4.1 The exterior derivative 1300Y Geometry and Topology

The fact that d? = 0 is dual to the fact that 9(OM) = 0 for a manifold with boundary M. We will see
later that Stokes’ theorem explains this duality. Because of the fact d> = 0, we have a very special algebraic
structure: we have a sequence of vector spaces QF(M), and maps d : Q¥(M) — QFF1(M) which are such
that any successive composition is zero. This means that the image of d is contained in the kernel of the next
d in the sequence. This arrangement of vector spaces and operators is called a cochain complex of vector
spaces E We often simply refer to this as a “complex” and omit the term “cochain”. The reason for the “co”
is that the differential increases the degree k, which is opposite to the usual boundary map on manifolds,
which decreases k. We will see chain complexes when we study homology.

A complex of vector spaces is usually drawn as a linear sequence of symbols and arrows as follows: if
f:U — V is alinear map and g : V — W is a linear map such that g o f = 0, then we write

vLv-Lw

In general, this simply means that imf C ker g, and to measure the difference between them we look at the
quotient ker g/imf, which is called the cohomology of the complex at the position V' (or homology, if d
decreases degree). If we are lucky, and the complex has no cohomology at V', meaning that ker g is precisely
equal to im f, then we say that the complex is exact at V. If the complex is exact everywhere, we call it an
exact sequence (and it has no cohomology!) In our case, we have a longer cochain complex:

0— QM) % - Lok -S oF () -L b (an) <L S (M) — 0
There is a bit of terminology to learn: we have seen that if dp = 0 then p is called closed. But these are also

called cocycles and denoted Z*(M). Similarly the exact forms da are also called coboundaries, and are
denoted B*(M). Hence the cohomology groups may be written HX (M) = Zk (M) /Bk,(M).

Definition 31. The de Rham complex is the complex (2*(M),d), and its cohomology at QF(M) is called
Hk (M), the de Rham cohomology.

Exercise: Check that the graded vector space Hjp(M) = @), H*(M) inherits a product from the
wedge product of forms, making it into a Z-graded ring. This is called the de Rham cohomology ring of M,
and the product is called the cup product.

It is clear from the definition of d that it commutes with pullback via diffeomorphisms, in the sense
f*od=do f*. But this is only a special case of a more fundamental property of d:

Theorem 4.4. Exterior differentiation commutes with pullback: for f : M — N a smooth map, f*ody =
dM o f* .

Proof. We need only check this on functions g and exact 1-forms dg: let X be a vector field on M and
g € C*(N,R).
[H(dg)(X) = dg(f X) = mag. L X = ma(g 0 f) X = d(f"g)(X),

giving f*dg = df*g, as required. For exact 1-forms we have f*d(dg) = 0 and d(f*dg) = d(df*g) = 0 by the
result for functions. O

This theorem may be interpreted as follows: The differential forms give us a Z-graded ring, Q°*(M), which
is equipped with a differential d : Q¥ — QF*+1. This sequence of vector spaces and maps which compose to
zero is called a cochain complex. Beyond it being a cochain complex, it is equipped with a wedge product.

Cochain complexes (C*, d¢) may be considered as objects of a new category, whose morphisms consist of
a sum of linear maps vy, : C*¥ — D* commuting with the differentials, i.e. dpoty = 1r410dc. The previous
theorem shows that pullback f* defines a morphism of cochain complexes Q°*(N) — Q°*(M); indeed it even
preserves the wedge product, hence it is a morphism of differential graded algebras.

Lsince this complex appears for Q®(U) for any open set U C M, this is actually a cochain complex of sheaves of vector

spaces, but this won’t concern us right away.
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Corollary 4.5. We may interpret the previous result as showing that Q° is a functor from manifolds to
differential graded algebras (or, if we forget the wedge product, to the category of cochain complexes). As
a result, we see that the de Rham cohomology Hj, may be viewed as a functor, from smooth manifolds to
Z-graded commutative 1ings.

