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Under assumptions on X (connected, local simple-connected, and semi-locally simply connected, in order
to define the topology of X̃) we constructed a universal covering (X̃, p), by setting

X̃ = {[γ] : γ is a path in X starting at x0}.

We also saw that this space has trivial fundamental group, as follows: Any path γ in X may be lifted to X̃
by defining γ̃(t) to be the path γ up to time t (and constant afterwards). If [γ] is in the image of p∗, this
means that there is a loop in this class, say γ, which lifts to a loop γ̃ in X̃. But this means that γ up to
time 1 is equal in X̃ (i.e. homotopic to) to γ up to time 0, i.e. [γ] = 0 in π1(X). Since p∗ is injective, it
must be that π1(X̃) = 0.

Having the universal cover, we can produce all other coverings via quotients of it, as follows:

surjectivity of functor. Suppose now that (X,x0) has a (path-connected) universal covering space (X̃, x̃0),
and suppose a subgroup H ⊂ π1(X,x0) is specified. Then we define an equivalence relation on X̃ as follows:
given points [γ], [γ′] ∈ X̃, we define [γ] ∼ [γ′] iff γ(1) = γ′(1) and [γ′γ−1] ∈ H. Because H is a subgroup,
this is an equivalence relation. Now set XH = X̃/ ∼. Note that this equivalence relation holds for nearby
paths in the sense [γ] ∼ [γ′] iff [γη] ∼ [γ′η]. Therefore, if any two points in U[γ], U[γ′] are equivalent, then so
is every other point in the neighbourhood. This shows that the projection p : XH −→ X via [γ] 7→ γ(1) is a
covering map.

As a basepoint in XH , pick [x0], the constant path at x0. Then the image of p∗ isH, since the lift of the
loop γ is a path beginning at [x0] and ending at [γ], and this is a loop exactly when [γ] ∼ [x0], i.e. [γ] ∈ H.

Example 1.37 (Diagram: page 58). Consider the wedge S1 ∨ S1. Recall that π1(S1 ∨ S1) = F2 =< a, b >.
View it as a graph with one vertex and two edges, labeled by a, b with their appropriate orientations. We
can then take any other graph X̃, labeled in this way, and such that each vertex is locally isomorphic to the
given vertex, and define a covering map to S1 ∨S1. The resulting graph X̃ is itself a wedge of k circles, with
fundamental group Fk. Hence we obtain a map Fk −→ F2 which is an injection. Examples (1), (2)

In fact, every 4-valent graph can be labeled in the way required above: if the graph is finite, take an
Eulerian circuit and label the edges a, b, a, b . . .. Then the a edges are a collection of disjoint circles: orient
them and do the same for the b edges.

An infinite 4-valent graph may be constructed which is a simply-connected covering space for S1 ∨ S1: it
is a fractal 4-branched tree (drawing).

Not only can we have a free group on any number of generators as a subgroup of F2, but also we can have
infinitely many generators (drawing of (10), (11))

Note that changing the basepoint vertex of a covering simply conjugates p∗(π1(X̃, x̃0)) inside π1(X,x0).
(draw (3), (4)). Isomorphism of coverings (without fixing basepoints) is just a graph isomorphism preserving
labeling and orientation.

Note also that characteristic subgroups may be isomorphic without being conjugate. (draw (5),(6)), these
are homeomorphic graphs, but not isomorphic as covering spaces.

Example 1.38. If X is a path-connected space with fundamental group π1(X,x0), then by attaching 2-cells
e2α via maps ϕα : S1 −→ X, then the resulting space Y will have fundamental group which is a quotient of
π1(X,x0) by the normal subgroup N generated by loops of the form γαϕαγ

−1
α , for any γα chosen to join x0

to ϕα(1). This is seen by Van Kampen’s theorem applied to a thickened version Z of Y where the paths γα
are thickened to intervals attached to the discs eα.

We can use this construction to obtain any group as a fundamental group. Choose a presentation

G = 〈gα | rβ〉.

