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In fact, the inverse function theorem leads to a normal form theorem for a more general class of maps:

Theorem 1.19 (Constant rank theorem). Let V,W be m,n-dimensional vector spaces and U ⊂ V an open
set. If f : U −→ W is a smooth map such that Df has constant rank k in U , then for each point p ∈ U
there are charts (U,ϕ) and (V, ψ) containing p, f(p) such that

ψ ◦ f ◦ ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0).

Proof. since rk (f) = k at p, there is a k × k minor of Df(p) with nonzero determinant. Reorder the
coordinates on Rm and Rn so that this minor is top left, and translate coordinates so that f(0) = 0. label
the coordinates (x1, . . . , xk, y1, . . . ym−k) on V and (u1, . . . uk, v1, . . . , vn−k) on W .

Then we may write f(x, y) = (Q(x, y), R(x, y)), where Q is the projection to u = (u1, . . . , uk) and R is
the projection to v. with ∂Q

∂x nonsingular. First we wish to put Q into normal form. Consider the map
φ(x, y) = (Q(x, y), y), which has derivative

Dφ =
( ∂Q

∂x
∂Q
∂y

0 1

)
As a result we see Dφ(0) is nonsingular and hence there exists a local inverse φ−1(x, y) = (A(x, y), B(x, y)).
Since it’s an inverse this means (x, y) = φ(φ−1(x, y)) = (Q(A,B), B), which implies that B(x, y) = y.

Then f ◦ φ−1 : (x, y) 7→ (x, R̃ = R(A, y)), and must still be of rank k. Since its derivative is

D(f ◦ φ−1) =

(
Ik×k 0
∂R̃
∂x

∂R̃
∂y

)

we conclude that ∂R̃
∂y = 0, meaning that

f ◦ φ−1 : (x, y) 7→ (x, S(x)).

We now postcompose by the diffeomorphism σ : (u, v) 7→ (u, v − s(u)), to obtain

σ ◦ f ◦ φ−1 : (x, y) 7→ (x, 0),

as required.

As we shall see, these theorems have many uses. One of the most straightforward uses is for defining
submanifolds.

Definition 8. A regular submanifold of dimension k in an n-manifold M is a subspace S ⊂ M such that
∀s ∈ S, there exists a chart (U,ϕ) for M , containing s, and with

S ∩ U = ϕ−1(xk+1 = · · · = xn = 0).

In other words, the inclusion S ⊂M is locally isomorphic to the vector space inclusion Rk ⊂ Rn.

Of course, the remaining coordinates {x1, . . . , xk} define a smooth manifold structure on S itself, justifying
the terminology.

Proposition 1.20. If f : M −→ N is a smooth map of manifolds, and if Df(p) has constant rank on M ,
then for any q ∈ f(M), the inverse image f−1(q) ⊂M is a regular submanifold.

Proof. Let x ∈ f−1(q). Then there exist charts ψ,ϕ such that ψ◦f◦ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0)
and f−1(q) ∩ U = {x1 = · · · = xk = 0}. Hence we obtain that f−1(q) is a codimension k regular submani-
fold.
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Example 1.21. Let f : Rn −→ R be given by (x1, . . . , xn) 7→
∑
x2
i . Then Df(x) = (2x1, . . . , 2xn), which

has rank 1 at all points in Rn\{0}. Hence since f−1(q) contains {0} iff q = 0, we see that f−1(q) is a regular
submanifold for all q 6= 0. Exercise: show that this manifold structure is compatible with that obtained in
Example 1.9.

The previous example leads to an observation of the following special case of the previous corollary.

Proposition 1.22. If f : M −→ N is a smooth map of manifolds and Df(p) has rank equal to dimN along
f−1(q), then this subset f−1(q) is an embedded submanifold of M .

Proof. Since the rank is maximal along f−1(q), it must be maximal in an open neighbourhood U ⊂ M
containing f−1(q), and hence f : U −→ N is of constant rank.

Definition 9. If f : M −→ N is a smooth map such that Df(p) is surjective, then p is called a regular
point. Otherwise p is called a critical point. If all points in the level set f−1(q) are regular points, then q is
called a regular value, otherwise q is called a critical value. In particular, if f−1(q) = ∅, then q is regular.

