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3.2 Vector bundles

Definition 25. A smooth real vector bundle of rank k over the base manifold M is a manifold E (called
the total space), together with a smooth surjection π : E −→M (called the bundle projection), such that

• ∀p ∈M , π−1(p) = Ep has the structure of k-dimensional vector space,

• Each p ∈ M has a neighbourhood U and a diffeomorphism Φ : π−1(U) −→ U × Rk (called a local
trivialization of E over U) such that π1(Φ(π−1(x))) = x, where π1 : U×Rk −→ U is the first projection,
and also that Φ : π−1(x) −→ {x} × Rk is a linear map, for all x ∈M .

Given two local trivializations Φi : π−1(Ui) −→ Ui × Rk and Φj : π−1(Uj) −→ Uj × Rk, we obtain a
smooth gluing map Φj ◦ Φ−1

i : Uij × Rk −→ Uij × Rk, where Uij = Ui ∩ Uj . This map preserves images to
M , and hence it sends (x, v) to (x, gji(v)), where gji is an invertible k× k matrix smoothly depending on x.
That is, the gluing map is uniquely specified by a smooth map

gji : Uij −→ GL(k,R).

These are called transition functions of the bundle, and since they come from Φj ◦ Φ−1
i , they clearly satisfy

gij = g−1
ji as well as the “cocycle condition”

gijgjkgki = Id|Ui∩Uj∩Uk .

Example 3.11. To build a vector bundle, choose an open cover {Ui} and form the pieces {Ui × Rk} Then
glue these together on double overlaps {Uij} via functions gij : Uij −→ GL(k,R). As long as gij satisfy
gij = g−1

ji as well as the cocycle condition, the resulting space has a vector bundle structure.

Example 3.12. Let S2 = U0 t U1 for Ui = R2, as before. Then on U01 = R2\{0} = C\{0}, define

g01(z) = [zk], k ∈ Z.

In real coordinates z = reiθ, g01(r, θ) = rk
(
cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

)
. This defines a vector bundle Ek −→ S2 of

rank 2 for each k ∈ Z (or a complex vector bundle of rank 1, since g01 : U01 −→ GL(1,C)). Actually, since
the map g01 is actually holomorphic as a function of z, we have defined holomorphic vector bundles on CP 1.

Example 3.13 (The tangent bundle). The tangent bundle TM is indeed a vector bundle, of rank dimM .
For any chart (U,ϕ) of M , there is an associated local trivialization (π−1(U),Φ) of TM , and the transition
function gji : Uij −→ GL(n,R) between two trivializations obtained from (Ui, ϕi), (Uj , ϕj) is simply the
Jacobian matrix

gji : p 7→ D(ϕj ◦ ϕ−1
i )(p).

Just as for the tangent bundle, we can define the analog of a vector-valued function, where the function
has values in a vector bundle:

Definition 26. A smooth section of the vector bundle E π−→ M is a smooth map s : M −→ E such that
π ◦ s = IdM . The set of all smooth sections, denoted Γ∞(M,E), is an infinite-dimensional real vector space,
and is also a module over the ring C∞(M,R).

Having introduced vector bundles, we must define the notion of morphism between vector bundles, so as
to form a category.

Definition 27. A smooth bundle map between the bundles E π−→ M and E′
π′−→ M ′ is a pair (f, F ) of

smooth maps f : M −→M ′ and F : E −→ E′ such that π′ ◦ F = f ◦ π and such that F : Ep −→ E′f(p) is a
linear map for all p.
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Example 3.14. I claim that the bundles Ek
π−→ S2 are all non-isomorphic, except that Ek is isomorphic

to E−k over the antipodal map S2 −→ S2.

Example 3.15. Suppose f : M −→ N is a smooth map. Then f∗ : TM −→ TN is a bundle map covering
f , i.e. (f∗, f) defines a bundle map.

Example 3.16 (Pullback bundle). if f : M −→ N is a smooth map and E
π−→ N is a vector bundle over

N , then we may form the fiber product Mf×πE, which then is a bundle over M with local trivializations
(f−1(Ui), f∗gij), where (Ui, gij) is the local transition data for E over N . This bundle is called the pullback
bundle and is denoted by f∗E. The natural projection to E defines a vector bundle map back to E:

f∗E

p1

��

p2 // E

π

��
M

f
// N

There is also a natural pullback map on sections: given a section s ∈ Γ∞(N,E), the composition s ◦ f gives
a map M −→ E. This then determines a smooth map f∗s : M −→ f∗E by the universal property of the
fiber product. We therefore obtain a pullback map

f∗ : Γ∞(N,E) −→ Γ∞(M,f∗E).