This is possible since any group is a quotient of a free group. Then we construct XG from ∨αS1
α by attaching

2-cells e2β by loops specified by the words rβ. (for example, to obtain Zn = 〈a | an = 1〉, attach a single 2-cell
to S1 via the map z 7→ zn. For n = 2 we obtain RP 2.
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The Cayley complex is one way of describing the universal cover of XG. It is a cell complex X̃G constructed
as follows: The vertices are the elements of G itself. Then at each vertex g ∈ G, attach an edge joining g to
ggα for each generator gα. The resulting graph is the Cayley graph of G with respect to the generators gα.
Then, each relation rβ determines a loop starting at any g ∈ G, and we attach a 2-cell to all these loops.
There is an obvious map to XG given by quotienting by the action of G on the left, which sends all points
to the basepoint, each edge g −→ ggα to the edge S1

α, and each 2-cell associated to rβ to that attached in the
construction of XG.

For example, consider G = Z2 ∗ Z2 = 〈a, b | a2 = b2 = 1〉. then the Cayley graph has vertices
{. . . , bab, ba, b, e, a, ab, aba, . . .}, and two generators so there will be four edges coming in/out of each ver-
tex g: two outward edges corresponding to right multiplication by a, b to ga, gb, and two inward coming
from ga−1, gb−1. We therefore obtain an infinite sequence of tangent circles. We produce the Cayley com-
plex by attaching a 2-cell corresponding to a2 to the loop produced at each vertex g by following the loop
g −→ ga −→ ga2. This attaches two 2-cells to each circle, yielding a sequence of tangent 2-spheres, clearly a
simply-connected space. The action of G corresponds to an action by even translations (ab) and the antipodal
maps, giving the quotient space RP 2 ∨ RP 2.
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1.7 Group actions and Deck transformations

In many cases we obtain covering spaces X̃ −→ X from group actions; if a group A acts on X̃, the quotient
map X̃ −→ X̃/A may, under some assumptions on A and its action, be a covering.

For example, we can define the n-fold covering S1 −→ S1 as simply the quotient of S1 by the action of
Zn via x 7→ xσn for σ = e2πi/n, or even R −→ S1 via the quotient by the Z action x 7→ x+ n.

In general, if p : (X̃, x̃0) −→ (X,x0) is a universal cover, then we can obtain X as a quotient of X̃ by the
action of the fundamental group π1(X,x0) as follows:

Given an element [γ] ∈ π1(X,x0), γ lifts to a path terminating in x̃′0 over x0. Now the covering p has a
unique lift to X̃, sending x̃0 to the alternative basepoint x̃′0. This lift is a homeomorphism X̃ −→ X̃, and
this defines an action of π1(X,x0) on X̃. We’ll be careful in a moment to show the quotient is X.

In general, not all covering maps p will be the quotient by the action of a group: this will only be the
case for normal covering maps, i.e. those for which p∗(π1(X̃)) is a normal subgroup N ; Then π1(X,x0)/N
is a group, and this will act in the same way as above, with quotient X.

Example 1.39 (Coverings of surfaces). There are many interesting coverings of surfaces, which can be
constructed by acting by symmetry groups:

An example of a covering of a compact surface: take a genus mn+ 1 surface, draw it as a surface with m
genus n legs and a hole in the center. There is an obvious Zn symmetry by rotating by 2π/m. The quotient
map is then a m-fold covering map to a surface of genus n+ 1.

Consider a genus g surface in R3 with the holes along an axis, and consider the rotation about this axis
by π, giving a Z2 action with 2(g + 1) fixed points. Remove the fixed points. The punctured surface then
is a 2-sheeted cover of S2 punctured in 2(g + 1) points. This is the topological description of an equation
y2 = f(z) with f of degree 2g + 1 (this way, y2 = f has exactly two solutions except at the 2g + 1 zeros of f
and the point at infinity where f =∞. The particular case where f has degree 3 defines a genus 1 surface,
which is called an elliptic curve once a complex structure is chosen on it.

