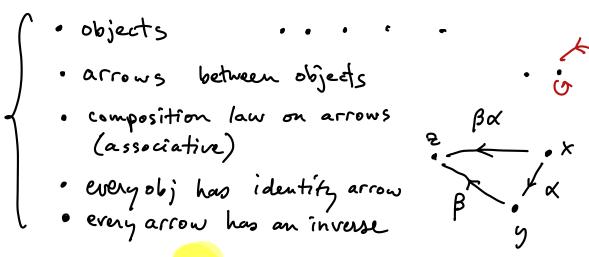
Intro to Groupoids:



Objects:

arrows !

G "groupeid"

each arrow has a source and target

 $G \longrightarrow X$

Identity

Inverse

<mark>i:</mark> G→G

Composition:

 $\{(g_2, g_1) : t(g_1) = s(g_2)^2\}$

Ex.: Pair gro-poid of set Γ $G = \Gamma \times \Gamma$

 $G = \Gamma \times \Gamma$ $\chi = \Gamma$

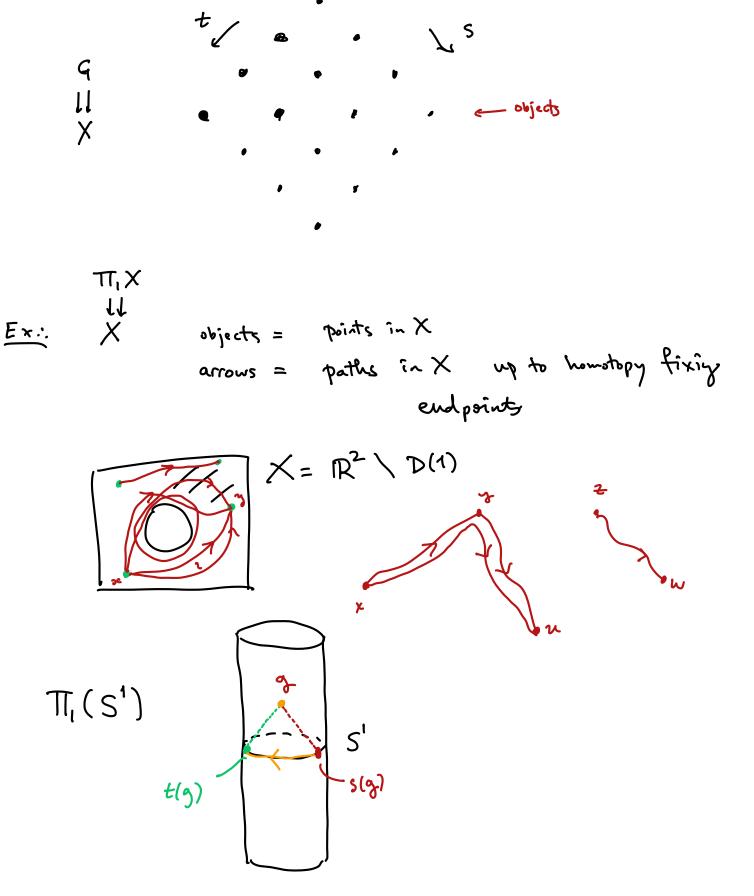
 $m\left((z,y)(y,x)\right):=(z,x)$

i(y,x) = (x,y)

 $Id_{x} = (x, x)$

r = {····}

Rydberg - Ritz combination principle: if Imn and Dek are observed frequencies (corresp. to $\frac{1}{m^2} - \frac{1}{n^2}$ and $\frac{1}{8^2} - \frac{1}{8^2}$) and if n=l then 2mn + 2nk = 2mk is observed. (almost alwacp true) Heisenberg: what we actually observe are "virtual oscillators" corresponding to Em-En differences. Rydberg - Ritz (=> Composition in groupoid Arrows (n,m), (l,k) are composable only it S(n,m) = mn m = l k coincides with t(2, k) = L A compose and comp. is h R (n,k)



observable quantities (f° of state) Heisenberg's main îdea: have Fourier representation involving frequencies six: [x[-> R $\gamma_{Ri} = -\gamma_{iR}$ i.e. homomorphism $Pair(\Gamma) \xrightarrow{\sim} (R,+)$ i.e. given (k,j)(j,i) = (k,i)in Dair (17) in Pair (17) 7 xj + 7 ji = 7 ni i.e. a fⁿ of state (observable) has form $q: Pair(\Gamma) \longrightarrow \mathbb{C}$ (Fourier weffs) s.t. $q(i,j) = \overline{q}(j,i)$ q^* i.e. i*q = q \implies i*q = q matrix version: self-adjoint.

To get dynamics: specify an observable

For the atoms above:

Vi freq. of $H(i,j) = \begin{cases} 0 & i \neq j \\ h \gamma_i & i = j \end{cases}$

Time evolution:
$$\left(c.f. \frac{dq}{dt} = \{H, q\}\right)$$

$$\frac{dq}{dt} = \frac{2\pi i}{h} \left(H * 9 - 9 * H \right)$$

$$[H, 9]$$

$$(q_1 * q_2)(j_1 z) = \sum_{k} q_1(j_k) q_2(k,i)$$

Convolution product of f^{ns} on a groupoid.

