m\}$ be a linearly independent set containing exactly *m* vectors. Because span $(S_0) = V$, we have

$$y_1 = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

for some scalars $a_1, \ldots a_n \in F$. Since any set containing the zero vector is linearly dependent, and S is linearly independent and contains y_1 , we know that $y_1 \neq \mathbf{0}$. This means at least one a_j is nonzero. After renumbering the vectors in S_0 , we can assume that $a_1 \neq 0$. In this case, we have

$$x_1 = a_1^{-1} y_1 - a_1^{-1} a_2 x_2 - \dots - a_1^{-1} a_n x_n \in \operatorname{span}\left(\{y_1, x_2, \dots, x_n\}\right).$$

Clearly $x_2, \ldots, x_n \in \text{span}(\{y_1, x_2, \ldots, x_n\})$. So we have

$$V = \operatorname{span}\left(\{x_1, \dots, x_n\}\right) \subset \operatorname{span}\left(\{y_1, x_2, \dots, x_n\}\right).$$

It follows that $V = \operatorname{span}(\{y_1, x_2, \ldots, x_n\}).$

Next, write $y_2 = b_1y_1 + c_2x_2 + \cdots + c_nx_n$ for some scalars b_1, c_2, \ldots, c_n . If $c_2 = \cdots = c_n = 0$, then $y_2 = b_1y_1$ implies that $\{y_1, y_2\}$ is linearly dependent. But any subset of a linearly independent set is linearly independent. Since $\{y_1, y_2\}$ is a subset of the linearly independent set S, we have that $\{y_1, y_2\}$ is linearly independent. Therefore at least one c_j must be nonzero. After renumbering the vectors x_2, \ldots, x_n , we may assume that $c_2 \neq 0$. Then we have

$$x_2 = c_2^{-1}y_2 - c_2^{-1}b_1y_1 - c_2^{-1}c_3x_3 - \dots - c_2^{-1}c_nx_n,$$

2

which tells us that $x_2 \in \text{span}(\{y_1, y_2, x_3, ..., x_n\})$. Clearly, $y_1, x_3, ..., x_n \in \text{span}(\{y_1, y_2, x_3, ..., x_n\})$. So we have

$$V = \text{span}(\{y_1, x_2, \dots, x_n\}) \subset \text{span}(\{y_1, y_2, x_3, \dots, x_n\}).$$

That is, $V = \text{span}(\{y_1, y_2, x_3, \dots, x_n\}).$

If m > n, this procedure continues until all the vectors x_1, \ldots, x_n are replaced by the vectors y_1, \ldots, y_n , and we have $V = \text{span}(\{y_1, \ldots, y_n\})$. Now $y_{n+1} \in V$, so we then have $y_{n+1} \in \text{span}(\{y_1, \ldots, y_n\})$. That is, $y_{n+1} = d_1y_1 + \cdots + d_ny_n$ for some scalars $d_1, \ldots, d_n \in F$. This can be rewritten as:

$$d_1y_1 + d_2y_2 + \dots + d_ny_n + (-1)y_{n+1} = \mathbf{0}.$$

Since the last coefficient is -1 (which is nonzero), and y_1, \ldots, y_{n+1} are distinct vectors in S, this tells us that S is linearly dependent. But we assumed that S is linearly independent. Therefore it is not possible to have m > n. qed

Corollary 1. Suppose that V is a finite-dimensional vector space. Then any two bases of V contain the same number of vectors.

Proof. Let S_1 be a finite basis of V. Let n be the number of (distinct) vectors in S_1 . Let S_2 be another basis of V. Because S_2 is linearly independent, $V = \text{span}(S_1)$, and S_1 contains n vectors, Theorem 3 tells us that S_2 contains at most n vectors. Because S_1 is linearly independent, and $V = \text{span}(S_2)$, Theorem 3 tells us that n (the number of vectors in S_1) is less than or equal to the number of vectors in S_2 . Therefore S_2 cannot contain fewer than n vectors. The only possibility is therefore that S_2 contains exactly n vectors. qed

Definition. The dimension of a (finite-dimensional) vector space V is the number of vectors in a basis of V. This is written as $\dim(V)$.

Theorem 4. Let n be a positive integer. Let V be a vector space of dimension n.

- (1) If S is a linearly independent subset of V and S contains n (distinct) vectors, then S is a basis of V.
- (2) If S' is a subset of V such that V = span(S') and S' contains n vectors, then S' is a basis of V.

Proof. For (1), note that since S is assumed to be linearly independent, in order to prove that S is a basis of V, we only need to prove that V = span(S). If $V \neq \text{span}(S)$, then, taking any basis S_0 of V and applying Theorem 1, there exists a nonempty subset S_1 of S_0 such that $S \cup S_1$ is a basis of V. Now $S \cup S_1$ contains at least n + 1 vectors (because S contains n vectors, S_1 contains at least one vector, and $S \cup S_1$ is linearly independent). According to Corollary 1, it is not possible for a set containing strictly more than n vectors to be a basis of V. Therefore the assumption that $V \neq \text{span}(S)$ was false.

For (2), note that since we have assumed V = span(S'), in order to prove that S' is a basis of V, we only need to prove that S' is linearly independent. Apply Theorem 1 with $S = \emptyset$ and $S_0 = S'$ to conclude that there exists a subset \dot{S} of S' that is a basis of V. If S' is linearly dependent, then we cannot have $\dot{S} = S'$ (because \dot{S} is linearly independent), so \dot{S} is a basis of V containing at most n-1 vectors. This is impossible, because according to Corollary 1, every basis of V contains n vectors. Therefore it is impossible for S' to be linearly dependent. qed

3