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Differential Forms, the Early Days; 
or the Stories of Deahna's Theorem 

and of Volterra's Theorem 
Hans Samelson 

This is a short informal history of the beginning of differential forms, up to the 
time of de Rham's work. It started with my being curious about how Poincare actually 
stated Poincare's Lemma. There were some surprises, mainly that Poincare's Lemma 
is due to another person, and the same for the well known Frobenius Theorem. 

I did look up everything that I quote. But of course I haven't looked up everything; 
when I say that something appeared first at such and such a place, I mean that I haven't 
come across an earlier reference. 

Let us recall briefly what differential forms are and do: They are generalizations of 
the well known expressions Pdx + Qdy and Adydz + Bdzdx + Cdxdy that func- 
tion as integrands of line or surface integrals and represents things like work done 
moving along a curve in a force field or the flux of a vector field through a surface. 
Thus a differential form co, of degree r, defined in some open set in n-space R n (coor- 
dinates xl, x2, ... ., xn), is an expression of the form E3 aili2...ir dxi1dxi2 ... dXir, where 
the "coefficients" a... are (suitably differentiable) functions, and where the "differen- 
tials" dxi are symbols associated with the coordinates xi (they are actually 1-forms, 
with coefficient 1). 

The basic rule for multiplication of the dxi is skew-symmetry: dxidxj = -dxjdxi. 
In particular one has dxidxi = 0. (This makes the appearance of Jacobians automatic: 
e.g., if x and y are functions of u and v, then dxdy = (x d u + xvd v) (y d u + yvd v) = 
xuyududu + xuyvdudv + xvyudvdu + xvyvdvdv = 0 + xuyvdudv - xvy,dudv + 
0 - _(x_y) dudv. The algebraic context is exterior algebra.) In line with this the a.. are 
usually taken skew-symmetric in their indices; for the above example Adydz + 
this would mean rewriting it as 1/2Adydz - 1/2Adzdy + *. 

For a function f of the xi one defines the "differential" df as the 1-form E3 fx dxi. 
(Thus the dxi are the differentials of the functions xi.) 

For integration of an r-form over any oriented r-manifold in the domain of def- 
inition of co one represents the manifold locally parametrically by writing the xi as 
functions of r variables ua that are adapted to the orientation of the manifold. The 
differentials dxi now become 1-forms in the dua, and the form co reduces (by "multi- 
plying out") to a single term A du 1 du2 ... dUr, where A is a function of the u,. (This is 
the "restriction" of the form to the manifold.) One forms the usual integral of this over 
the appropriate region in ua-space and combines the local contributions (using a par- 
tition of unity) to get the integral of co over the whole manifold. (Parenthetically, there 
is a slightly different way of integrating something over a manifold, namely when the 
manifold carries some kind of distribution-matter or electricity or ... -with a den- 
sity p. On the manifold an area-element dA is given, and finds the total mass or charge 
as f p dA. This reduces of course again to local integrals, using local parametrizations. 
An orientation of the manifold is here usually not required.) 

The next thing is to extend the operation d (as in df) to all forms: One forms the 
"exterior derivative" dco by replacing each coefficient a.. by its differential da... (and 
again "multiplying out"), resulting in an (r + 1)-form. It turns out, quite formally, that 
the operation dd (d applied twice) is always 0 (from fxy = fyx). 
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Finally, the main fact, Stokes's theorem: If N is an oriented (r + 1)-manifold, with 
boundary manifold SN = M (appropriately oriented), then the integral of co over M 
equals the integral of dco over N: fN dco = fSN co. (Note: the boundary SN is closed; 
its boundary is empty.) 

This concludes our very short overview of what differential forms are and do. All 
of it makes good sense in any manifold instead of just R'. 

The beginning of the idea of differential forms is certainly what was later called 
the "total differential" of a function f of two (real) variables x, y: the expression 
df = fxdx + fydy, interpreted as giving the change in f if one changes x and y 
by (small) amounts dx and dy. I don't know where this originated, but it was well 
known in Euler's days. 

