```
QM axioms, Amplitudes, probability, pure 4 mixed states
```

Basic insight of QM: Enhancement of probability theory

normally probability of event is $P \in [0,1]$ in QN have something more fundamental than P: amplitude $a \in \mathbb{C}$ which implies prob. $P = |a|^2$

Slogan: (. If something can happen in different ways 1, 2, ... n then $P = P_1 + P_2 + \cdots + P_n$

 $a = a_1 + \cdots + a_n$

 $P = |a|^2 + |a|^2$

· If outcome is a result of a succession of events

$$P = P_1 P_2 \cdots P_n$$

$$a_1 = a_1 \cdots a_n$$

Axioms I) Kinematics: states + observables State of system is described by nonsero vector 4 & H / {0} in a \mathbb{C} v.space equipped w hermitian inner product $(\mathbb{C}^n, \langle u, v \rangle = \overline{u}^T v)$ (in infinite-dim case require completenes ... Hilbert space) we consider 4~4' when 3 zec* z4=4' State space: $(\mathcal{H} \setminus \{0\})_{\mathbb{C}^*} = \mathbb{P} \mathcal{H}$ complex projective space. $(f) \mathcal{H} = \mathbb{C}^n, \qquad \mathbb{P}(\mathbb{C}^n) = \mathbb{C}P^{n-1}$ $\left[\Xi_{1}:_{1}\Xi_{2}:_{2}\cdots:\Xi_{n}\right]$ [(3+i) =1: (3+i) =2: ...: (3+i) =n] Idea: suppose X = {x,,..., x, } are possible outcomes of measurement 1PH > [2,: 72: ...: 7] state amplitudes for finding x1,...,xn outcomes x_1 x_2 probability p_i for finding outcome x_i is $P_i = \frac{|z_i|^2}{|z_i|^2 + \dots + |z_n|^2}$

Observables are self-adjoint operators

 $X: \mathcal{H} \longrightarrow \mathcal{H}$

 $\times_{\star} = \times$

and give rise to decomposition

H = D H

eigenspace de composition

for simplicity assume X is regular (distinct eigenvals)

$$\mathcal{H} = \bigoplus_{i=1}^{N} \mathbb{C} \left(\mathcal{F}_{i} \right)$$

rector in H eigenvector of X w/ e-val x;

 $|x_i\rangle = x_i |x_i\rangle$

Interpret $\{|x_i\rangle,...,|x_n\rangle\}$ as different outcomes

of measurement of observable X.

Measurement axiom:

Suppose system în state 4 E X

If we "measure" observable X (Born Rule)

i) If ψ is e-vector of χ $\chi \psi = \chi \psi$ then outcome is $\underline{\lambda}$

ii) If $\gamma = \alpha_1 | \lambda_1 \rangle + \alpha_2 | \lambda_2 \rangle + \cdots + \alpha_n | \lambda_n \rangle$ $= -\text{vectors of } \chi$

then outcome uncertain:

 λ_1 with prob. $|\alpha_1|^2 + \cdots + |\alpha_n|^2$

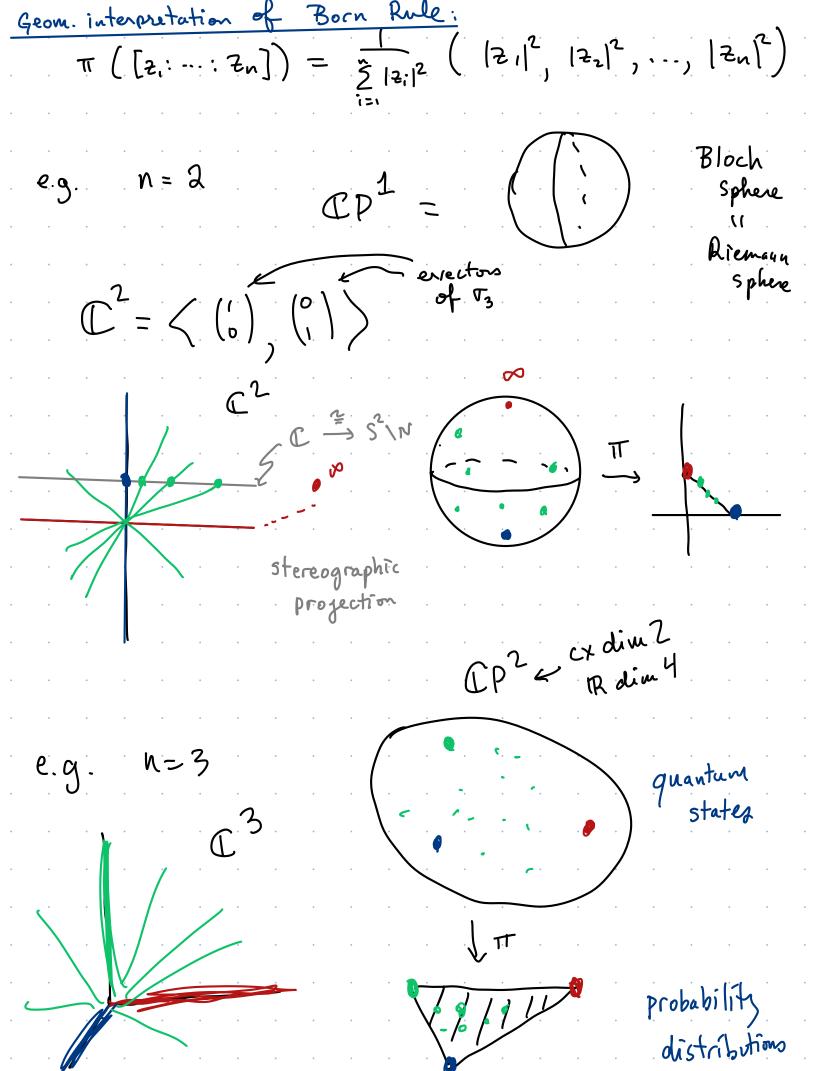
 λ_2 ... $(\alpha_2)^2$... $(\alpha_1)^2$