(automatically associative due to fact groupoid is)

matrix multiplication

$$(H * q)(j,i) = \sum_{k} H(j,k) g(k,i)$$

= $h \nu_{j} g(j,i)$

$$(g * H)(j,i) = 2 g(j,k) H(k,i)$$

= $h \approx g(j,i)$

$$[H,q] = h(\gamma_j - \gamma_i)q(j,i)$$

$$2j_i = 2\pi i \qquad (\gamma_{ji})q_{ji}$$

$$g_{ji} = g_{ji}(0)e$$

In this way, Heisenberg identified quantum analogue of pris on state space. Hamilton's evol. of such first

What are the states themselves?

Born: states = nonzero vectors in \mathbb{C} v.space spanned by \mathbb{M} objects = $\mathbb{C}^{\mathbb{M}} = \text{functions } \mathbb{M} \to \mathbb{C}$

if $\Gamma = \{x_1, \dots, x_n\}$ a state: $a_1 \times_1 + \dots + a_n \times_n \quad a_i \in \mathbb{C}$ $(a_1, \dots, a_n) \neq 0$

the coefficients $(a_1,...,a_n)^E$ are probability amplitudes for finding system in corresponding basic state $\in \Gamma$ prob. amplitude determine prob. via $|a|^2$

Details: Equiv. rele on quantum states $f_1 \sim f_2$ in C^T when $\exists \lambda \in C^X$ $\lambda f_1 = f_2$

True QM state space:

Complex 1-d subsp. of C

= IP(C^r) projective space.

Born rule: given a state

 $\gamma = a_1 x_1 + \cdots + a_n x_n$

a; e C

normalize:
$$\gamma = \frac{a_1 x_1 + \cdots + a_n x_n}{\sqrt{|a_1|^2 + \cdots + |a_n|^2}}$$

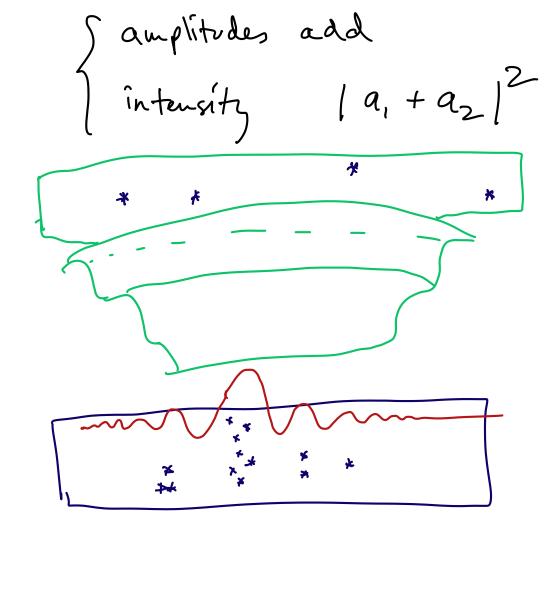
1412 = 1

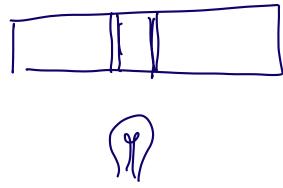
prob. amplitude for findig system in basic state X:

is
$$\frac{a_i}{\sqrt{|a_i|^2 + \dots + |a_n|^2}} \in \mathbb{C}$$

 \Rightarrow prob, for firelig system in x_i is $\frac{|a_i|^2}{\sum_{k} |a_k|^2}$

probabilistic ideas derive from wave nature of light (soln to wave equation) in which waves can be added (vectors in a V. Space)





interference pattern (the EM wave)

has intensity predicting probability of defecting photon

Born: () We can only predict probabilities (sometimes)

100%

2) there are probability amplitudes (beyond standard prob, theory)

can be added, govern observables,

evolution equation controls then,

we solve for the.

Main conceptual difficulty:

"Measurement" problem: when we observe a system, we always get a basic state $xi \in \Gamma$

Kinematrics: States \mathbb{C}^{n} states pice $\mathbb{C}^{n\times n}$ observables \mathbb{C}^{n} on state spice $\mathbb{C}^{n\times n}$ of $\mathbb{C}^{n\times n}$ observables $\mathbb{C}^{n\times n}$ on $\mathbb{C}^{n\times n}$ of $\mathbb{$

V an a ...

$$(k+)(l) = \sum_{k} K(l,k) + (k)$$

$$k+ = t_{*}(K * +)$$

we can evolve states:

$$\frac{d}{dt}Y = \frac{i}{t}H \cdot Y$$

and can evolve observables

$$\frac{d}{dt}q = \frac{i}{t}[H,q]$$