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1.6 Covering spaces

Consider the fundamental group π1(X,x0) of a pointed space. It is natural to expect that the group theory of
π1(X,x0) might be understood geometrically. For example, subgroups may correspond to images of induced
maps ι∗π1(Y, y0) −→ π1(X,x0) from continuous maps of pointed spaces (Y, y0) −→ (X,x0). For this induced
map to be an injection we would need to be able to lift homotopies in X to homotopies in Y . Rather than
consider a huge category of possible spaces mapping to X, we restrict ourselves to a category of covering
spaces, and we show that under some mild conditions on X, this category completely encodes the group
theory of the fundamental group.

Definition 9. A covering map of topological spaces p : X̃ −→ X is a continuous map such that there
exists an open cover X =

⋃
α Uα such that p−1(Uα) is a disjoint union of open sets (called sheets), each

homeomorphic via p with Uα. We then refer to (X̃, p) (or simply X̃, abusing notation) as a covering space
of X.

Let (X̃i, pi), i = 1, 2 be covering spaces of X. A morphism of covering spaces is a covering map
φ : X̃1 −→ X̃2 such that the diagram commutes:

X̃1

φ //

p1
  A

AA
AA

AA
X̃2

p2
~~}}

}}
}}

}

X

We will be considering covering maps of pointed spaces p : (X̃, x̃0) −→ (X,x0), and pointed morphisms
between them, which are defined in the obvious fashion.

Example 1.30. The covering space p : R −→ S1 has the additional property that X̃ = R is simply connected.
There are other covering spaces pn : S1 −→ S1 given by z 7→ zn for n ∈ Z, and in fact these are the only
connected ones up to isomorphism of covering spaces (there are disconnected ones, but they are unions of
connected covering spaces).

Notice that (pn)∗ : π1(S1) −→ π1(S1) maps [ω1] 7→ [ωn] = n[ω1], hence (pn)∗(π1(S1)) ∼= Z/nZ ⊂ Z. As
a result, we see that there is an isomorphism class of covering space associated to every subgroup of Z: we
associate p : R −→ S1 to the trivial subgroup.

Note also that we have the commutative diagram

S1 zm //

zmn   A
AA

AA
AA

A S̃1

zn~~}}
}}

}}
}}

S1

showing that we have a morphism of covering spaces corresponding to the inclusion of groups mnZ ⊂ nZ ⊂ Z.

There is a natural functor from pointed covering spaces of (X,x0) to subgroups of π1(X,x0), as a
consequence of the following result:

Lemma 1.31 (Homotopy lifting). Let p : X̃ −→ X be a covering and suppose that f̃0 : Y −→ X̃ is a lifting
of the map f0 : Y −→ X. Then any homotopy ft of f0 lifts uniquely to a homotopy f̃t of f̃0.

Proof. The same proof used for the Lemma 1.13 works in this case.

Corollary 1.32. The map p∗ : π1(X̃, x̃0) −→ π1(X,x0) induced by a covering space is injective, and its
image G(p, x̃0) consists of loops at x0 whose lifts to X̃ at x̃0 are loops.

If we choose a different basepoint x̃′0 ∈ p−1(x0), and if X̃ is path-connected, we see that G(p, x̃′0) is the
conjugate subgroup γG(p, x̃0)γ−1, for γ = p∗[γ̃] for γ̃ : x̃0 → x̃′0.
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Hence p∗ defines a functor as follows:

{ pointed coverings (X̃, x̃0)
p // (X,x0) } −→ { subgroups G ⊂ π1(X,x0)}

The group G(p, x̃0) = p∗(π1(X̃, x̃0)) ⊂ π1(X,x0) is called the characteristic subgroup of the covering p.
We will prove that under some conditions on X, this is an equivalence:

Theorem 1.33 (injective). Let X be path-connected and locally path-connected. Then G(p, x̃) = G(p′, x̃′)
iff there exists a canonical isomorphism (p, x̃) ∼= (p′, x̃′).

Theorem 1.34 (surjective). Let X be path-connected, locally path-connected, and semilocally simply-connected.
Then for any subgroup G ⊂ π1(X,x), there exists a covering space p : (X̃, x̃) −→ (X,x) with G = G(p, x̃).

The first tool is a criterion which decides whether maps to X may be lifted to X̃:

Lemma 1.35 (Lifting criterion). Let p : (X̃, x̃0) −→ (X,x0) is a covering and let f : (Y, y0) −→ (X,x0)
be a a map with Y path-connected and locally path-connected. Then f lifts to f̃ : (Y, y0) −→ (X̃, x̃0) iff
f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x0)).