Example 3.17. If f : M −→ N is an embedding, then so is the bundle map f∗ : TM −→ TN . By the
universal property of the fiber product we obtain a bundle map, also denoted f∗, from TM to f∗TN . This is
a vector bundle inclusion and f∗TN/f∗TM = NM is a vector bundle over M called the normal bundle of
M . Note: we haven’t covered subbundles and quotient bundles in detail. I’ll leave this as an exercise.

3.3 Associated bundles

We now describe a functorial construction of vector bundles, using functors from vector spaces. Consider the
category VectR of finite-dimensional real vector spaces and linear maps. We will describe several functors
from VectR to itself.

Example 3.18. If V ∈ VectR, then V ∗ ∈ VectR, and if f : V −→ W then f∗ : W ∗ −→ V ∗. Since the
composition of duals is the dual of the composition, duality defines a contravariant functor ∗ : VectR −→
VectR.

Example 3.19. If V,W ∈ VectR, then V ⊕W ∈ VectR, and this defines a covariant functor VectR ×
VectR −→ VectR.

Example 3.20. If V,W ∈ VectR, then V ⊗W ∈ VectR and this again defines a covariant functor VectR×
VectR −→ VectR.

Example 3.21. If V ∈ VectR, then

⊗•V = R⊕ V ⊕ (V ⊗ V )⊕ · · · ⊕ (⊗kV )⊕ · · ·

is an infinite-dimensional vector space, with a product a ⊗ b. Quotienting by the double-sided ideal I =
〈v ⊗ v : v ∈ V 〉, we obtain the exterior algebra

∧•V = R⊕ V ⊕ ∧2V ⊕ · · · ⊕ ∧nV,

with n = dimV . The product is customarily denoted (a, b) 7→ a ∧ b. The direct sum decompositions above,
where ∧kV or ⊗kV is labeled by the integer k, are called Z-gradings, and since the product takes ∧k×∧l −→
∧k+l, these algebras are called Z-graded algebras.
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If (v1, . . . vn) is a basis for V , then vi1 ∧ · · · ∧ vik for i1 < · · · < ik form a basis for ∧kV . This space then
has dimension

(
n
k

)
, hence the algebra ∧•V has dimension 2n.

Note in particular that ∧nV has dimension 1, is also called the determinant line detV , and a choice of
nonzero element in detV is called an “orientation” on the vector space V .

Recall that if f : V −→W is a linear map, then ∧kf : ∧kV −→ ∧kW is defined on monomials via

∧kf(a1 ∧ · · · ∧ ak) = f(a1) ∧ · · · ∧ f(ak).

In particular, if A : V −→ V is a linear map, then for n = dimV , the top exterior power ∧nA : ∧nV −→ ∧nV
is a linear map of a 1-dimensional space onto itself, and is hence given by a number, called detA, the
determinant of A.

We may now apply any of these functors to vector bundles. The main observation is that if F is a vector
space functor as above, we may apply it to any vector bundle E π−→M to obtain a new vector bundle

F (E) = tp∈MF (Ep).

If (Ui) is an atlas for M and E has local trivializations (Ui ×Rk), glued together via gji : Uij −→ GL(k,R),
then F (E) may be given the local trivialization (Ui × F (Rk)), glued together via F (gji). This new vector
bundle F (E) is called the “associated” vector bundle to E, given by the functor F .

Example 3.22. If E −→M is a vector bundle, then E∗ −→M is the dual vector bundle. If E,F are vector
bundles then E ⊕ F is called the direct or “Whitney” sum, and has rank rk E + rk F . E ⊗ F is the tensor
product bundle, which has rank rk E · rk F .

Example 3.23. If E −→M is a vector bundle of rank n, then ⊗kE and ∧kE are its tensor power bundles,
of rank nk and

(
n
k

)
, respectively. The top exterior power ∧nE has rank 1, and is hence a line bundle. If this

line bundle is trivial (i.e. isomorphic to M × R) then E is said to be an orientable bundle.

