Point grantum systems:

Spin chains

classical phase space:

$$\frac{S^2 \times S^2 \times \dots \times S^2}{\text{number of vertices}}$$

graph: vertices

X (finite set) E = unordered distinct pairs of vertices

Phase space :

Quantum system:

each vertex ∞ endowed ω Hilbert space

=> Hilbert space of joint system = H = & Vx

Hamiltonian is chosen to reflect structure of graph,

i.e. if x1, x2 are joined by edge,

X, X₂

then we want V_{x_1} , V_{x_2} to interact — we want an interaction Hamiltonian

Hxxx & Obs (Vx, &Vx)

The total Hamiltonian is then

$$H = \sum_{e \in E} H_e \otimes I_{e^{\perp}}$$
 or complement of e.

He eff interaction between vertices in e

Main problem: figure out eigenspace decoup.

=> energy levels ==

=> eigenstates (the lowest being
the "ground state")

(diagonalize H => evolution întine eist 72)

Difficult: even for $V_{\infty} = \mathbb{C}^2$

H= \SV_{\chi_i} has dim 2^n

(blyond current capab. n > 30)

main idea we will use to build these: representation theory of SU(2). each Vx will be a repin of SU(2) su(2) provides us with self-adjoint helpful since Repin π: SU(2) → GL(Vx) $\pi(g_i,g_2) = \pi(g_i) \pi(g_2)$ $\pi': Su(2) \longrightarrow L(V_x)$ $\sigma_i \longmapsto \pi'(\sigma_i) \in Obs(V_{\infty})$ If V, W are representations of SU(2) then a Homomorphism of regins is a Linear map respects Such morphisms are called <u>Intentiviners</u> Interaction Hamiltonians ⇒ we can ask for the $\bigvee_{\mathbf{x}_1} \otimes \bigvee_{\mathbf{x}_2} \longrightarrow \bigvee_{\mathbf{x}_1} \otimes \bigvee_{\mathbf{x}_2}$

٠			to	. (حو	s p e	çt	. ፓ	rbie	sent	istic	% 2								•	
			Sud	h a	. dra	به دو		esul	ts	ma	· ·	Spî	بر د	hai	ام	ملائد	SI	wz))	
			. Sy	Zmu	ich	ን														
<u>M</u>	<u>ນ໌</u> ທ	ex	am	ple			leis	ienls	ug		5 Pî	h •	1,2					•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
•		•						•	٠		•				•		•	•	•	
																			•	
•		•	•				•	٠	•		•	•	•	•	۰	•	•	•	•	•
																			•	
																			•	
																			•	
•	•						•	•	•		•	•	•	•	•	•	•	•	•	•

Aside! Irreducible f.d. Repn of SU(2). Repins of Su(2) (Repins of Su(2) by exp. Repris of 50(3) maximal torus (in general (111)") Infinitesimal gen. of $U(1) = i \left(\frac{1}{0}, \frac{0}{1} \right) \in Su(2)$ If (V,π) is a reprint of $SU(2) \implies$ is a reprod U(1)=> U(1) action on C vector space V

$$\pi(i-1) = \begin{cases} R_2 \\ k_n \end{cases}$$

$$\pi(e^{i0}) = \exp(i0) \begin{cases} k_1 \\ k_n \end{cases}$$

$$\begin{cases} \text{each summand } V_k \text{ is } 1\text{-dink irred} \\ \text{Nefin sof U(1)} \end{cases}$$

$$\begin{cases} \text{eio.} v = \text{eiko} \\ \text{o.} v = \text{eiko} \end{cases}$$

$$(\text{note needed to complexify to get such decorp})$$

$$\Rightarrow \frac{2u(2) \otimes C}{2^{1/2}} \quad \text{actmy on } V$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = (0) = E \\ \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{cases} \sqrt{1} + i \sqrt{2} = \sqrt{1} = \sqrt{1} = (0) = E \end{cases}$$

