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1.7 Transversality

We shall now continue to use the inverse and constant rank theorems to produce more manifolds, except now
these shall be cut out only locally by functions. We shall ask when the intersection of two submanifolds yields
a submanifold. You should think that intersecting a given submanifold with another is the local imposing
of a certain number of constraints.

Two subspaces K,L ⊂ V of a vector space V are called transversal when K + L = V , i.e. every vector
in V may be written as a (possibly non-unique) linear combination of vectors in K and L. In this situation
one can easily see that

dimV = dimK + dimL− dimK ∩ L.
We may apply this to submanifolds as follows:

Definition 11. Let K,L ⊂M be regular submanifolds such that every point p ∈ K ∩ L satisfies

TpK + TpL = TpM.

Then K,L are said to be transverse submanifolds and we write K ∩| L.

Note: at this point, we have not defined the tangent bundle of a manifold, but we may understand tangent
spaces locally, in each chart. We may make sense of this as follows: Let k : K −→ M and l : L −→ M be
the inclusion maps. Then we may consider TpK,TpL to be the images of the derivatives of k and l, in charts
for K,L,M . Transversality then requires that these images span Rm, where m = dimM .

Proposition 1.28. If K,L ⊂M are transverse regular submanifolds then K∩L is also a regular submanifold,
of dimension dimK + dimL− dimM .

Proof. Let p ∈ K ∩L. Then there is a neighbourhood U of p for which K ∩U = f−1(0) for 0 a regular value
of a function f : U −→ Rm−k and L ∩ U = g−1(0) for 0 a regular value of a function g : L ∩ U −→ Rm−l.

Then p must be a regular point for (f, g) : L∩U −→ R2m−k−l by the assumption on tangent spaces, and
hence will be regular in a neighbourhood Ũ of p. Therefore (f, g)|−1

Ũ
(0, 0) = f−1(0)∩ g−1(0) = K ∩L∩ Ũ is

a regular submanifold.

Example 1.29 (Exotic spheres). Consider the following intersections in C5\0:

S7
k = {z2

1 + z2
2 + z2

3 + z3
4 + z6k−1

5 = 0} ∩ {|z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2 = 1}.

This is a transverse intersection, and for k = 1, . . . , 28 the intersection is a smooth manifold homeomorphic
to S7. These exotic 7-spheres were constructed by Brieskorn and represent each of the 28 diffeomorphism
classes on S7.

We may choose to phrase the previous transversality result in a slightly different way, in terms of the
embedding maps k, l for K,L in M . Specifically, we say the maps k, l are transverse in the sense that
∀a ∈ K, b ∈ L such that k(a) = l(b) = p, we have Im(Dk(a)) + Im(Dl(b)) = TpM . The advantage of this
approach is that it makes sense for any maps, not necessarily embeddings.

Definition 12. Two maps f : K −→M , g : L −→M of manifolds are called transverse when Im(Df(a)) +
Im(Dg(b)) = TpM for all a, b, p such that f(a) = g(b) = p.

Proposition 1.30. If f : K −→ M , g : L −→ M are transverse smooth maps, then K ×M L = {(a, b) ∈
K × L : f(a) = g(b)} is naturally a smooth manifold equipped with commuting maps
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where i is the inclusion and f ∩ g : (a, b) 7→ f(a) = g(b).

The manifold K ×M L of the previous proposition is called the fiber product of K with L over M , and is
a generalization of the intersection product.

Proof. Consider the graphs Γf ⊂ K ×M and Γg ⊂ L×M . Then we show that the following intersection of
regular submanifolds is transverse:

Γf∩g = (Γf × Γg) ∩ (K × L×∆M ),

where ∆M = {(p, p) ∈ M ×M : p ∈ M} is the diagonal. To show this, let f(k) = g(l) = m so that
x = (k, l,m,m) ∈ X, and note that

Tx(Γf × Γg) = {((v,Df(v)), (w,Dg(w))), v ∈ TkK, w ∈ TlL} (15)

whereas we also have

Tx(K × L×∆M ) = {((v,m), (w,m)) : v ∈ TkK, w ∈ TlL, m ∈ TpM} (16)

By transversality of f, g, any tangent vector mi ∈ TpM may be written as Df(vi)+Dg(wi) for some (vi, wi),
i = 1, 2. In particular, we may decompose a general tangent vector to M ×M as

(m1,m2) = (Df(v2), Df(v2)) + (Dg(w1), Dg(w1)) + (Df(v1 − v2), Dg(w2 − w1)),

leading directly to the transversality of the spaces (15), (16). This shows that Γf∩g is a regular submanifold
of K × L × M × M . Actually since it sits inside K × L × ∆M , we may compose with the projection
diffeomorphism to view it as a regular submanifold in K ×L×∆M . Then we observe that the restriction of
the projection onto K × L to the submanifold Γf∩g is an embedding with image exactly X. Hence X is a
smooth regular submanifold and Γf∩g may then be viewed as the graph of a smooth map f ∩ g : X −→ M
which must make the diagram above commute by definition.

Example 1.31. If K1 = M ×Z1 and K2 = M ×Z2, we may view both Ki as “fibering” over M with fibers
Zi. If pi are the projections to M , then K1 ×M K2 = M × Z1 × Z2, hence the name “fiber product”.

Example 1.32. Consider the Hopf map p : S3 −→ S2 given by composing the embedding S3 ⊂ C2\{0} with
the projection π : C2\{0} −→ CP 1 ∼= S2. Then for any point q ∈ S2, p−1(q) ∼= S1. Since p is a submersion,
it is obviously transverse to itself, hence we may form the fiber product

S3 ×S2 S3,

which is a smooth 4-manifold equipped with a map p ∩ p to S2 with fibers (p ∩ p)−1(q) ∼= S1 × S1.
These are our first examples of nontrivial fiber bundles, which we shall explore later.