Around 1740 A.C. Clairaut [7, pp. 294-297], Euler [14, pp. 176-179], and 
(reportedly-see [7, p. 294]) A. Fontaine [15] [16], apparently independently, had 
the idea to investigate when an expression Pdx + Qdy, where P, Q are functions of 
x and y, is the differential of a function. (Actually Euler's work was earlier, 1734- 
1735, but it appeared only in 1740.) First they establish the commutativity relation 
fxy = fyx, then the necessary condition Py = Qx, and go on to show that the latter is 
sufficient: They assume f in the form f Pdx + r where r is a function of y only, thus 
assuring fx = P, and then show that one can determine r so that fy = Q (here the 
necessary condition comes in, via f Pydx = f Qxdx). This is not really an existence 
proof, since the integrals are indefinite and there is no assurance of their existence. 

Clairaut in [7], in a footnote on p. 294, says that Euler and Fontaine had the same re- 
sult, Euler's work just appearing in [14] and Fontaine presenting his work to the Royal 
Academie in Paris the same day that Clairaut was lecturing about it there. According 
to [12] Fontaine's work appears in [15] (I could not trace this book, and consulted [16] 
which may well be the same book); all I could find there however, on p. 26, are the two 
statements: d f itdx = f a" dx and the necessary condition: If do = Adx + Bdy, 

then aA =aB 
ay ax, 

Later Cauchy noted that one can interpret the argument as giving the formula 
f = o P (x, yo) dx + fj9- Q (x, y) dy, where now the integrals are definite, proving 
existence (modulo appropriate hypotheses); he also gave the corresponding formula 
for R'. All this is in [23, vol. 2, pp. 339-341,488-490] (the book is based on Cauchy's 
lectures plus some other material). 

But it took some time before it was realized that, if the integrability conditions 
hold, the line integral depends only on the endpoints of the curve (assuming simple 
connectedness of the domain-nobody worried about that at the time); and only late in 
the eighteen hundreds did Morera notice that one can find the function f by integrating 
along the straight segment from a fixed point po to the variable point p (or indeed any 
other curve). 

In fact, Clairaut, Euler, and Fontaine went further. They studied the question when 
a form Pdx + Qdy + Rdz is "completely integrable" (we discuss the concept below). 
It amounts here to the existence of a "multiplier", a function M such that M(Pdx + 
Qdy + Rdz) is differential of a function. Euler gave the necessary (and as it turned 
out later, also sufficient) "integrability conditions" in [13], Clairaut had them in an 
implicit form [8] and (according to Clairaut) Fontaine had them as equations for M. 
(Incidentally, Euler seems to have considered forms that do not satisfy the integrability 
conditions as illegal. Some time later Monge noted that such expressions make some 
sense, because one can satisfy them by taking the variables as suitable functions of one 
variable [13, Op. Omn., preface, p. IX].) 
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The next step was taken in [25], 1814-15 by J. Pfaff, a well known German mathe- 
matician (a contemporary French mathematician-I have forgotten who (Laplace?)- 
was asked about the best mathematician in Germany and answered "J. Pfaff"; upon 
"What about Gauss?", he said "Gauss is the best mathematician in all of Europe"). He 
introduced the idea of finding integral manifolds, submanifolds (of as high a dimension 
as possible) of the space, on which a given differential form aldxl + a2dx2 + ... + 

andxn vanishes (reduces to the form 0). Here the ai are given functions (C?, say) of 
the real variables xl, x2, ... Xn 

This became known as Pfaff's problem [18], [21]. 
In this context Pfaff looked for a normal form for such expressions under change of 

variables. His answer was that one can find (locally, of course) either systems of func- 
tions (fil . ., fr, g1, . ., gr) or systems (f, fi, ... . fr, gi' . . ., gr) with independent 
differentials, such that the 1-form can be written as Er fidgi or df + Er fidgi. (One 
could then take these functions as part of a new coordinate system.) The number r is 
called the class of the 1-form. A special case is that where the form can be written 
as df, i.e., where it is a total differential. (In R2n+1 a form of maximal class n, thus 
essentially dz + Yi dxl + + yn dXn with coordinates xi, yi z, is called a contact 
form.) 

Pfaff's work was continued mostly in the direction of what now is called the Frobe- 
nius theorem, the basic and constantly used theorem about the solution manifolds of a 
system of 1-forms. This is the question of "complete integrability of a system of r 1- 
forms coi": What are the conditions under which these forms have (n - r)-dimensional 
integral manifolds, in the sense that one can find r independent (i.e., with everywhere 
independent differentials) functions fi, f29 ..., fr such that the integral manifolds are 
given by putting the fi equal to arbitrary constants? (It looks like the-almost too 
simple-case where the coi are just dxl, dx2, ... , dXr and the fi can be taken as the 
Xl, ... , Xr.) This is, at least at first, a local problem; one asks for a solution in suffi- 
ciently small open sets. 

