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Having defined the integral, we wish to explain the duality between d and ∂: A n − 1-form α on a n-
manifold may be pulled back to the boundary ∂M and integrated. On the other hand, it can be differentiated
and integrated over M . The fact that these are equal is Stokes’ theorem, and is a generalization of the
fundamental theorem of calculus.

First we must some simple observations concerning the behaviour of forms in a neighbourhood of the
boundary.

Recall the operation of contraction with a vector field X, which maps ρ ∈ Ωk(M) to iXρ ∈ Ωk−1(M),
defined by the condition of being a graded derivation iX(α∧β) = iXα∧β+(−1)|α|α∧iXβ such that iXf = 0
and iXdf = X(f) for all f ∈ C∞(M,R).

Proposition 4.13. Let M be a manifold with boundary. If M is orientable, then so is ∂M . Furthermore,
an orientation on M induces one on ∂M .

Proof. Given a locally finite atlas (Ui) of ∂M , in each Ui we can pick a nonvanishing outward-pointing vector
field Xi in Γ∞(Ui, j∗TM), for j : ∂M −→M the inclusion. Let (θi) be a subordinate partition of unity, and
form X =

∑
i θiXi. This is a vector field on ∂M , tangent to M and pointing outward everywhere along the

boundary.
Given an orientation [v] of M , we can form [iXv], which is then an orientation of ∂M . This depends only

on [v] and X being a nonvanishing outward vector field.

We now verify a local computation leading to Stokes’ theorem. If

α =
∑
i

aidx
1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxm

is a degree m− 1 form with compact support in U ⊂ Hm, and if U does not intersect the boundary ∂Hm,
then by the fundamental theorem of calculus,∫

U

dα =
∑
i

(−1)i−1

∫
U

∂ai
∂xi dx

1 · · · dxm = 0.

Now suppose that V = U ∩ ∂Hm 6= ∅. Then∫
U

dα =
∑
i

(−1)i−1

∫
U

∂ai
∂xi dx

1 · · · dxm

= −(−1)m−1

∫
V

am(x1, . . . , xm−1, 0)dx1 · · · dxm−1

=
∫
V

am(x1, . . . , xm−1, 0)i
− ∂
∂xm

(dx1 ∧ · · · dxm)

=
∫
V

j∗α,

where the last integral is with respect to the orientation induced by the outward vector field.

Theorem 4.14 (Stokes’ theorem). Let M be an oriented manifold with boundary, and let the boundary be
oriented with respect to an outward pointing vector field. Then for α ∈ Ωm−1

c (M) and j : ∂M −→ M the
inclusion of the boundary, we have ∫

M

dα =
∫
∂M

j∗α.

Proof. For a locally finite atlas (Ui, ϕi), we have∫
M

dα =
∫
M

d(
∑
i

θiα) =
∑
i

∫
ϕi(Ui)

(ϕ−1
i )∗d(θiα)
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By the local calculation above, if ϕi(Ui) ∩ ∂Hm = ∅, the summand on the right hand side vanishes. On the
other hand, if ϕi(Ui) ∩ ∂Hm 6= ∅, we obtain (letting ψi = ϕi|Ui∩∂M and j′ : ∂Hm −→ Rn), using the local
result, ∫

ϕi(Ui)

(ϕ−1
i )∗d(θiα) =

∫
ϕi(Ui)∩∂Hm

j′
∗(ϕ−1

i )∗(θiα)

=
∫
ϕi(Ui)∩∂Hm

(ψ−1
i )∗(j∗(θiα)).

This then shows that
∫
M
dα =

∫
∂M

j∗α, as desired.

Corollary 4.15. If ∂M = ∅, then for all α ∈ Ωn−1
c (M), we have

∫
M
dα = 0.

Corollary 4.16. Let M be orientable and compact, and let v ∈ Ωn(M) be nonvanishing. Then
∫
M
v > 0,

when M is oriented by [v]. Hence, v cannot be exact, by the previous corollary. This tells us that the class
[v] ∈ Hn

dR(M) cannot be zero. In this way, integration of a closed form may often be used to show that it is
nontrivial in de Rham cohomology.

4.3 The Mayer-Vietoris sequence

Decompose a manifold M into a union of open sets M = U ∪V . We wish to relate the de Rham cohomology
of M to that of U and V separately, and also that of U ∩ V . These 4 manifolds are related by obvious
inclusion maps as follows:

U ∪ V U t Voo U ∩ V
∂Uoo
∂V

oo

Applying the functor Ω•, we obtain morphisms of complexes in the other direction, given by simple restriction
(pullback under inclusion):

Ω•(U ∪ V ) // Ω•(U)⊕ Ω•(V )
∂∗U

//
∂∗V // Ω•(U ∩ V )

Now we notice the following: if forms ω ∈ Ω•(U) and τ ∈ Ω•(V ) come from a single global form on U ∪ V ,
then they are killed by ∂∗V − ∂∗U . Hence we obtain a complex of (morphisms of cochain complexes):

0 // Ω•(U ∪ V ) // Ω•(U)⊕ Ω•(V )
∂∗V −∂

∗
U // Ω•(U ∩ V ) // 0 (28)

It is clear that this complex is exact at the first position, since a form must vanish if it vanishes on U and
V . Similarly, if forms on U, V agree on U ∩ V , they must glue to a form on U ∪ V . Hence the complex is
exact at the middle position. We now show that the complex is exact at the last position.