Example 4.6. S! is connected, and hence H)n(S') = R. So it remains to compute H}n(S").
Let % be the rotational vector field on S* of unit Buclidean norm, and let df be its dual 1-form, i.e.
de(%) = 1. Note that 0 is not a well-defined function on S*, so the notation df may be misleading at first.
Of course, d(df) = 0, since Q%(S) = 0. We might ask, is there a function f(6) such that df = d0? This
would mean % =1, and hence f = 0+ co. But since f is a function on S, we must have f(0+2m) = f(6),
which is a contradiction. Hence df is not exact, and [df] # 0 in Hip(S').

Any other 1-form will be closed, and can be represented as gdf for g € C*(S*,R). Letg = 5~ 90220277 g(0)do
be the average value of g, and consider go = g —g. Then define

t=0
£(60) = / golt)dt.

=0

Clearly we have g—g = go(0), and furthermore f is a well-defined function on S, since f(0 + 2w) = f(6).
Hence we have that go = df , and hence g = g+ df, showing that [gdf] = g[db)].

Hence H},(S') =R, and as a ring, Hlp + H}p is simply R(z]/(z?).

Note that technically we have proven that Hip(S') 2 R, but we will see from the definition of integration
later that this isomorphism is canonical.

The de Rham cohomology is an important invariant of a smooth manifold (in fact it doesn’t even depend
on the smooth structure, only the topological structure). To compute it, there are many tools available.
There are three particularly important tools: first, there is Poincaré’s lemma, telling us the cohomology of
R™. Second, there is integration, which allows us to prove that certain cohomology classes are non-trivial.
Third, there is the Mayer-Vietoris sequence, which allows us to compute the cohomology of a union of open
sets, given knowledge about the cohomology of each set in the union.

Lemma 4.7. Consider the embeddings J; : M — M x [0,1] given by x — (z,i) for i = 0,1. The induced
morphisms of de Rham complexes J§ and Ji are chain homotopic morphisms, meaning that there is a linear
map K : QF(M x [0,1]) — QF=Y(M) such that

Ji —J; =dK + Kd
This shows that on closed forms, J; may differ, but only by an exact form.

Proof. Let t be the coordinate on [0,1]. Define Kf = 0 for f € QY(M x [0,1]), and Ka = 0 if a = fp for
p € QF(M) . But for 3 = fdt A p we define

1
K= ([ siop,
0
Then we verify that
1
dKf+de:O+/ 9Lat = (J; — I f,
0

1
dKoz+Kda=0+(/ Y at)yp = (J;F — J)a,
0

1 1
dKﬁ+Kdﬁ:(/O dedt)/\p+(/O fdt) Adp+ K(df Adt A p— fdt Adp) =0,

which agrees with (J; — J§)8 = 0 — 0 = 0. Note that we have used K(df Adt A p) = K(—dt Ndyf A p) =
—(J. 01 dy f) A p, and the notation dpsf is a time-dependent 1-form whose value at time ¢ is the exterior
derivative on M of the function f(—,t) € Q°(M). O
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The previous theorem can be used in a clever way to prove that homotopic maps M — N induce the
same map on cohomology:

Theorem 4.8. Let f: M — N and g : M — N be smooth maps which are (smoothly) homotopic. Then
f*=g¢* as maps H*(N) — H*(M).

Proof. Let H : M x [0,1] — N be a (smooth) homotopy between f, g, and let Jy, J; be the embeddings
M — M x[0,1] from the previous result, so that HoJy = f and HoJ; = g. Recall that J; — J; = dK + Kd,
so we have

g—f=0Ur—-J)H =([dK+ Kd)H*=dKH"+ KH"d

This shows that f*, g* differ, on closed forms, only by exact terms, and hence are equal on cohomology. [J
Corollary 4.9. If M, N are (smoothly) homotopic, then Hp(M) = H35(N).