$$\begin{bmatrix} H, E \end{bmatrix} = 2E$$

$$\begin{bmatrix} H, F \end{bmatrix} = -2E$$

$$\begin{bmatrix} E, F \end{bmatrix} = H$$
were

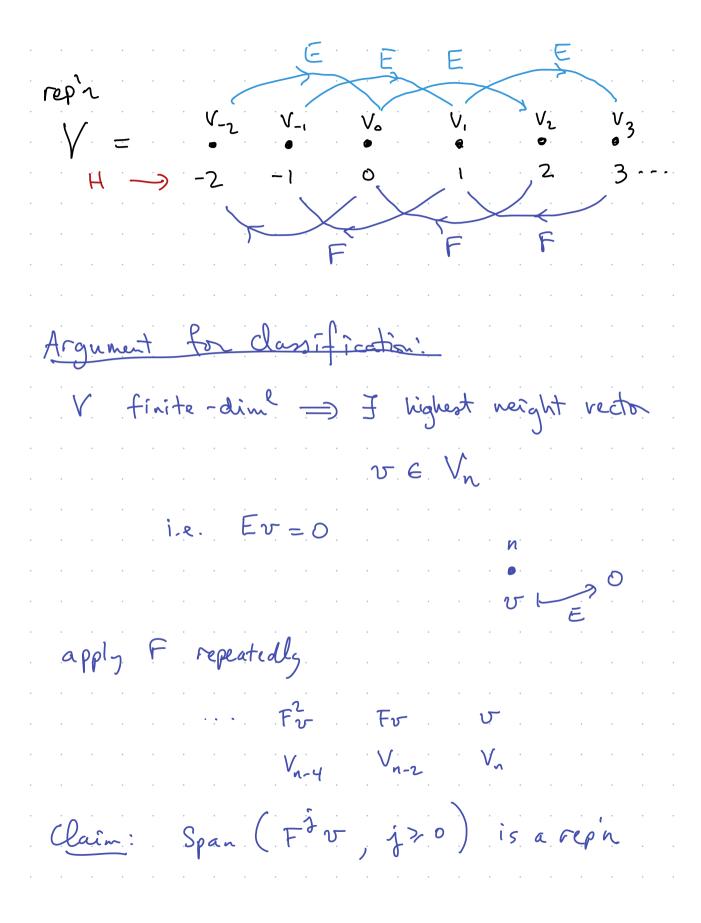
 $v \in V_{k}$ weight k $(= \pi(H)v)$ H v = kv H(Ev) = EHv + 2Ev

= (k+2) Ev

E raises H-eigerval by 2

HFv = FHv - 2Fv = (k-2)Fv

F lowers weight by 2.



	i.e. H, E, F preserve the span.
EFU	$= EF(F^{j-1}v)$
	= (H + FE) F3-1~
	= $(n-2(j-1))F^{j-1}v_n + FEFF^{j-2}v$
	HAPE) HAR
	= $(n-2(j-1))F^{j-1}v + (n-2(j-2))F^{j-1}v$
	$= j_n - 2(1+2+\cdots+j-1) + j-1$
	$= j(n-j+1) F^{j-1} $
if j	is first index st. $F^{\hat{j}}v = 0$
then	formula above =>
	formula above \Rightarrow $EF^{j}v = j(h-j+1)F^{j-1}v$ nonzero.
	$ \mathcal{J} = \mathcal{J} = \mathcal{J} $
	Vn repa
	n-2(21) 1-4 n-2 n Symmetrie

Ex.; din 1	Suce acts by 1 (trivial rep'n (1-d) $\pi(E _{\tau}\pi(H), \pi(F) = 0$)
din 2	Standard" $V = \mathbb{C}^2$ $H = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $E = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
din 3	$\pi(H) = \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix}$
	$\pi(E) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
din Y	$\pi(F) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Thm:	Fidin, irreps of SU(2) have u	eight,
	-n, $-n+2$, $n-2$, n	_
		classified.

Note:
$$\frac{1}{2}(\frac{1}{-1}) = H$$
 alternative basis choice.

In general to study Repris of G torus u(1) SU(3) W(1) × W(1) (() =) Paint / lovery Main tool needed from repr theory:

decomposition:

V₂
$$\otimes$$
 V₂ \otimes V₂ \otimes ... \otimes V_N = direct sum of irreducibles on list on list which ones?

The SU(2) irreps which descend to SO(3) are those for which
$$\pi(-1) = 1$$

$$e.g.: \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -a \\ -b \end{pmatrix}$$

vector (3d) repin can be described as auadratic polys in std repin

(a², ab, b²)

(-1).
$$a^2 = a^2$$

ab = ab

 $b^2 = b^2$

$$\Rightarrow \quad (a^2, ab, b^2)$$

(std reprint Start reprint of sols)

(Su(2) = Spin(2))

(Classif. of Lie groups & Regins

Most important onco: Simple groups, Semisimple groups

A \Leftrightarrow Sln C

B e^{ab} Spin(a) orthog.

B e^{ab} Spin(b) spin

E \Leftrightarrow E₆, E₇ E₈ exceptional

F \Leftrightarrow Fy

G \Leftrightarrow S₂ 14