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1.5 The Van Kampen theorem

There are many versions of the Van Kampen theorem; all of them help us to do the following: determine
the fundamental group of a space X which has been expressed as a union

⋃
α Uα of open sets, given the

fundamental groups of each Uα and Uα ∩ Uβ , as well as the induced maps on fundamental groups given by
the inclusion (or fibered coproduct) diagram

Uα ∩ Uβ
iαβ //

iβα

��

Uα

iα

��
Uβ

iβ
// Uα ∪ Uβ

(1)

Before we begin to state the theorem, we briefly review the idea of the free product of groups. Given
groups G1, G2, we may form the free product G1 ∗G2, defined as follows: G1 ∗G2 is the group of equivalence
classes of finite words made from letters chosen from G1 t G2, where the equivalence relation is finitely
generated by a ∗ b ∼ ab for a, b both in G1 or G2, and the identity elements ei ∈ Gi are equivalent to the
empty word. The group operation is juxtaposition. For example, Z ∗ Z is the free group on two generators:

Z ∗ Z = 〈a, b〉 = {ai1bj1ai2bj2 · · · aikbjk : ip, jp ∈ Z, k ≥ 0}

Note that from a categorical point of view6, G1 ∗G2 is the coproduct or sum of G1 and G2 in the following
sense: not only does it fit into the following diagram of groups:

G2

ι2

��
G1 ι1

// G1 ∗G2

but (ι1, ι2, G1 ∗ G2) is the “most general” such object, i.e. any other triple (j1, j2, G) replacing it in the
diagram must factor through it, via a unique map G1 ∗G2 −→ G.

The simplest version of Van Kampen is for a union X = U1 ∪ U2 of two path-connected open sets
such that U1 ∩ U2 is path-connected and simply connected. Note that the injections ι1, ι2 give us induced
homomorphisms π1(Ui) −→ π1(X). By the coproduct property, this map must factor through a group
homomorphism

Φ : π1(U1) ∗ π1(U2) −→ π1(X).

Theorem 1.20 (Van Kampen, version 1). If X = U1 ∪ U2 with Ui open and path-connected, and U1 ∩ U2

path-connected and simply connected, then the induced homomorphism Φ : π1(U1) ∗ π1(U2) −→ π1(X) is an
isomorphism.

Proof. Choose a basepoint x0 ∈ U1 ∩ U2. Use [γ]U to denote the class of γ in π1(U, x0). Use ∗ as the free
group multiplication.

Φ is surjective: Let [γ] ∈ π1(X,x0). Then we can find a subdivision 0 = t0 < t1 < · · · < tn = 1 such
that γ([ti, ti+1]) is contained completely in U1 or U2 (it might be in U1 ∩ U2). Then γ factors as a product
of its restrictions γi+1 to [ti, ti+1], i.e.

[γ]X = [γ1γ2 · · · γn]X

But the γi are not loops, just paths. To make them into loops we must join the subdivision points γ(ti) to
the basepoint, and we do this as follows: if γ(ti) ∈ U1 ∩ U2 then we choose a path ηi from x0 to γ(ti) lying
in U1 ∩U2; otherwise we choose such a path lying in whichever of U1, U2 contains γ(ti). This is why we need
Ui, U1 ∩ U2 to be path-connected.

6Coproducts in categories are the subject of a question in Assignment 6
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Then define γ̃i = ηi−1γiη
−1
i and we obtain a factorization of loops

[γ]X = [γ̃1]X · · · [γ̃n]X .

We chose the ηi in just such a way that each loop in the right hand side lies either in U1 or in U2; hence we
can choose ei ∈ {1, 2} so that [γ̃1]Ue1 ∗ · · · ∗ [γ̃n]Uen makes sense as a word in π1(U1) ∗ π1(U2), and hence we
have [γ]X = Φ([γ̃1]Ue1 ∗ · · · ∗ [γ̃n]Uen ), showing surjectivity.

