
Mat 240 : Notes on bases and dimension
(Material related to Section 1.6 of the text.)

Throughout these notes, assume that V is a vector space over a field F . Some useful results
that appear in the text and not in these notes: Theorem 1.8; Theorem 1.11; Corollary appearing
after Example 19.

Lemma 1. Let S be a subset of V and let S0 be a subset of V such that V = span (S0). If

V 6= span (S), then there exists x ∈ S0 such that x /∈ span (S).

Proof. Suppose that S0 ⊂ span (S). Then, according to an earlier theorem (Theorem 1.5 in the
text: it says that if S′ ⊂ W and W is a subspace of V , then span (S′) ⊂ W ), since span (S) is
a subspace, we must have span (S0) ⊂ span (S). But V = span (S0), by asssumption. Therefore
V ⊂ span (S). Since span (S) ⊂ V (by definition), we must have V = span (S). This contradicts
one of the assumptions of the lemma. Therefore it is not possible to have S0 ⊂ span (S). Thus
there exists at least one x ∈ S0 such that x /∈ span (S). qed

The next lemma is one half of Theorem 1.7 in Section 1.5 of the text.

Lemma 2. Let S be a linearly independent subset of V such that V 6= span (S). If x ∈ V and

x /∈ span (S), then the union S ∪ {x } is linearly independent.

Proof. Suppose that x1, x2, . . . , xn ∈ S are distinct vectors in S, c1, c2, . . . , cn+1 ∈ F , and

c1x1 + c2x2 + · · ·+ cnxn + cn+1x = 0.

We need to show that c1 = c2 = · · · = cn+1 = 0. First, suppose that cn+1 = 0. Then we have

c1x1 + c2x2 + · · ·+ cnxn = 0,

and, from linear independence of S, we must have c1 = c2 = · · · = cn = 0.
To finish the proof of the lemma, we must show that cn+1 cannot be nonzero. Suppose that

cn+1 6= 0. Then, solving for x in terms of the vectors x1, . . . , xn, we get

x = −c−1
n+1c1x1 − c−1

n+1c2x2 − · · · − c−1
n+1cnxn.

This tells us that x ∈ span (S) (because x1, . . . , xn ∈ S). But we assumed that x /∈ span (S).
Therefore, the assumption cn+1 6= 0 was incorrect. The only possibility is cn+1 = 0. We showed
above that cn+1 = 0 implies c1 = · · · = cn = 0. Therefore the set S ∪ {x } is linearly independent.
qed

Theorem 1. Suppose S ⊂ V is linearly independent, and S0 ⊂ V is a finite set such that

span (S0) = V . Then there is a subset S1 of S0 such that S ∪ S1 is a basis of V .

Proof. Suppose that span (S) = V . By assumption, S is linearly independent, so we have that S is
linearly independent and spans (generates) V . That is, S is a basis of V .

Suppose that span (S) 6= V . Apply Lemma 1 to conclude that there exists x1 ∈ S0 such
that x1 /∈ span (S). Then apply Lemma 2 to conclude that since S was assumed to be linearly
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independent, and x1 /∈ span (S), the set S ∪ {x1 } is linearly independent. If span (S ∪ {x1 }) = V ,
then S ∪ {x1 } is a linearly independent set that spans V , and the conclusion of the theorem holds
if we take S1 = {x1 }.

If span (S ∪ {x1 }) 6= V , then we apply Lemma 1, relative to the set S ∪ {x1 } (instead of S)
to conclude that there exists x2 ∈ S0 such that x2 /∈ span (S). Then, according to Lemma 2, we
have that (S ∪ {x1 }) ∪ {x2 } = S ∪ {x1, x2 } is linearly independent. If span (S ∪ {x1, x2 }) = V ,
then the conclusion of the theorem holds if we take S1 = {x1, x2 }. Otherwise, we apply Lemmas 1
and 2 to produce x3 ∈ S0 such that S ∪ {x1, x2, x3 } is linearly independent. Because the set S0

is finite, this process cannot continue beyond finitely many steps. That is, there exists a subset
S1 = {x1, x2, . . . xm } of S0 such that S ∪ S1 is linearly independent and spans V . Thus S ∪ S1 is
a basis of V .qed

The next theorem is related to Theorem 1.8 of Section 1.6 of the text.

Theorem 2. A finite-dimensional vector space V has a finite basis.

Proof. Take S = ∅ and S0 a finite subset of V such that V = span (S0). Apply Theorem 1
to conclude that there exists a subset S1 of S0 such that S ∪ S1 is a basis of V . Note that
S ∪ S1 = S1 ⊂ S0, so S1 is a finite basis of V . qed

Theorem 3. Suppose that V = span (S0) for a subset S0 of V that contains exactly n vectors. If

S is a linearly independent subset of V , then S contains at most n vectors.

