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These properties descend to the fundamental groupoid, as well as to the fundamental group, implying
that for any continuous map of pointed spaces f : (X,x0) −→ (Y, y0), we obtain a homomorphism of groups
f∗ : π1(X,x0) −→ π1(Y, y0), given simply by composition [γ] 7→ [f ◦ γ]. This last fact is usually proven
directly, since it is so simple.

1.3 π1(S
1) = Z

In this section we will compute the fundamental group of S1. The method we use will help us develop the
theory of covering spaces. We essentially follow Hatcher, Chapter 1.

Theorem 1.12. The map Φ : Z −→ π1(S1, 1) given by n 7→ [ωn], for ωn(s) = e2πins, is an isomorphism.

Proof. Consider the map p : R −→ S1 defined by p(s) = e2πis. It can be viewed as a projection of a single
helix down to a circle. The loop ωn may be factored as a linear path ω̃n(s) = ns in R, composed with p:
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We say that ω̃n is a “lift” of ωn to the “covering space” R. Note that Φ(n) could be defined as [p ◦ f̃ ] for
any path f̃ in R joining 0 to n. This is because f̃ ' ω̃n via the homotopy (1− t)f̃ + tω̃n.

To check that Φ is a homomorphism, note that Φ(m+ n) is represented by the loop p ◦ (ω̃m · (τm ◦ ω̃n)),
where τm : R −→ R is the translation τm(x) = x + m. But since5 p ◦ τm = p, we see that the loop is equal
to the concatenation ωm · ωn. Thus Φ(m+ n) = Φ(m)Φ(n).

To prove that Φ is surjective, we do it by taking any loop f : I −→ S1 and lifting it to f̃ starting at 0,
which then must go to an integer n. Then Φ(n) = [f ] as required. For this to work, we need to prove:

a) For each path f : I −→ S1 with f(0) = x0 and each x̃0 ∈ p−1(x0),
there is a unique lift f̃ : I −→ R with f(0) = x̃0.

To prove that Φ is injective, suppose that Φ(m) = Φ(n). This means that there is a homotopy ft : ωm =
f0 ⇒ ωn = f1. Let us lift this homotopy to a homotopy f̃t of paths starting at 0. By uniqueness it must be
that f̃0 = ω̃0 and similarly f̃1 = ω̃1. Since f̃t is a homotopy of paths, its endpoint is the same for all t, hence
m = n. For this to work, we need to be able to lift the homotopy via the statement:

b) For each homotopy ft : I −→ S1 of paths starting at x0 ∈ S1,
and each x̃0 ∈ p−1(x0), there is a unique lifted homotopy f̃t :
I −→ R of paths starting at x̃0.

Both statements a), b) are lifting results and can be absorbed in the statement of the following lemma.

Lemma 1.13 (Lifting lemma). Given a map F : Y × I −→ S1 and a “initial lift” F̃0 : Y ×{0} −→ R lifting
F |Y×{0}, there is a unique “complete lift” F̃ : Y × I −→ R lifting F and agreeing with F̃0.

Proof. The main ingredient of the proof is to use the fact that p : R −→ S1 is a covering space, meaning
that there is an open cover {Uα} of S1 such that p−1(Uα) is a disjoint union of open sets, each mapped
homeomorphically onto Uα by p. For example, we could take the usual cover U0, U1 by two open arcs.

To construct the lift F̃ , we first lift the homotopy for small neighbourhoods N ⊂ Y , producing F̃ :
N × I −→ R. We then observe that these lifts on neighbourhoods glue together to give a complete lift.

Fix y0 ∈ Y . By compactness of y0 × I, there is a neighbourhood N of y0 and a partition 0 = t0 < t1 <
· · · < tm = 1 of the interval such that F (N × [ti, ti+1]) is contained in some Uα for each i (call this open

5We see here that τm is a “deck transformation”, an automorphism of the covering space fixing the base.
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set Ui). The lift on N × [0, t0] is given as F̃ |N×{0}. Assume inductively that F̃ has been constructed on
N× [0, ti]. For the next segment, F (N× [ti, ti+1]) ⊂ Ui and F̃ (y0, ti) lies inside Ũi. Replacing N by a smaller
neighbourhood of y0, we may assume that F̃ (N × {ti}) ⊂ Ũi. Now we simply define F̃ on N × [ti, ti+1] to
be p|−1

Ũi
◦ F . In this way we get a lift F̃ : N × I −→ R for some neighbourhood N of y0.

The fact that these local lifts glue to a global lift stems from the uniqueness of the lift at each point y0
(hence two local lifts for neighbourhoods N,N ′ must agree on their intersection. Furthermore, the uniqueness
of the complete lift is also implied by the uniqueness of the lift at each point y0, which we now show.