Φ is injective: take an arbitrary element of the free product γ = [a1]Ue1 ∗ · · · ∗ [ak]Uek (for ei ∈ {1, 2}) ,
and suppose that Φ([a1]Ue1 ∗ · · · ∗ [ak]Uek ) = 1. This means that a1 · · · ak is homotopically trivial in X. We
wish to show that γ = 1 in the free product group.

Take the homotopy H : I × I −→ X taking a1 · · · ak to the constant path at x0, and subdivide I × I
into small squares Sij = [si, si+1]× [ti, ti+1] so that each square is sent either into U1 or U2, and subdivide
smaller if necessary to ensure that the endpoints of the domains of the loops ai are part of the subdivision.

Set up the notation as follows: let vij be the grid point (si, ti) and aij the path defined by H on the
horizontal edge vij → vi+1,j , and bij the vertical path given by H on vij → vi,j+1. Then we can write
ai = api−1+1,0 · · · api,0 for some {pi}, and we can factor each loop as a product of tiny paths:

γ = [a1]Ue1 ∗ · · · ∗ [ak]Uek = [a0,0 · · · ap1,0]Ue1 ∗ · · · ∗ [· · · apk,0]Uek

Again, these paths aij (as well as the bij) are not loops, so, just as in the proof of surjectivity, choose
paths hij from the basepoint to all the gridpoint images H(vij), staying within U1∩U2, U1, or U2 accordingly
as H(vij). pre- and post-composing with the hij , we then obtain loops ãij and b̃ij lying in either U1 or U2.

In particular we can factor γ as a bunch of tiny loops, each remaining in U1 or U2:

γ = [ã0,0]Ue1 ∗ · · · ∗ [ãp1,0]Ue1 ∗ · · · ∗ [ãpk,0]Uek

For each loop ãi,0, we may use H restricted to the square immediately above ai,0 to define a homotopy
Hi,0 : ãi,0 ⇒ b̃i,0ãi,1b̃

−1
i+1,0: If ãi,0 is in U1, say, and the homotopy Hi,0 occurs in U1, then we may replace

[ãi,0]U1 with [b̃i,0]U1 ∗ [ãi,1]U1 ∗ [b̃i+1,0]−1
U1

in the free product. If on the other hand Hi,0 occurs in U2, then we
observe that ãi,0 must lie in U1∩U2, and since this is simply connected, [ã1,0]U1 = empty word = [ã1,0]U2

in the free product, so it can be replaced with [b̃i,0]U2 ∗ [ãi,1]U2 ∗ [b̃i+1,0]−1
U2

in the free product. Doing this
replacement for each square in the bottom row, the [b̃i,0]Uei cancel, and we may repeat the replacement for
the next row.

In this way we eventually reach the top row, which corresponds to a free product of constant paths at
x0, showing γ = 1 in the free product, as required.

Let’s give some examples of fundamental groups computed with the simple version of Van Kampen:

Example 1.21. The wedge sum of pointed spaces (X,x), (Y, y) is X∨Y := XtY/x ∼ y, and is the coproduct
in the category of pointed spaces. If X,Y are topological manifolds, then let Vx, Vy be disc neighbourhoods
of x, y so that X ∨ Y = U1 ∪ U2 with U1 = [X t Vy] and U2 = [Vx t Y ]. We conclude that π1(X ∨ Y ) =
π1(X) ∗ π1(Y ). For example, π1(S1 ∨ S1) = Z ∗ Z = F2.

At least for pointed manifolds, therefore, we can say that the π1 functor preserves coproducts. Does
this hold for all pointed spaces? No, but it does work when the point is a deformation retract of an open
neighbourhood.

Example 1.22. Let X,Y be connected manifolds of dimension n. Then their connected sum X]Y is naturally
decomposed into two open sets U ∪ V with U ∩ V ∼= I × Sn−1 ' Sn−1. If n > 2 then π1(Sn−1) = 0, and
hence π1(X]Y ) = π1(X) ∗ π1(Y ).

