1. Hamiltonian Mechanics

Begin with a smooth nanifold X

"the configuration space"

eg.
$$X = (R, q)$$

$$X = (R^{n}, (q', ..., q^{n}))$$

$$X = (R^{n}, (q', ..., q^{n}))$$

$$X = S^{1} = \left\{ z \in \mathbb{C} : |z| = 1 \right\}$$

$$q = coordinate with $q \sim q + 2\pi$

$$\ddot{q} = \theta''$$$$

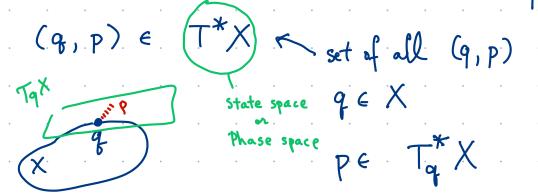
$$X = S^n \in \mathbb{R}^{n+1}$$
 $S^n = \{ (q^n, ..., q^n) \in \mathbb{R}^{n+1} : \hat{Z}(q^n) = 1 \}$

Purpose of Ham. mechanics: Predict future past based agon present.

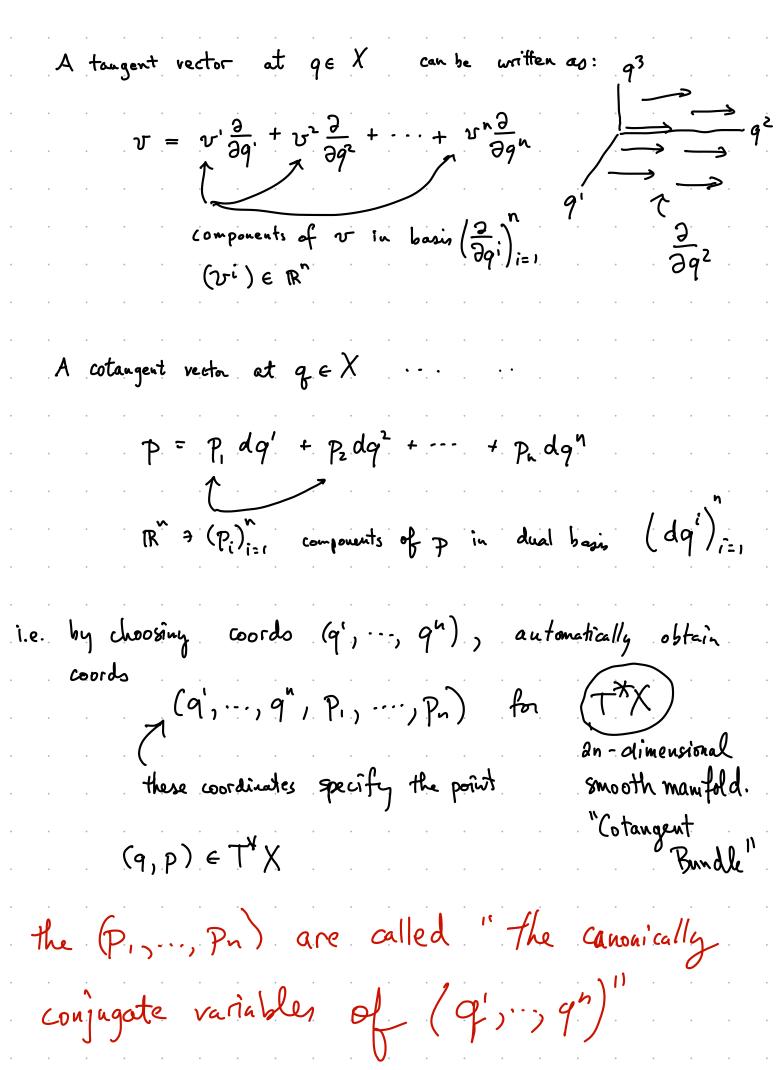
Future not determined simply by position i.e. configuration,

rather it is determined uniquely by the STATE

A STATE in Hamiltonian medionics consists of fq position p momentum



p(v) is the momentum in direction va Tq X



Main Idea: the evolution in time of the state (9, P) & TX is the flow of a vector field on TX X = S Zero momenta Zero Section! S'XR cylinder. T*X (9,1P) $\int_{0}^{1} tT \int_{0}^{1} tT$ projection map The "equation of motion" is the equation for a flow-line of vector field,

this uniquely determines dynamics

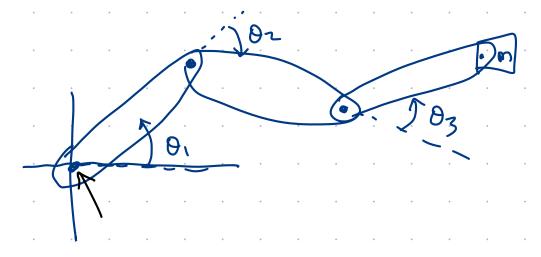
More	precisely	· .	Phase s	space M	= T*X	. has	. ه.	
natural								
called	a symple	ectic for	,, μ	hich de	termine		Poisson	
bracke	<i>t</i>	{\bar{\}_{i}, \} :	C ()	1) × ($C^{\infty}(M)$	$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \end{array}$	C ~ (M)) /
	rovides							
· · · · · · · · · · · · · · · · · · ·	$(M)^{\infty}$				> X	(M)		•
fund	tions on phase	e space			Vec	for field	pace.	
	f H			$\xrightarrow{1}$	X	Vector	field Those 5	pace
This is								•
detern	vim?	time	evol	ution.				
	1 1 t				X_{H}	<u> </u>	ine evoluti	
Hamilte = "Energy	onian fu	uction		•				
= "Enery	ָט" יי							•

Summary: The mathematical model underlying Hamiltonian mechanics is (X, H)

↑ ← H∈ C[∞](T*X) - Smooth mftd note on dual spaces V € R-Vect V^* dual of V V^* = $Hom(V, \mathbb{R})$ Linear maps V^* (V^* , V^* not canonically isomorphic) V* dual of V If V is equipped w/ wonder inner product <,>: V × V _____ R

then $V \xrightarrow{2} V^*$ $u \longmapsto \langle u, - \rangle$

is an isomorphism



R = (9',92)

Configurations:
$$X = S \times S \times S$$

$$Q = (9!, 9^2, 9^3)$$

$$(0', 0^2, 0^3)$$

If initial hinge free to move on table

$$X = \mathbb{R}^2 \times (5^1)^3$$

N particles in a box

$$X = \left(\begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \end{bmatrix}\right)^{N}$$

$$X = \left(\begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \end{bmatrix} \right)^{N}$$

 $(N \sim 10^{23})$ Jim 3N