Proof. M, N are homotopic iff we have maps f : M — N, g : N — M with fg ~ 1 and gf ~ 1.
This shows that f*¢* = 1 and ¢g*f* = 1, hence f*, g* are inverses of each other on cohomology, and hence
isomorphisms. O

Corollary 4.10 (Poincaré lemma). Since R™ is homotopic to the 1-point space (R°), we have

R k=0
Hip(E) = 3
0 fork >0
As a note, we should mention that the homotopy in the previous theorem need not be smooth, since any
homotopy may be deformed (using a continuous homotopy) to a smooth homotopy, by smooth approximation.
Hence we finally obtain that the de Rham cohomology is a homotopy invariant of smooth manifolds.

4.2 Integration

Since we are accustomed to the idea that a function may be integrated over a subset of R™, we might think
that if we have a function on a manifold, we can compute its local integrals and take a sum. This, however,
makes no sense, because the answer will depend on the particular coordinate system you choose in each open
set: for example, if f: U — R is a smooth function on U C R™ and ¢ : V — U is a diffeomorphism onto
V C R™, then we have the usual change of variables formula for the (Lebesgue or Riemann) integral:

dzt - dz™.

/dexlde...dx":/Vgo*f’det[gﬁj]

The extra factor of the absolute value of the Jacobian determinant shows that the integral of f is coordinate-
dependant. For this reason, it makes more sense to view the left hand side not as the integral of f but rather
as the integral of v = fdx' A---Adz™. Then, the right hand side is indeed the integral of ¢*v (which includes
the Jacobian determinant in its expression automatically) , as long as ¢* has positive Jacobian determinant.

Therefore, the integral of a differential n-form will be well-defined on an n-manifold M, as long as we
can choose an atlas where the Jacobian determinants of the gluing maps are all positive: This is precisely
the choice of an orientation on M, as we now show.

Definition 32. A n-manifold M is called orientable when det T*M := A™T™*M is isomorphic to the trivial
line bundle. An orientation is the choice of an equivalence class of nonvanishing sections v, where v ~ v’ iff
fv=1'for f € C®°(M,R). M is called oriented when an orientation is chosen, and if M is connected and
orientable, there are two possible orientations.

R™ has a natural orientation by daz' A --- A dz™; if M is orientable, we may choose charts which preserve
orientation, as we now show.
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Proposition 4.11. If the n-manifold M is oriented by [v], it is possible to choose an orientation-preserving
atlas (U;, ;) in the sense that pidx' A--- ANdz™ ~ v for all i. In particular, the Jacobian determinants for
this atlas are all positive.

Proof. Choose any atlas (U;, ¢;). For each i, either pidz! A--- A dz™ ~ v, and if not, replace @; with g o ¢,

where ¢ : (2!,...,2") — (—2z',...,2™). This completes the proof. O

Now we can define the integral on an oriented n-manifold M, by defining the integral on chart images
and asking it to be compatible with these charts:

Theorem 4.12. Let M be an oriented n-manifold. Then there is a unique linear map [,, : Q2 (M) — R
on compactly supported n-forms which has the following property: if h is an orientation-preserving diffeo-
morphism from V. .C R"™ to U C M, and if o € Q2 (M) has support contained in U, then

/ a:/h*a.
M 1%

Proof. Let o € Q7(M) and choose an orientation-preserving, locally finite atlas (U, ¢;) with subordinate
partition of unity (6;). Then using the required properties (and noting that « is nonzero in only finitely

many U;), we have
a= O;c0 = / (i D).
/M ; /M ; i(Ui)

This proves the uniqueness of the integral. To show existence, we must prove that the above expression
actually satisfies the defining condition, and hence can be used as an explicit definition of the integral.

Let h : V. — U be an orientation-preserving diffeomorphism from V' C R™ to U C M, and suppose «
has support in U. Then ; o h are orientation-preserving, and

a= (501'_1)*91'0‘
/M zZ: /Lpi(Ui)mWi(U)
-y (i 0 h)* (07 ) 010
P Vnh=1(U;)
-3 / h* (6:c0)
P Vnh—1(U;)

= / ha,
v

as required. O
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