There is a "dual" version of the problem, in terms of vector fields: A vector Xx at a 
point x is given by its components t, . . ., tn. It operates on functions defined near x 
by Xx f = limt,o (f (x + tXx) - f (x))/t) = E Zi fx, (x); this is "the derivative of 
f along Xx". (Operating on the coordinate xi gives the component ti.) We should also 
mention that a differential form acts at each point x as a linear function on the space 
of vectors at x, by co (Xx) = E ai (x) .i 

A vector field X assigns to each x a vector Xx, in a C? way (the components are C? 
functions); and then for any function f the derivative "along X" is a new function Xf 
with Xf (x) = Xx f. A vector field X also defines a flow, along its "integral curves", 
in its region of definition; this amounts to solving the ordinary differential equations 
dx/dt = X.) 

Dual to the differential d for forms is the operation [] ("bracket"), which assigns 
to two vector fields X, Y the vector field XY - YX. This is to be understood by op- 
erating on functions, with XYf meaning the result of applying X to the function Yf. 
This seems to involve second derivatives, but they drop out because fxy = fyx. Exer- 
cise: find the components of [XY] in terms of those of X and Y (apply [XY] to the 
coordinate functions xi). 

The complete integrability question now reads as follows: Let X1, ..., Xr be r vec- 
tor fields (assumed independent at each x). Under what conditions can one find n - r 
independent functions fi, . . ., fn-r such that the Xi nullify the fj ? (Geometrically, the 
Xi are tangent to the manifolds given by setting all fj equal to constants.) 

Back to history. 
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Jacobi in [21] treated the case of a system of commuting vector fields (satisfy- 
ing [XY] = XY - YX = 0 for any two fields in the system). This is actually pretty 
straightforward: one takes a small (n - r)-surface that is transversal to the vectors 
at a point, and then lets the flows of the fields act on the surface. A. Clebsch at- 
tempted and maybe succeeded (see comments in [17]) in reducing the general case to 
Jacobi's. The work was continued and extended by many people; see ([21], [24], [8], 
[17], [20], [10], [22], [11]). In the long paper [17] Frobenius reviewed what had been 
done before and gave his own proof, introducing the concept of the "bilinear covari- 
ant" of a 1-form (it amounts to the exterior derivative). It is from here that Frobenius's 
name got attached to the theorem; he himself didn't give it any name. In the paper 
Frobenius notes that much earlier, in 1840, the paper [11] by F. Deahna stated and 
gave a proof for the full Frobenius theorem (Frobenius goes through and simplifies the 
proof). The paper seems to have been completely overlooked until Frobenius referred 
to it. 

Thus Frobenius's Theorem is really Deahna's Theorem (unless some earlier author 
appears). 

The way Deahna stated his condition is quite different from that of the other authors 
and might have been difficult to understand at the time, although from today's point 
of view it makes good sense and is to my mind the one form that really tells what is 
going on: 

The now customary form of the conditions (the dcoi are in the ideal generated by the 
awi, or the commutators [Xi Xj] are linear combinations 1 fkXk of the Xk with func- 
tions fk as coefficients) are short and clean, but not very intuitive. Deahna's version, 
pushed a little, says: A system of independent 1-forms {c,i }ln-, looked at (equivalently) 
as a field of r -planes (an r -distribution in the sense of Chevalley), is completely in- 
tegrable, if and only if it is invariant under the flow generated by any vector field that 
lies everywhere in the distribution. (He states the condition in terms of the "variation" 
of the forms under such vector fields, without much explaining what this variation is; 
it is in fact the Lie derivative.) Later E. Cartan took up Pfaff's problem again in his 
paper [4], where he treats it in the language of (first order) differential forms and their 
"covariants" (exterior derivatives), which had been introduced by Frobenius and Dar- 
boux. In this paper he also introduces, quite formally, differential forms of higher order 
and their exterior derivatives (without mentioning Poincare); actually the only higher 
forms he uses are what he calls the higher derivatives, i.e., the powers of the exterior 
derivative of the given form w) and their products with a) itself. 