Theorem 4.17. The above complex (of de Rham complexes) is exact. It may be called a “short exact
sequence” of cochain complexes.

Proof. Let α ∈ Ωq(U ∩ V ). We wish to write α as a difference τ − ω with τ ∈ Ωq(U) and ω ∈ Ωq(V ). Let
(ρU , ρV ) be a partition of unity subordinate to (U, V ). Then we have α = ρUα − (−ρV α) in U ∩ V . Now
observe that ρUα may be extended by zero in V (call the result τ), while −ρV α may be extended by zero in
U (call the result ω). Then we have α = (∂∗V − ∂∗U )(τ, ω), as required.

It is not surprising that given an exact sequence of morphisms of complexes

0 −→ A•
f−→ B•

g−→ C• −→ 0
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, we obtain maps between the cohomology groups of the complexes

Hk(A•)
f∗−→ Hk(B•)

g∗−→ Hk(C•).

And it is not difficult to see that this sequence is exact at the middle term: Let [ρ] ∈ Hk(B•), for ρ ∈ Bk
such that dBρ = 0. Suppose that g(ρ) = 0 in Ck, so that there exists τ ∈ Ak with f(τ) = ρ. Then since f is
a morphism of complexes, it follows that f(dAτ) = dBf(τ) = dBρ = 0. Since f : Ak+1 −→ Bk+1 is injective,
this implies that dAτ = 0, so we have f∗[τ ] = [ρ], as required.

The interesting thing is that the maps g∗ are not necessarily surjective, nor are f∗ necessarily injective.
In fact, there is a natural map δ : Hk(C•) −→ Hk+1(A•) (called the connecting homomorphism) which
extends the 3-term sequence to a full complex involving all cohomology groups of arbitrary degree:

If [α] ∈ Hk(C•), where dCα = 0, then there must exist ξ ∈ Bk with g(ξ) = α, and g(dBξ) = dC(g(ξ)) =
dCα = 0, so that there must exist β ∈ Ak+1 with f(β) = dBξ, and f(dAβ) = dB(f(β) = 0. Hence this
determines a class [β] ∈ Hk+1(A•), and one can check that this does not depend on the choices made. We
then define δ([α]) = [β].

Exercise: with this definition of δ, we obtain a “long exact sequence” of vector spaces as follows:

H•(A)
f∗ // H•(B)

g∗zzuuuuuuuuu

H•(C)
δ+1

ddIIIIIIIII

Therefore, from the complex of complexes (28), we immediately obtain a long exact sequence of vector
spaces, called the Mayer-Vietoris sequence:

· · · −→ Hk(U ∪ V ) −→ Hk(U)⊕Hk(V ) −→ Hk(U ∩ V ) δ−→ Hk+1(U ∪ V ) −→ · · · ,

where the first map is simply a restriction map, the second map is the difference of the restrictions δ∗V − δ∗U ,
and the third map is the connecting homomorphism δ, which can be written explicitly as follows:

δ[α] = [β], β = −d(ρV α) = d(ρUα).

(notice that β has support contained in U ∩ V .)

4.4 Examples of cohomology computations

Example 4.18 (Circle). Here we present another computation of H•dR(S1), by the Mayer-Vietoris sequence.
Express S1 = U0 ∪ U1 as before, with Ui ∼= R, so that H0(Ui) = R, H1

dR(Ui) = 0 by the Poincaré lemma.
Since U0∩U1

∼= RtR, we have H0(U0∩U1) = R⊕R and H1(U0∩U1) = 0. Since we know that H2
dR(S1) = 0,

the Mayer-Vietoris sequence only has 4 a priori nonzero terms:

0 −→ H0(S1) −→ R⊕ R
δ∗1−δ

∗
0−→ R⊕ R δ−→ H1(S1) −→ 0.

The middle map takes (c1, c0) 7→ c1 − c0 and hence has 1-dimensional kernel. Hence H0(S1) = R. Further-
more the kernel of δ must only be 1-dimensional, hence H1(S1) = R as well. Exercise: Using a partition of
unity, determine an explicit representative for the class in H1

dR(S1), starting with the function on U0 ∩ U1

which takes values 0,1 on each respective connected component.

Example 4.19 (Spheres). To determine the cohomology of S2, decompose into the usual coordinate charts
U0, U1, so that Ui ∼= R2, while U0 ∩ U1 ∼ S1. The first line of the Mayer-Vietoris sequence is

0 −→ H0(S2) −→ R⊕ R −→ R.
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The third map is nontrivial, since it is just the subtraction. Hence this first line must be exact, and H0(S2) =
R (not surprising since S2 is connected). The second line then reads (we can start it with zero since the first
line was exact)

0 −→ H1(S2) −→ 0 −→ H1(S1) = R,

where the second zero comes from the fact that H1(R2) = 0. This then shows us that H1(S2) = 0. The last
term, together with the third line now give

0 −→ H1(S1) = R −→ H2(S2) −→ 0,

showing that H2(S2) = R.
Continuing this process, we obtain the de Rham cohomology of all spheres:

Hk
dR(Sn) =

{
R, for k = 0 or n,
0 otherwise.
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