The following result is an exercise: just as we may take the product of a manifold with boundary K with
a manifold without boundary L to obtain a manifold with boundary K×L, we have a similar result for fiber
products.

Proposition 1.33. Let K be a manifold with boundary where L,M are without boundary. Assume that
f : K −→M and g : L −→M are smooth maps such that both f and ∂f are transverse to g. Then the fiber
product K ×M L is a manifold with boundary equal to ∂K ×M L.
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1.8 Stability

We wish to understand the intuitive notion that “transversality is a stable condition”, which in some sense
means that if true, it remains so under small perturbations (of the submanifolds or maps involved). After
this, we will go much further using Sard’s theorem, and show that not only is it stable, it is actually generic,
meaning that even if it is not true, it can be made true by a small perturbation. In this sense, stability says
that transversal maps form an open set, and genericity says that this open set is dense in the space of maps.
To make this precise, we would introduce a topology on the space of maps, something which we leave for
another course.

A property of a smooth map f0 : M −→ N is stable under perturbations when for any smooth homotopy
ft of f0, i.e. a smooth map f : [0, 1]×M −→ N with f |{0}×M = f0, the property holds for all ft = f |{t}×M
with t < ε for some ε > 0.

Proposition 1.34. Let M be a compact manifold and f0 : M −→ N a smooth map. Then the property
of being an immersion or submersion are each stable under perturbations. If M ′ is compact, then the
transversality of f0 : M −→ N , g0 : M ′ −→ N is also stable under perturbaions of f0, g0.

As an exercise, show that local diffeomorphisms, diffeomorphisms, and embeddings are also stable.

Proof. Let ft, t ∈ [0, 1] be a smooth homotopy of f0, and suppose that f0 is an immersion. This means that at
each point p ∈M , the jacobian of f0 in some chart has a m×m submatrix with nonvanishing determinant, for
m = dimM . By continuity, this m×m submatrix must have nonvanishing determinant in a neighbourhood
around (0, p) ∈ [0, 1]×M . {0} ×M may be covered by a finite number of such neighbourhoods, since M is
compact. Choose ε such that [0, ε)×M is contained in the union of these intervals, giving the result.

The proof for submersions is identical. The condition that f0 be transversal to g0 is equivalent to the
fact that Γf0 × Γg0 is transversal to C = M × Z ×∆N . Choosing coordinate charts adapted to C, we may
express this locally as a submersion condition. Hence by the previous result we have stability.

1.9 Genericity of transversality

The fundamental idea which allows us to prove that transversality is a generic condition is a the theorem of
Sard showing that critical values of a smooth map f : M −→ N (i.e. points q ∈ N for which the map f and
the inclusion ι : q ↪→ N fail to be transverse maps) are rare. The following proof is taken from Milnor, based
on Pontryagin.

The meaning of “rare” will be that the set of critical values is of measure zero, which means, in Rm, that
for any ε > 0 we can find a sequence of balls in Rm, containing f(C) in their union, with total volume less
than ε. Some easy facts about sets of measure zero: the countable union of measure zero sets is of measure
zero, the complement of a set of measure zero is dense.

We begin with an elementary lemma describing the behaviour of measure-zero sets under differentiable
maps.

Lemma 1.35. Let Im = [0, 1]m be the unit cube, and f : Im −→ Rn a C1 map. If m < n then f(Im) has
measure zero. If m = n and A ⊂ Im has measure zero, then f(A) has measure zero.

Proof. Since f is C1, we have the mean value theorem stating for all x, y ∈ Im

f(y)− f(x) = Df(z)(y − x)

for some z one the line from x to y. The derivative Df has an upper bound on the compact Im and we
conclude |f(x) − f(y)| ≤ a|x − y| for some constant a > 0 depending only on Im and f (this is called a
Lipschitz constant). Then the image of a ball of radius r contained in K would be contained in a ball of
radius at most ar, which would have volume proportional to rn, n ≥ m.

A is of measure zero, hence for each ε we have a countable covering of A by balls of radius rk with
total volume cn

∑
k r

m
k < ε. We deduce that f(Ai) is covered by balls of radius ark with total volume

≤ ancn
∑
k r

n
k and since n ≥ m this is certainly arbitrarily small. We conclude that f(A) is of measure zero.
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If m < n then f defines a C1 map Im × In−m −→ Rn by pre-composing with the projection map to Im.
Since Im × {0} ⊂ Im × In−m clearly has measure zero, its image must also.

Remark 3. If we considered the case n < m, the resulting sum of volumes may be larger in Rn. For
example, the projection map R2 −→ R given by (x, y) 7→ x clearly takes the set of measure zero y = 0 to one
of positive measure.

A subset A ⊂ M of a manifold is said to have measure zero when its image in any coordinate chart
has measure zero. Since manifolds are second countable and we may choose a countable basis Vi such that
V i ⊂ Ui are compact subsets of coordinate charts (any coordinate neighbourhood is a countable union of
closed balls), it follows that a subset A ⊂ M of measure zero may be expressed as a countable union of
subsets Ak ⊂ V i with ϕi(Ak) satisfying the Lemma. We therefore obtain

Proposition 1.36. Let f : M −→ N be a C1 map of manifolds where dimM = dimN . Then the image
f(A) of a set A ⊂M of measure zero also has measure zero.

Corollary 1.37 (Baby Sard). Let f : M −→ N be a C1 of manifolds where dimM < dimN . Then f(M)
(i.e. the set of critical values) has measure zero in N .
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