Proof. It is clear that the group inclusion must hold if f lifts, since f∗ = p∗f̃∗. For the converse, we define
f̃ as follows: let y ∈ Y and let γ : y0 → y be a path. Then take the path fγ and lift it at x̃0, giving f̃γ.
Define f̃(y) = f̃γ(1).

f̃ is well defined, independent of γ: if we choose γ′ : y0 → y, then (fγ′)(fγ)−1 is a loop h0 in the image
of f∗ and hence is homotopic (via ht) to a loop h1 which lifts to a loop h̃1 at x̃0. But the homotopy lifts,
and hence h̃0 is a loop as well. By uniqueness of lifted paths, h̃0 consists of f̃γ′ and f̃γ (both lifted at x̃0),
traversed as a loop. Since they form a loop, it must be that f̃γ′(1) = f̃γ(1).

f̃ is continuous: We show that each y ∈ Y has a neighbourhood V small enough that f̃ |V coincides
with f . Take a neighbourhood U of f(y) which lifts to f̃(y) ∈ Ũ ⊂ X̃ via p : Ũ −→ U . Then choose a
path-connected neighbourhood V of y with f(V ) ⊂ U . Fix a path γ from y0 to y and then for any point
y′ ∈ V choose path η : y → y′. Then the paths (fγ)(fη) have lifts f̃γf̃η, and f̃η = p−1fη. Hence f̃(V ) ⊂ Ũ
and f̃ |V = p−1f , hence continuous.

Lemma 1.36 (uniqueness of lifts). If f̃1, f̃2 are lifts of a map f : Y −→ X to a covering p : X̃ −→ X , and
if they agree at one point of Y , then f̃1 = f̃2.

Proof. The set of points in Y where f̃1 and f̃2 agree is open and closed: take a neighbourhood U of f(y)
such that p−1(U) is a disjoint union of homeomorphic Ũα, and let Ũ1, Ũ2 contain f̃1(y), f̃2(y). Then take
N = f̃−1

1 (Ũ1) ∩ f̃−1
2 (Ũ2). If f̃1, f̃2 agree (disagree) at y, then they must agree (disagree) on all of N .

Proof of injectivity. If there is an isomorphism f : (X̃1, x̃1) −→ (X̃2, x̃2), then taking induced maps, we get
G(p1, x̃1) = G(p2, x̃2).

Conversely, suppose G(p1, x̃1) = G(p2, x̃2). By the lifting criterion, we can lift p1 : X̃1 −→ X to a
map p̃1 : (X̃1, x̃1) −→ (X̃2, x̃2) with p2p̃1 = p1. In the other direction we obtain p̃2 with p1p̃2 = p2. The
composition p̃1p̃2 is then a lift of p2 which agrees with the Identity lift at the basepoint, hence it must be
the identity. similarly for p̃2p̃1.

Finally, to show that there is a covering space corresponding to each subgroup G ⊂ π1(X,x0), we give a
construction. The first step is to construct a simply-connected covering space, corresponding to the trivial
subgroup. Note that for such a covering to exist, X must have the property of being semi-locally simply
connected, i.e. each point x must have a neighbourhood U such that the inclusion ι∗ : π1(U, x) −→ π1(X,x)
is trivial. In fact this property is equivalent to the requirement that π1(X,x) be discrete as a topological
group. We prove the existence of a simply-connected covering space when X is path-connected, locally
path-connected, and semi-locally simply connected.
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Existence of simply-connected covering. Let X be as above, with basepoint x0. Define

X̃ = {[γ] | γ is a path in X starting at x0}

and let x̃0 be the trivial path at x0. Define also the map p : X̃ −→ X by p([γ]) = γ(1). p is surjective, since
X is path-connected.

We need to define a topology on X̃, show that p is a covering map, and that it is simply-connected.
Topology: Since X is locally path-connected and semilocally simply-connected, it follows that the collec-

tion U of path-connected open sets U ⊂ X with π1(U) −→ π1(X) trivial forms a basis for the topology of
X. We now lift this collection to a basis for a topology on X̃: Given U ∈ U and [γ] ∈ p−1(U), define

U[γ] = {[γη] | η is a path in U starting at γ(1)}

Note that p : U[γ] −→ U is surjective since U path-connected and injective since π1(U) −→ π1(X) trivial.
Using the fact that [γ′] ∈ U[γ] ⇒ U[γ] = U[γ′], we obtain that the sets U[γ] form a basis for a topology on
X̃. With respect to this topology, p : U[γ] −→ U gives a homeomorphism, since it gives a bijection between
subsets V[γ′] ⊂ U[γ] and the sets V ∈ U contained in U (p(V[γ′]) = V and also p−1(V ) ∩ U[γ] = V[γ′] for any
[γ′] ∈ U[γ] with endpoint in V ).

Hence p : X̃ −→ X is continuous, and it is a covering map, since for fixed U ∈ U , the sets {U[γ]} partition
p−1(U).

To see that X̃ is simply-connected: Note that for any point [γ] ∈ X̃, we can shrink the path to give a
homotopy t 7→ [γt] to the constant path [x0] (this shows X̃ is path-connected). If [γ] ∈ π1(X,x0) is in the
image of p∗, it means that the lift [γt] is a loop, meaning that [γ1] = [x0]. But γ1 = γ, this means that
[γ] = [x0], hence the image of p∗ is trivial. By injectivity of p∗, we get that X̃ is simply-connected.
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