A couple of years later Cartan investigated a more general problem, which appar- 
ently had been considered only once earlier, by 0. Biermann [1], namely that of finding 
integrals for a (not completely integrable) system of several Pfaffian (first order) forms 
w1. Put differently, one is given a distribution D of p-planes and wants to find "in- 
tegral" manifolds of maximal possible dimension whose tangent planes at each point 
are contained in the plane of D, in other words, such that the restriction of the given 
1-forms to the manifold vanish. In his very innovative approach he first notices that 
the exterior derivatives dcai also restrict to 0 on an integral manifold (his description 
is difficult to read; using the language of his time, he says that at each point the inte- 
gral element must belong to several "complexes", a complex in Rn or projective space 
being defined by a skew symmetric bilinear form; the confusion with complex num- 
bers is what made Weyl introduce the greek version "symplectic"), and accordingly 
introduces the notion of an integral element (consisting of a point and a subspace of 
the space assigned to the point by D, i.e., on which the coi vanish, and on which also 
the dcoi restrict to 0) and of increasing chains (flags) of such elements of dimensions 
1, 2, . .. at a point; the main strategy is then inductive, trying to extend an integral el- 
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ement and integral manifolds of some dimension to one of the next higher dimension. 
(He assumes that everything is real-analytic.) 

Higher dimensional forms (without the name) had of course been around for a while 
in the guise of multiple integrals, extended over suitable surfaces, although usually one 
considered only a fixed surface with a mass or charge distribution, so that the presence 
of a form was not easily detected. There is an quite remarkable paper by Cartan [6] 
in which he (re)discovered integral geometry (obviously he hadn't heard of Crofton's 
work, e.g., expressing the length of a curve in the plane as an integral of the number 
of points of intersection with a variable straight line [9]). In it differential forms, as 
integrands of multiple integrals, defined in all of space and capable of being integrated 
over any "surface" (of the right dimension), are in the forefront. The manifolds in 
which he operates are those of interest for integral geometry: the (two-dimensional) 
space of lines in the plane, the spaces of lines or planes in 3-space (of dimension 4 or 
3). Cartan finds the integrands that are invariant under the groups of motion in these 
spaces, and derives Crofton's formula and similar results. 

The next big step comes with Poincare. In his relatively early paper [26], whose 
main purpose is a discussion of residues of (complex) double integrals, he quite ca- 
sually, with not much definition, introduces the general notion of a p-form for any p 
and immediately derives the "integrability conditions" (in essence the vanishing of the 
exterior derivative). 

Integrability means for him that the integral of the form over a p -manifold depends 
only on the boundary of the manifold, and the integrability conditions are derived by 
considering a one-parameter family of manifolds with the same boundary. 

In [27] he again takes up the matter. He states, again quite casually, that there is a 
general Stokes theorem, i.e., that to any p-form to there is an associated (p + l)-form, 
defined by the integrability conditions (and which we now call the exterior derivative 
dcv) such that the integral of the form over any closed p-manifold equals the integral of 
the associated form over any (p + 1)-manifold that has the p-manifold as boundary. 
He states, again casually, that iterating this process "gives nothing" (in our terms, dd 
is 0), deduced either from formal computation or from the fact that for a form d4r the 
integral over any closed manifold vanishes (via Stokes's theorem for /), and so the 
integrability conditions hold for it. 

Next comes, with more emphasis, but without proof or even any comment that a 
proof is necessary or possible, the converse: given a p-form co whose integral over 
any closed manifold is 0, then there is a (p - 1)-form, let's say /, that stands to c in 
the relation described by Stokes's theorem (so that co = dfr; he calls such an cv exact). 
Thus we have here the non-trivial half of what today one calls the Poincare Lemma: co 
is d4r for some / (c is "exact") if and only if dc) = 0 (c is "closed"). (The trivial half 
is the relation dd = 0.) For p = 1 this is the Clairaut-Euler-Fontaine theorem about 
Pdx + Qdy described earlier (note d(Pdx + Qdy) = (Qx - Py)dxdy). 

Actually there are two versions here: The Lemma as now understood is local; cv is 
given in some neighborhood of a point, and f has to exist only in a smaller neigh- 
borhood of the point. For Poincare, cv seems to have been defined in all of TR and 
he seems to assert the existence of 4r also in all of RI. That is a stronger statement; 
however the proofs for the two are pretty much identical. 

The Lemma expresses an important property of differential forms; it can be re- 
garded as the basis for their usefulness in topology and other places. 

The presentation of all this is made more complicated and more difficult to under- 
stand by the fact that Poincare's concern is actually integral invariants, i.e., differential 
forms that are invariant under the flow generated by a given vector field X (the interest 
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coming from mechanics); the converse of Poincare's lemma occurs within an argument 
about integral invariants. 

