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Now we investigate the measure of the critical values of a map f : M −→ N where dimM = dimN . Of
course the set of critical points need not have measure zero, but we shall see that because the values of f on
the critical set do not vary much, the set of critical values will have measure zero.

Theorem 1.38 (Equidimensional Sard). Let f : M −→ N be a C1 map of n-manifolds, and let C ⊂ M be
the set of critical points. Then f(C) has measure zero.

Proof. It suffices to show result for the unit cube. Let f : In −→ Rn a C1 map and let C ⊂ In be the set of
critical points.

Let a be the Lipschitz constant for f, In, obtained from the mean value equation

f(y)− f(x) = Df(z)(y − x), (17)

and let Tx be the affine map approximating f at x, i.e.

Tx(y) = f(x) +Df(x)(y − x). (18)

Then subtracting equations (17),(18), we obtain

f(y)− Tx(y) = (Df(z)−Df(x))(y − x). (19)

Since Df is continuous, there is a positive function b(ε) with b→ 0 as ε→ 0 such that

||f(y)− Tx(y)|| ≤ b(|y − x|)||y − x||.

If x is a critical point, then Tx has vanishing determinant, meaning that it maps Rn into a hyperplane
Px ⊂ Rn (i.e. of dimension n − 1). If ||y − x|| < ε, then ||f(y) − f(x)|| < aε, and by (19), the distance of
f(y) from Px is less than εb(ε).

Therefore f(y) lies in the cube centered at f(x) of edge aε, but only εbε in distance from the plane Px.
Choose the cube to have a face parallel to Px, and we conclude f(y) is in a region of volume (aε)n−12εb(ε).

Now partition In into hn cubes each of edge h−1. Any such cube containing a critical point x is certainly
contained in a ball around x of radius r = h−1

√
n. The image of this ball then has volume ≤ (ar)n−12rb(r) =

Arnb(r) for A = 2an−1. The total volume of all the images is then less than

hnArnb(r) = Ann/2b(r).

Note that A and n are fixed, while r = h−1
√
n is determined by the number h of cubes. By increasing the

number of cubes, we may decrease their radius arbitrarily, and hence the above total volume, as required.

The argument above will not work for dimN < dimM ; we need more control on the function f . In
particular, one can find a C1 function from I2 −→ R which fails to have critical values of measure zero
(hint: C + C = [0, 2] where C is the Cantor set). As a result, Sard’s theorem in general requires more
differentiability of f .

Theorem 1.39 (Big Sard’s theorem). Let f : M −→ N be a Ck map of manifolds of dimension m, n,
respectively. Let C be the set of critical points, i.e. points x ∈ U with

rank Df(x) < n.

Then f(C) has measure zero if k > m
n − 1.

Proof. As before, it suffices to show for f : Im −→ Rn.
Define C1 ⊂ C to be the set of points x for which Df(x) = 0. Define Ci ⊂ Ci−1 to be the set of points x

for which Djf(x) = 0 for all j ≤ i. So we have a descending sequence of closed sets:

C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck.

We will show that f(C) has measure zero by showing
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1. f(Ck) has measure zero,

2. each successive difference f(Ci\Ci+1) has measure zero for i ≥ 1,

3. f(C\C1) has measure zero.

Step 1: For x ∈ Ck, Taylor’s theorem gives the estimate

f(x+ t) = f(x) +R(x, t), with ||R(x, t)|| ≤ c||t||k+1,

where c depends only on Im and f , and t sufficiently small.
If we now subdivide Im into hm cubes with edge h−1, suppose that x sits in a specific cube I1. Then any

point in I1 may be written as x + t with ||t|| ≤ h−1
√
m. As a result, f(I1) lies in a cube of edge ah−(k+1),

where a = 2cm(k+1)/2 is independent of the cube size. There are at most hm such cubes, with total volume
less than

hm(ah−(k+1))n = anhm−(k+1)n.

Assuming that k > m
n − 1, this tends to 0 as we increase the number of cubes.

Step 2: For each x ∈ Ci\Ci+1, i ≥ 1, there is a i+ 1th partial ∂i+1fj/∂xs1 · · · ∂xsi+1 which is nonzero at x.
Therefore the function

w(x) = ∂kfj/∂xs2 · · · ∂xsi+1

vanishes at x but its partial derivative ∂w/∂xs1 does not. WLOG suppose s1 = 1, the first coordinate. Then
the map

h(x) = (w(x), x2, . . . , xm)

is a local diffeomorphism by the inverse function theorem (of class Ck) which sends a neighbourhood V of
x to an open set V ′. Note that h(Ci ∩ V ) ⊂ {0} × Rm−1. Now if we restrict f ◦ h−1 to {0} × Rm−1 ∩ V ′,
we obtain a map g whose critical points include h(Ci ∩ V ). Hence we may prove by induction on m that
g(h(Ci ∩ V )) = f(Ci ∩ V ) has measure zero. Cover by countably many such neighbourhoods V .
Step 3: Let x ∈ C\C1. Then there is some partial derivative, wlog ∂f1/∂x1, which is nonzero at x. the
map

h(x) = (f1(x), x2, . . . , xm)

is a local diffeomorphism from a neighbourhood V of x to an open set V ′ (of class Ck). Then g = f ◦ h−1

has critical points h(V ∩C), and has critical values f(V ∩C). The map g sends hyperplanes {t} ×Rm−1 to
hyperplanes {t} ×Rn−1, call the restriction map gt. A point in {t} ×Rm−1 is critical for gt if and only if it
is critical for g, since the Jacobian of g is (