It is often useful to highlight two classes of smooth maps; those for which Df is everywhere injective, or,
on the other hand surjective.

Definition 10. A smooth map f : M −→ N is called a submersion when Df(p) is surjective at all points
p ∈M , and is called an immersion when Df(p) is injective at all points p ∈M . If f is an injective immersion
which is a homeomorphism onto its image (when the image is equipped with subspace topology), then we
call f an embedding

Proposition 1.23. If f : M −→ N is an embedding, then f(M) is a regular submanifold.

Proof. Let f : M −→ N be an embedding. Then for all m ∈ M , we have charts (U,ϕ), (V, ψ) where
ψ ◦f ◦ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0). If f(U) = f(M)∩V , we’re done. To make sure that some
other piece of M doesn’t get sent into the neighbourhood, use the fact that F (U) is open in the subspace
topology. This means we can find a smaller open set V ′ ⊂ V such that V ′ ∩ f(M) = f(U). Then we can
restrict the charts (V ′, ψ|V ′), (U ′ = f−1(V ′), ϕU ′) so that we see the embedding.

Having the constant rank theorem in hand, we may also apply it to study manifolds with boundary. The
following two results illustrate how this may easily be done.

Proposition 1.24. Let M be a smooth n-manifold and f : M −→ R a smooth real-valued function, and let
a, b, with a < b, be regular values of f . Then f−1([a, b]) is a cobordism between the n− 1-manifolds f−1(a)
and f−1(b).

Proof. The pre-image f−1((a, b)) is an open subset of M and hence a submanifold of M . Since p is regular
for all p ∈ f−1(a), we may (by the constant rank theorem) find charts such that f is given near p by the
linear map

(x1, . . . , xm) 7→ xm.

Possibly replacing xm by −xm, we therefore obtain a chart near p for f−1([a, b]) into Hm, as required.
Proceed similarly for p ∈ f−1(b).

Example 1.25. Using f : Rn −→ R given by (x1, . . . , xn) 7→
∑
x2
i , this gives a simple proof for the fact

that the closed unit ball B(0, 1) = f−1([−1, 1]) is a manifold with boundary.

Example 1.26. Consider the C∞ function f : R3 −→ R given by (x, y, z) 7→ x2 + y2− z2. Both +1 and −1
are regular values for this map, with pre-images given by 1- and 2-sheeted hyperboloids, respectively. Hence
f−1([−1, 1]) is a cobordism between hyperboloids of 1 and 2 sheets. In other words, it defines a cobordism
between the disjoint union of two closed disks and the closed cylinder (each of which has boundary S1 t S1).
Does this cobordism tell us something about the cobordism class of a connected sum?
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Proposition 1.27. Let f : M −→ N be a smooth map from a manifold with boundary to the manifold
N . Suppose that q ∈ N is a regular value of f and also of f |∂M . Then the pre-image f−1(q) is a regular
submanifold with boundary (i.e. locally modeled on Rk ⊂ Rn or the inclusion Hk ⊂ Hn given by (x1, . . . xk) 7→
(0, . . . , 0, x1, . . . xk).) Furthermore, the boundary of f−1(q) is simply its intersection with ∂M .

Proof. If p ∈ f−1(q) is not in ∂M , then as before f−1(q) is a regular submanifold in a neighbourhood of
p. Therefore suppose p ∈ ∂M ∩ f−1(q). Pick charts ϕ,ψ so that ϕ(p) = 0 and ψ(q) = 0, and ψfϕ−1 is a
map U ⊂ Hm −→ Rn. Extend this to a smooth function f̃ defined in an open set Ũ ⊂ Rm containing U .
Shrinking Ũ if necessary, we may assume f̃ is regular on Ũ . Hence f̃−1(0) is a regular submanifold of Rm of
dimension m− n.

Now consider the real-valued function π : f̃−1(0) −→ R given by the restriction of (x1, . . . , xm) 7→ xm.
0 ∈ R must be a regular value of π, since if not, then the tangent space to f̃−1(0) at 0 would lie completely
in xm = 0, which contradicts the fact that q is a regular point for f |∂M .

Hence, by Proposition 1.24, we have expressed f−1(q), in a neighbourhood of p, as a regular submanifold
with boundary given by {ϕ−1(x) : x ∈ f̃−1(0) and π(x) ≥ 0}, as required.
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