 $\frac{|(\alpha_n|^2)^2}{|\alpha_n|^2+\cdots+|\alpha_n|^2}$

Kinematics	Classical	QM
state space	M_{1} M_{2} M_{2} M_{3}	PX
Observables	C (M)	Self-adjoint
		Self-adjoint operators.
Dynamics	H (P19)= XH(P19)	H dy=-iH4
		2,,, 2,) + (0,0,,0)
) given observ	abole X (assume regula	n and order eigenvalues).
		on R).
can identify	$\mathcal{H} = \mathbb{C}^n$	
$\mathcal{P}\mathcal{H} = \emptyset$	CPn-1 > [Z,:: Zn]	set of probability dist.
	a map CPn-1 T	n-simplex
then there is	2 map CPn-1 -	> \(\sigma = \{ (x_1,, x_n) \in \mathbb{R}^n \)
. X2		and 5x = 1
		and $5x = 1$?

X,

1,0



Prints: If X is a reg. Observable $\Rightarrow H = \bigoplus_{i=1}^{n} \mathbb{C}[X_i]$ eigenspaces

 $X = \begin{pmatrix} x_1 \\ 0 \\ x_n \end{pmatrix}$

=> I a collection of Observables

 $H_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad H_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \dots \quad H_{N}$

which - commute w/ X [X, Hi] = 0

- commute with each other [Hi, Hi] = 0

each of these defines Lie alg. element

-iH,, -iHz, --, -iHn & ru(n)

 $U(n) = unitary operators on <math>(C^n, \langle , \rangle)$ = symmetries of Quantum State space => unitary rotations C (e 1) $e^{-it_2H_2H_2H_2} \left(e^{-it_2H_2H_2} \right)$ e-itn Hn =) action of U(1) × U(1) × ···· × U(1) on CPⁿ⁻¹, respecting TT Toric

manifold

Toric

manifold

Toric

manifold

Toric

Money

Toric

T Dynamics:

to get motion of states, must select an observable H (Hamiltonian) operator

states evolve via the eq. of motion

 $\frac{d \Upsilon}{dt} = -i H \Upsilon$

this gives unitary evolution

 $+(t) = e^{-itH}$

Heisenbug's
base space

Preview: (H, H,)

(7-12, H2)

joint system: 7(8) H2 > u, & v, + u2 & v2 + ... + u8 v4

joint Hamiltoniae: H, & I + I & Hz = H

 $H\left(u\otimes v\right) = \left(H_{1}u\right)\otimes v + u\otimes \left(H_{2}v\right)$

if

H14= 24 () H2V = MV)

H (nev) = 2 nev + muev = (λ+m) · u & v

if X = Obs (H1) then

 $X \otimes I = Obs(\mathcal{H}_1 \otimes \mathcal{H}_2)$

X; set outcomes of system 1

$$\mathbb{C}_{X_1 \times X_2} = (\mathbb{C}_{X_1}) \otimes (\mathbb{C}_{X_2})$$

C.f. Heisenberg: focus on one observable, outcomes set
$$X$$

$$X \times X \qquad \text{Ohs} = \mathbb{C}^{X \times X} \quad \exists \quad A$$

$$t \mid J^{s}$$

$$AY = t_*(As^*Y) = AY$$
operator acting
on rector.