Apparently it took quite a while for people to realize that the converse does need a 
real proof. In [18, p. 335] Goursat "deduces" the existence of 4 with d4 = c if dw 
vanishes by saying that this amounts to some differential equations for the coefficients 
of 4 and that dwo = 0 means that "the integrability conditions are satisfied". It is only 
in 1922 that both Cartan and Goursat in their books [2, p. 71] and [19, p. 105] state 
and give a detailed proof for the existence. NB: Goursat uses the term "exacte" for a 
form that today one calls closed, i.e., one whose exterior derivative vanishes. 

Cartan's proof is for all of ]R as domain. He adds that the result is not necessarily 
true for other domains. As an example he gives the case of a sphere Y xi2 = 1 as 
"domain", where for an (n - 1)-form (automatically closed) one has an additional 
necessary condition, namely that the integral of the form over the sphere must be 0 (by 
Stokes: the integral of d4V over Sn-1 equals the integral of 4 over the boundary of the 
sphere, which is empty, and so the integral is 0). This seems to be the first time that a 
global fact or a connection between differential forms and the topology of manifolds 
was noted; it is the first hint of De Rham's Theorem. 

Some time after I had written all this, Ted Frankel pointed out to me a reference 
that he had gotten from de Rham's book [29, pp. 83 and 105], which changes the story 
radically. It brings in a new player, Vito Volterra, and the upshot is that Poincare's 
Lemma is really Volterra's Theorem. His work is contained in several Notes pub- 
lished in the Rendiconti of the Accademia dei Lincei [30]. It came out of his idea of 
"funzione delle linee", functions of curves (functionals), meaning (mainly real or com- 
plex valued) functions on the space of either all curves, closed or not, or all closed 
curves, and later on the space of either all (closed or not) or all closed r-dimensional 
manifolds (always with a given orientation), in RI. He seems to have had in mind 
embedded C?-manifolds. Also, curves are allowed to have corners; for r-manifolds 
angles (locally of the type of two half-spaces with the same boundary (r - 1)-space) 
are allowed. Continuity and differentiability of functionals is defined; the latter via 
infinitesimal variations of the manifold given by a vector field in Rn defined on the 
manifold. 

His interest in this topic came from physics, in particular electromagnetism: things 
like the force from a magnetic field or a current flowing through a wire. 

In practice such functionals are of course mostly given by (multiple) integrals, but 
Volterra thought of them as "arbitrary" functions. However he singled out a special 
class: An r-functional (D for closed r-manifolds is called simple or offirst degree, if 
it satisfies the following additivity condition: Suppose two closed r-manifolds Sl, S2 
"overlap", i.e., have in common a r-submanifold (with boundary) on which they induce 
opposite orientations (they might make an angle along the boundary of the submani- 
fold). (Think of two spheres in 3-space that touch along a flattened disk.) Write S12 for 
the closed manifold obtained as the union of S, and S2 with the common submanifold 
removed; then (P(S12) equals P(SI) + 1(S2). 

For such a CF he defines a (r + 1)-functional for arbitrary (r + 1)-manifolds S, 
which one might well call dCF, by the Stokes rule dCF(S) = CF(SS) (with 8 meaning 
boundary) and then proves (it is not clear how rigorous the proofs are) that dCD is 
what amounts to an (r + 1)-form: dCD(S) is given by an integral over S with skew- 
symmetric coefficients. For such systems of coefficients he immediately defines what 
amounts to the exterior derivative, states the Stokes Formula, and says that it can be 
established as in the standard case. He notes that dCF is a closed form, i.e., that the 
coefficients satisfy the relevant integrability condition. 
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In the third of the notes [30] he states and proves explicitly, as Theorem 1, both 
parts of the Poincare Lemma, of course in terms of the skew-symmetric coefficients of 
what would be a differential form and its exterior derivative; he never mentioned forms 
as such. The existence proof (for all of R' or some "rectangle" in it) is by induction on 
dimension, reducing it to the problem of writing a function f on TR as a divergence 

a agil /axi, which is trivial (one simply prescribes r - 1 of the gi and initial values 
for the last one). 

Thus Poincare's Lemma is really Volterra's Theorem (unless some earlier author 
appears). 