Example 3.24. Starting with the tangent bundle TM −→M , we may form the cotangent bundle T ∗M , the
bundle of tensors of type (r, s), ⊗rTM ⊗⊗sT ∗M .

We may also form the bundle of multivectors ∧kTM , which has sections Γ∞(M,∧kTM) called multivector
fields.

Finally, we may form the bundle of k-forms, ∧kT ∗M , whose sections Γ∞(M,∧kT ∗M) = Ωk(M) are
called differential k-forms, and will occupy us for some time.

We have now produced several vector bundles by applying functors to the tangent bundle. We are familiar
with vector fields, which are sections of TM , and we know that a vector field is written locally in coordinates
(x1, . . . , xn) as

X =
∑
i

ai ∂
∂xi ,

with coefficients ai smooth functions.
There is an easy way to produce examples of 1-forms in Ω1(M), using smooth functions f . We note that

the action X 7→ X(f) defines a dual vector at each point of M , since (X(f))p depends only on the vector
Xp and not the behaviour of X away from p. Recall that X(f) = Df2(X).

Definition 28. The exterior derivative of a function f , denoted df , is the section of T ∗M given by the fiber
projection Df2.

Since dxi( ∂
∂xj ) = δij , we see that (dx1, . . . , dxn) is the dual basis to ( ∂

∂x1 , . . . ,
∂
∂xn ). Therefore, a section

of T ∗M has local expression
ξ =

∑
i

ξidx
i,
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for ξi smooth functions, given by ξi = ξ( ∂
∂xi ). In particular, the exterior derivative of a function df can be

written
df =

∑
i

∂f
∂xi dx

i.

A section of the tensor bundle ⊗rTM ⊗⊗sT ∗M can be written as

Θ =
∑

i1,··· ,ir
j1,··· ,js

ai1···irj1···js
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir ⊗ dx
j1 ⊗ · · · ⊗ dxjs ,

where ai1···irj1···js are nr+s smooth functions.
A general differential form ρ ∈ Ωk(M) can be written

ρ =
∑

i1<···<ik

ρi1···ikdx
i1 ∧ · · · ∧ dxik

3.4 Differential forms

There are several properties of differential forms which make them indispensible: first, the k-forms are
intended to give a notion of k-dimensional volume (this is why they are multilinear and skew-symmetric,
like the determinant) and in a way compatible with the boundary map (this leads to the exterior derivative,
which we define below). Second, they behave well functorially, as we see now.

Given a smooth map f : M −→ N , we obtain bundle maps f∗ : TM −→ TN and hence f∗ := ∧k(f∗)∗ :
∧kT ∗N −→ ∧kT ∗M . Hence we have the diagram

∧kT ∗M
πM

��

∧kT ∗N
πN

��

f∗
oo

M
f

// N

The interesting thing is that if ρ ∈ Ωk(N) is a differential form on N , then it is a section of πN . Composing
with f, f∗, we obtain a section f∗ρ := f∗ ◦ ρ ◦ f of πM . Hence we obtain a natural map

Ωk(N)
f∗−→ Ωk(M).

Such a natural map does not exist (in either direction) for multivector fields, for instance.
Suppose that ρ ∈ Ωk(N) is given in a coordinate chart by ρ =

∑
ρi1···ikdy

i1 ∧ · · · ∧ dyik . Now choose
a coordinate chart for M with coordinates x1, . . . xm. What is the local expression for f∗ρ? We need only
compute f∗dyi. We use a notation where fk denotes the kth component of f in the coordinates (y1, . . . yn),
i.e. fk = yk ◦ f .

f∗dyi( ∂
∂xj ) = dyi(f∗ ∂

∂xj ) (23)

= dyi(
∑
k

∂fk

∂xj
∂
∂yk

) (24)

= ∂fi

∂xj . (25)

Hence we conclude that
f∗dyi =

∑
j

∂fi

∂xj dx
j .

Finally we compute

f∗ρ =
∑

i1<···<ik

f∗ρi1···ikf
∗(dyi1) ∧ · · · ∧ f∗(dyik) (26)

=
∑

i1<···<ik

(ρi1···ik ◦ f)
∑
j1

· · ·
∑
jk

∂fi1

∂xj1
· · · ∂f

ik

∂xjk
dxj1 ∧ · · · dxjk . (27)
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