1 0
∗ ∂gi

t

∂xj

)
By induction on m, the set of critical values for gt has measure zero in {t}×Rn−1. By Fubini, the whole set
g(C ′) (which is measurable, since it is the countable union of compact subsets (critical values not necessarily
closed, but critical points are closed and hence a countable union of compact subsets, which implies the same
of the critical values.) is then measure zero. To show this consequence of Fubini directly, use the following
argument:

First note that for any covering of [a, b] by intervals, we may extract a finite subcovering of intervals
whose total length is ≤ 2|b−a|. Why? First choose a minimal subcovering {I1, . . . , Ip}, numbered according
to their left endpoints. Then the total overlap is at most the length of [a, b]. Therefore the total length is at
most 2|b− a|.

Now let B ⊂ Rn be compact, so that we may assume B ⊂ Rn−1 × [a, b]. We prove that if B ∩ Pc has
measure zero in the hyperplane Pc = {xn = c}, for any constant c ∈ [a, b], then it has measure zero in Rn.

If B ∩ Pc has measure zero, we can find a covering by open sets Ric ⊂ Pc with total volume < ε. For
sufficiently small αc, the sets Ric × [c− αc, c+ αc] cover B ∩

⋃
z∈[c−αc,c+αc] Pz (since B is compact). As we
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vary c, the sets [c− αc, c+ αc] form a covering of [a, b], and we extract a finite subcover {Ij} of total length
≤ 2|b− a|.

Let Rij be the set Ric for Ij = [c−αc, c+αc]. Then the sets Rij × Ij form a cover of B with total volume
≤ 2ε|b− a|. We can make this arbitrarily small, so that B has measure zero.

Corollary 1.40. Let M be a compact manifold with boundary. There is no smooth map f : M −→ ∂M
leaving ∂M pointwise fixed. Such a map is called a smooth retraction of M onto its boundary.

Proof. Such a map f must have a regular value by Sard’s theorem, let this value be y ∈ ∂M . Then y is
obviously a regular value for f |∂M = Id as well, so that f−1(y) must be a compact 1-manifold with boundary
given by f−1(y)∩ ∂M , which is simply the point y itself. Since there is no compact 1-manifold with a single
boundary point, we have a contradiction.

For example, this shows that the identity map Sn −→ Sn may not be extended to a smooth map
f : B(0, 1) −→ Sn.

Lemma 1.41. Every smooth map of the closed n-ball to itself has a fixed point.

Proof. Let Dn = B(0, 1). If g : Dn −→ Dn had no fixed points, then define the function f : Dn −→ Sn−1

as follows: let f(x) be the point nearer to x on the line joining x and g(x).
This map is smooth, since f(x) = x+ tu, where

u = ||x− g(x)||−1(x− g(x)),

and t is the positive solution to the quadratic equation (x+ tu) · (x+ tu) = 1, which has positive discriminant
b2 − 4ac = 4(1− |x|2 + (x · u)2). Such a smooth map is therefore impossible by the previous corollary.

Theorem 1.42 (Brouwer fixed point theorem). Any continuous self-map of Dn has a fixed point.

Proof. The Weierstrass approximation theorem says that any continuous function on [0, 1] can be uniformly
approximated by a polynomial function in the supremum norm ||f ||∞ = supx∈[0,1] |f(x)|. In other words,
the polynomials are dense in the continuous functions with respect to the supremum norm. The Stone-
Weierstrass is a generalization, stating that for any compact Hausdorff space X, if A is a subalgebra of
C0(X,R) such that A separates points (∀x, y,∃f ∈ A : f(x) 6= f(y)) and contains a nonzero constant
function, then A is dense in C0.

Given this result, approximate a given continuous self-map g of Dn by a polynomial function p′ so that
||p′ − g||∞ < ε on Dn. To ensure p′ sends Dn into itself, rescale it via

p = (1 + ε)−1p′.

Then clearly p is a Dn self-map while ||p− g||∞ < 2ε. If g had no fixed point, then |g(x)− x| must have a
minimum value µ on Dn, and by choosing 2ε = µ we guarantee that for each x,

|p(x)− x| ≥ |g(x)− x| − |g(x)− p(x)| > µ− µ = 0.

Hence p has no fixed point. Such a smooth function can’t exist and hence we obtain the result.
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