There is quite a lot more. First, since Volterra has shown already that d'P "is" a 
closed (r + 1)-form, it follows now that any simple 1 itself is an r-form. Next he 
defines the Hodge star operator * (and the associated operators, which have become 
so very important in the theory of harmonic forms, Yang-Mills fields, etc.): it assigns 
to any r-form an (n - r)-form by *dxi1dXi2 ...dXir = dxj,dXj2 ...dXj,,-r, where the 
iu and the j, together give an even permutation of {1, 2, . .. , n}. He does not mention 
forms of course, but writes it out in terms of a system of coefficients. Then comes the 
"co-d" operator d* or 8, defined as *d* (up to a sign), again not introduced explicitly, 
but written down within a corollary to Theorem I as the operation on the system of 
coefficients (corresponding to an (r + 1)-form) yielding Ei, aaili2...ir,itl/xit, and the 
"Poincare Lemma" for this operator. (There is a small mistake in his formula; he has 
the sum over t, which would give 0 by skewness.) Then come Theorems 2 and 3, which 
say in effect d d* + d* d = A (i.e., equal to the standard Laplacean in R n), which 
relation has become important in the theory of harmonic forms. All quite amazing. 

His reason for developing all this is his idea of generalizing the notion of harmonic 
functions and of conjugate functions from the theory of functions of a complex vari- 
able. In effect he calls two forms 7r, K of degrees r - 1 and n - r - 1 conjugate, if 
*dr = dK. It follows at once that then K and -i7 are also conjugate, and that both dir 
and dK are closed (d = 0), coclosed (d* = 0), and harmonic (A = 0). It also follows 
that, given a harmonic r-form it, the two forms d * It and *d, are conjugate (up to 
some sign). He then proves the converse: two conjugate forms always come in this 
way from a harmonic form. It doesn't seem to follow that iv and K are themselves 
harmonic. He thought this generalization of the notion of conjugate functions very 
interesting, but I don't know what came of it. 

A note on Volterra's life, as reported in his obituary in [30]: In 1931 he refused 
to take the loyalty oath that the Fascists in Italy required of all state employees. He 
was dismissed from his position and gradually had to relinquish all his other offices 
and activities. He died in Rome in 1940. In 1943 an SS detachment appeared at his 
house, with orders to arrest him, for transport to one of the German concentration- 
extermination camps in Eastern Europe... 

Next in the story comes a quantum jump: de Rham's thesis. Apparently in the mean- 
time Cartan and maybe others had formed the idea that there was indeed a connection 
between forms and topology. In [3] Cartan explicitly stated, and in [28] de Rham 
proved (among other things) the basic conjecture, now known as de Rham's theo- 
rem: In a closed (sufficiently) differentiable manifold a p-form whose integral over all 
p-cycles vanishes is exact, i.e., is an exterior derivative, and, given n independent p- 
cycles zi and n real numbers ri, there exists a p-form whose integral over zi is ri. Thus 
de Rham cohomology, the vector space of closed forms modulo exact forms is the 
dual or transpose of real homology, the vector space of cycles (with real coefficients) 
modulo boundaries.) 

This is the beginning of the "modem" phase where the appearance of differential 
forms in topology is ubiquitous, and is the end of our story. 
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Two more remarks: 

1. It is probably not widely known that de Rham in his thesis also computed the 
compact cohomology of R' (which uses only forms with compact support, i.e., 
0 outside some compact set), with the result that it is 0 in all dimensions less 
than n, and that an n-form with compact support is derivative of an (n - 1)-form 
of compact support exactly if its integral over R n is 0; [28, Lemme II, p. 170 = 
p. 56]. 

2. Although de Rham's thesis topic came from E. Cartan's investigations, his thesis 
advisor was H. Lebesgue or at any rate the thesis is dedicated to Lebesgue. The 
"Rapport sur la These" is by E. Cartan. 

As a final note we must mention an area that in a sense anticipated, by a considerable 
time span, the theory of differential forms and that only fairly recently was recognized 
as an equivalent of the theory of forms for the case of Euclidean 3-space (with its 
customary metric), namely the vector calculus, developed by Stokes, Maxwell, and 
others, with its "*" and "x" products, its differential operators grad, curl, and div, 
which correspond to the exterior derivative d on 0-, 1-, and 2-forms), its identities, and 
its basic theorems (Gauss's divergence theorem, Stokes's theorem for surfaces, and 

fJ f'(x) dx = f (b) -f (a) (one half of the fundamental theorem of Calculus), which 
are instances of "the" Stokes theorem for differential forms. 
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