Example 1.23. Using the classical 4g-gon representation of the genus g orientable surface Σg, we showed
that when punctured it is homotopic to ∨2gS

1. Hence π1(Σg\{p}) = F2g. What happens with non-orientable
surfaces? What about puncturing manifolds of dimension > 2?
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The second version of Van Kampen will deal with cases where U1 ∩ U2 is not simply-connected. By the
inclusion diagram (1), we see that we have a canonical map from the fibered sum π1(U1) ∗π1(U1∩U2) π1(U2)
to π1(X): Van Kampen again states that this is an isomorphism. Recall that if ιk : H −→ Gk, k = 1, 2 are
injections of groups, then the fibered product or “free product with amalgamation” may be constructed as
a quotient of the free product, by additional relations generated by (g1ι1(h)) ∗ g2 ∼ g1 ∗ (ι2(h)g2) for gi ∈ Gi
and h ∈ H. In other words,

G1 ∗H G2 = (G1 ∗G2)/K,

where K is the normal subgroup generated by elements {dι1(h)−1ι2(h) : h ∈ H}.

Theorem 1.24 (Van Kampen, version 27). If X = U1 ∪ U2 with Ui open and path-connected, and U1 ∩ U2

path-connected, then the induced homomorphism Φ : π1(U1) ∗π1(U1∩U2) π1(U2) −→ π1(X) is an isomorphism.

Proof. Exercise! Slight modification of the given proof, need to understand the analogous condition to the
one we used to show [ã]U1 = empty word = [ã]U2 in the free product.

Example 1.25. Express the 2-sphere as a union of two discs with intersection homotopic to S1. By Van
Kampen version 2, we have π1(S2) = (0 ∗ 0)/K = 0.

Example 1.26. Take a genus g orientable surface Σg. Choose a point p ∈ Σg and let U0 = Σg\{p}. Let Up
be a disc neighbourhood of p. Then we have Σg = U0 ∪ Up, with intersection U0 ∩ Up ' S1. The inclusion
map S1 −→ Up is trivial in homotopy while S1 −→ U0 sends 1 ∈ Z to a1b1a

−1
1 b−1 · · · agbga−1

g b−1
g . Hence the

amalgamation introduces a single relation:

π1(Σg) = 〈a1, b1, . . . ag, bg | [a1, b1] · · · [ag, bg]〉

Example 1.27. Do the same as above, but with RP 2 = U0 ∪ Up, with π1(U0) = Z = 〈a〉 and the inclusion
of U0 ∩ Up ' S1 in U0 sends 1 7→ a2, hence we obtain

π1(RP 2) = Z/2Z.

Example 1.28 (Perverse computation of π1(S3)). Express S3 as the union of two solid tori, glued along
their boundary. Visualize it by simply looking at the interior and exterior of an embedded torus in R3 t∞.
Fatten the tori to open sets U0, U1 with U0 ∩ U1 ' T 2, so that

π1(S3) = Z ∗Z×Z Z.

The notation is not enough to determine the group: we need the maps (ιi)∗ : Z × Z −→ Z induced by the
inclusions: by looking at generating loops, we get ι0(1, 0) = 1, ι0(0, 1) = 0 while ι1(1, 0) = 0, ι1(0, 1) = 1.
Hence the amalgamation kills both generators, yielding the trivial group.

The proof of Van Kampen in Hatcher is slightly more general than this, as it allows arbitrarily many
open sets Uα, with only the extra hypothesis that triple intersections be path-connected (in our proof, each
vertex vij is joined to the basepoint by a path: since the vertex is surrounded by 4 squares, we would need
quadruple intersections to be path-connected. This can be improved by using a hexagonal decomposition,
or a brick configuration, where the vertices are surrounded by only 3 2-cells). The ultimate Van Kampen
theorem does not refer to basepoints or put connectivity conditions on the intersection: it states that the
fundamental groupoid of U1 ∪ U2 is the fibered sum of Π1(U1) and Π1(U2) over Π1(U1 ∩ U2). Viewing
the topology of X as a category (where objects are open sets and arrows are inclusions), the Van Kampen
theorem can be rephrased as follows:

Theorem 1.29 (Van Kampen, version 3). Π1 is a functor from the topology of X to groupoids, which
preserves fibered sum8.

7See the proof in Hatcher
8See “Topology and Groupoids” by Ronald Brown.
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