Proof. Assume that S0 = {x1, . . . , xn }. Let S = { y1, . . . , ym } be a linearly independent set
containing exactly m vectors. Because span (S0) = V , we have

y1 = a1x1 + a2x2 + · · ·+ anxn

for some scalars a1, . . . an ∈ F . Since any set containing the zero vector is linearly dependent, and
S is linearly independent and contains y1, we know that y1 6= 0. This means at least one aj is
nonzero. After renumbering the vectors in S0, we can assume that a1 6= 0. In this case, we have

x1 = a−1
1 y1 − a−1

1 a2x2 − · · · − a−1
1 anxn ∈ span ({ y1, x2, . . . , xn }).

Clearly x2, . . . , xn ∈ span ({ y1, x2, . . . , xn }). So we have

V = span ({x1, . . . , xn }) ⊂ span ({ y1, x2, . . . , xn }).

It follows that V = span ({ y1, x2, . . . , xn }).
Next, write y2 = b1y1 + c2x2 + · · ·+ cnxn for some scalars b1, c2, . . . , cn. If c2 = · · · = cn = 0,

then y2 = b1y1 implies that { y1, y2 } is linearly dependent. But any subset of a linearly independent
set is linearly independent. Since { y1, y2 } is a subset of the linearly independent set S, we have
that { y1, y2 } is linearly independent. Therefore at least one cj must be nonzero. After renumbering
the vectors x2, . . . , xn, we may assume that c2 6= 0. Then we have

x2 = c−1
2 y2 − c−1

2 b1y1 − c−1
2 c3x3 − . . .− c−1

2 cnxn,
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which tells us that x2 ∈ span ({ y1, y2, x3, . . . , xn }). Clearly, y1, x3, . . . , xn ∈ span ({ y1, y2, x3, . . . , xn }).
So we have

V = span ({ y1, x2, . . . , xn }) ⊂ span ({ y1, y2, x3, . . . , xn }).

That is, V = span ({ y1, y2, x3, . . . , xn }).
If m > n, this procedure continues until all the vectors x1, . . . , xn are replaced by the vec-

tors y1, . . . , yn, and we have V = span ({ y1, . . . , yn }). Now yn+1 ∈ V , so we then have yn+1 ∈
span ({ y1, . . . , yn }). That is, yn+1 = d1y1 + · · · + dnyn for some scalars d1, . . . , dn ∈ F . This can
be rewritten as:

d1y1 + d2y2 + · · ·+ dnyn + (−1)yn+1 = 0.

Since the last coefficient is −1 (which is nonzero), and y1, . . . , yn+1 are distinct vectors in S, this
tells us that S is linearly dependent. But we assumed that S is linearly independent. Therefore it
is not possible to have m > n. qed

Corollary 1. Suppose that V is a finite-dimensional vector space. Then any two bases of V

contain the same number of vectors.

Proof. Let S1 be a finite basis of V . Let n be the number of (distinct) vectors in S1. Let S2 be
another basis of V . Because S2 is linearly independent, V = span (S1), and S1 contains n vectors,
Theorem 3 tells us that S2 contains at most n vectors. Because S1 is linearly independent, and
V = span (S2), Theorem 3 tells us that n (the number of vectors in S1) is less than or equal to the
number of vectors in S2. Therefore S2 cannot contain fewer than n vectors. The only possibility is
therefore that S2 contains exactly n vectors. qed

Definition. The dimension of a (finite-dimensional) vector space V is the number of vectors in a
basis of V . This is written as dim(V ).

Theorem 4. Let n be a positive integer. Let V be a vector space of dimension n.

(1) If S is a linearly independent subset of V and S contains n (distinct) vectors, then S is a basis

of V .

(2) If S′ is a subset of V such that V = span (S′) and S′ contains n vectors, then S′ is a basis of

V .

Proof. For (1), note that since S is assumed to be linearly independent, in order to prove that S

is a basis of V , we only need to prove that V = span (S). If V 6= span (S), then, taking any basis
S0 of V and applying Theorem 1, there exists a nonempty subset S1 of S0 such that S ∪ S1 is a
basis of V . Now S ∪ S1 contains at least n + 1 vectors (because S contains n vectors, S1 contains
at least one vector, and S ∪S1 is linearly independent). According to Corollary 1, it is not possible
for a set containing strictly more than n vectors to be a basis of V . Therefore the assumption that
V 6= span (S) was false.

For (2), note that since we have assumed V = span (S′), in order to prove that S′ is a basis of
V , we only need to prove that S′ is linearly independent. Apply Theorem 1 with S = ∅ and S0 = S′

to conclude that there exists a subset Ṡ of S′ that is a basis of V . If S′ is linearly dependent, then
we cannot have Ṡ = S′ (because Ṡ is linearly independent), so Ṡ is a basis of V containing at most
n − 1 vectors. This is impossible, because according to Corollary 1, every basis of V contains n

vectors. Therefore it is impossible for S′ to be linearly dependent. qed
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