Example 1.40. The antipodal map on Sn is an action of Z2 with no fixed points; the quotient map is a
covering of RPn. This will imply that π1(RPn) = Z2. In the case n = 3, this 2:1 cover is also known as the
sequence of groups

0 // Z2 = {±1} // SU(2) π // SO(3) // 0

Note that SO(3) has several famous finite subgroups: the cyclic groups An, the dihedral groups Dn, and the
symmetry groups of the tetrahedron, octahedron, and dodecahedron, E6, E7, E8. In this way we can construct
other covering spaces, e.g. S3 −→ S3/π−1(E8), the Poincaré dodecahedral space, a homology 3-sphere.

To formalize the observations above, we wish to answer the following questions: Given a connected
covering space (without basepoint), what is its group of automorphisms (deck transformations), and when
does this group define the covering as a quotient? And, more generally, when is a group action defining a
covering map?

Definition 10. A covering map p : X̃ −→ X is called normal when, for each x ∈ X and each pair of lifts
x̃, x̃′ of x, there is an automorphism of p taking x̃ to x̃′.

Theorem 1.41. If p : X̃ −→ X is a path-connected covering (of X path-connected and locally path-
connected), with characteristic subgroup H, then the group of automorphisms of p is A = N(H)/H, and
the quotient X̃/A is the covering with characteristic subgroup N(H). Therefore, a covering is normal pre-
cisely when H is normal, and in this case the automorphism group is A = π1(X)/H and X̃/A = X.

Proof. Changing the basepoint from x̃0 ∈ p−1(x0) to x̃1 ∈ p−1(x0) corresponds to conjugating H by [γ] ∈
π1(X,x0) which lifts to a path γ̃ from x̃0 to x̃1. Therefore, [γ] ∈ N(H) iff p∗(π1(X̃, x̃0)) = p∗(π1(X̃, x̃1)),
which is the case (by the lifting of maps) iff there is a deck transformation taking x̃0 to x̃1. Therefore X̃ is
normal iff N(H) = π1(X,x0), i.e. H is already normal in π1(X,x0).

In general there is a group homomorphism ϕ : N(H) −→ A, sending [γ] to the deck transformation
mapping x̃0 7→ x̃1 as above. It is surjective by the argument above, and its kernel is precisely the classes [γ]
lifting to loops, i.e. the elements of H itself.
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Theorem 1.42. Suppose G acts on Y in a properly discontinuous way, i.e. each y ∈ Y has a neighbourhood
U such that gU are disjoint for all g ∈ G. Then the quotient of Y by G is a normal covering map, and if Y
is path-connected then G is the automorphism group of the cover.

Proof. First we remark that deck transformations of a covering space obviously have the properly discontin-
uous property.

To prove the result, take any open set U as in the definition of proper discontinuity. Then the quotient
map identifies the disjoint homeomorphic neighbourhoods {g(U) : g ∈ G} with p(U) ⊂ Y/G. By the
definition of the quotient topology, this gives a homeomorphism on each component, and hence we have a
covering.

Certainly G is a subgroup of the deck transformations, and the covering space is normal since g2g−1
1 takes

g1(U) to g2(U), and if Y is path-connected then G equals the deck transformations, since if a deck transfor-
mation f sends y to f(y), we may simply lift the covering to the alternative point f(y) (the lifting criterion
is satisfied since the cover is normal) and this deck transformation must coincide with f by uniqueness.

Remark 1. Suppose p : X̃ −→ X is a finite covering. Fixing x0 ∈ X, we have two natural permutation
actions on the finite set p−1(x0): one is by π1(X,x0), via lifting of loops, i.e. given [γ] ∈ π1(X,x0), the
permutation σ([γ]) acts on x̃0 by σ(x̃0) = γ̃(1), where γ̃ is the lift of γ starting at x̃0. The study of this
permutation action is an alternative approach to classifying covering spaces, and this is described in Hatcher.
It is useful to understand both approaches.

The second action is by the group of deck transformations A = N(H)/H (for the characteristic subgroup
H). These actions commute. Interestingly, when X̃ is the universal cover, A is π1(X,x0) as well, and so
we have the same group acting in two ways– these actions need not coincide.
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