Let Y be a point. Suppose F̃ , F̃ ′ are two lifts of F : I −→ S1 with F̃ (0) = F̃ ′(0). Choose a partition
0 = t0 < t1 < · · · < tm = 1 compatible with {Ui} as before. Assume that F̃ = F̃ ′ on [0, ti]. Since [ti, ti+1] is
connected, F̃ ([ti, ti+1]) is also, and must lie in a single one of the lifts Ũi of Ui, in fact the same one which
F̃ ′([ti, ti+1]) is in, since these share the same value at ti. Since p is an isomorphism on this open set, we
obtain F̃ = F̃ ′ on [ti, ti+1], completing the proof.

Corollary 1.14. Any nonconstant complex polynomial f(z) must have a zero.

Proof. If f has no zeros, then f must take C\{0} into C\{0}, both homotopic to S1. For sufficiently small R,
the loop γR(t) = f(Re2πit) is homotopic to a constant loop ω0. Letting R grow sufficiently large, f(z) behaves
as zn for n the degree of f , and so γR(t) is homotopic to ωn. By the theorem, n = 0, a contradiction.

Using the same arguments you can show that f must have n = deg f zeros, counted with multiplicity.

Corollary 1.15 (Brouwer fixed point theorem). Every continuous map h : D2 −→ D2 has a fixed point.

Proof. If h has no fixed point, then we obtain a map r : D2 −→ S1 by intersecting the ray from h(x) to
x with the boundary circle. This is a retraction onto the circle. But a retract r : X −→ A to a subspace
A

i
↪→ X satisfiees r ◦ i = Id, implying r∗ ◦ i∗ = Id, implying that i∗ must be an injection. Contradiction.

Corollary 1.16 (Borsuk-Ulam). Every continuous map f : S2 −→ R2 takes the same value on at least one
pair of antipodal points.

Proof. If not, then g̃(x) = f(x)−f(−x) is an odd function S2 −→ R2 with no zeros, so that g(x) = g̃(x)/|g̃(x)|
is well defined and still odd. Composing with the equatorial path η(s) = (cos 2πs, sin 2πs, 0), we obtain an
odd function h : S1 −→ S1. We prove that h is nontrivial in π1(S1): lift h to h̃ : S1 −→ R; since
h(s+ 1/2) = −h(s) for s ∈ [0, 1/2], it follows that h̃(s+ 1/2) = h̃(s) + q/2 for some odd integer q (q must be
constant since it depends continuously on s but is an integer). In particular h̃(1) = h̃(1/2) + q/2 = h̃(0) + q.
In other words, h is homotopic to an odd multiple of the generator of π1(S1) and hence must be nontrivial.
On the other hand, since η is nullhomotopic in S2, h = g◦η must also be nullhomotopic, a contradiction.

Borsuk-Ulam can be used to prove the famous “Ham Sandwich theorem”, stating that bread, ham, and
cheese, can always be cut with one slice in such a way so that all three quantities are halved. This is proved
by starting with the bread: for each direction v ∈ S2, let P (v) be the plane normal to v which cuts the
bread in half (the middle such plane if there is an interval of these). Then define a map S2 −→ R2 via
f(v) = (c(v), h(v)), where c(v) is the volume of cheese on the side of P (v) in the direction of v, and similarly
for the ham h(v). Borsuk-Ulam then implies that there is a plane which ensures a well-balanced meal.

Before we discuss the computation of π1(X) for other, more complicated examples, let’s try to understand
the fundamental groupoid of S1.

As we saw before, any paths γ, γ′ ∈ P(R) joining p, q ∈ R must be homotopic, i.e. there is a single
homotopy class of paths joining points in R, and so the fundamental groupoid of R is simply R × R, with
groupoid law (x, y) ◦ (y, z) = (x, z).

Now let a, b ∈ S1 and let γ be a path from a to b. Choose ã ∈ p−1(a), so that γ may be lifted to γ̃, starting
at ã and ending at b̃ := γ̃(1). Of course γ̃ is homotopic to a unique linear path, and similarly for γ; and two
such linear paths p◦γ̃, p◦γ̃′ coincide iff γ′ = γ+n, n ∈ Z. As a result, we see that Π1(S1) = R×R/ ∼, where
(x, y) ∼ (x+n, y+n), n ∈ Z. Therefore we obtain that Π1(S1) has a cylinder as its space of arrows, which
then maps to S1 via the source and target maps (s, t). Note also that for p ∈ S1, s−1(p) is homeomorphic
to R, and t maps this to S1 as a covering map, precisely the same one as p : R −→ S1 from earlier.
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1.4 Further computations of π1

The main technique for computing π1(X) is the Van Kampen theorem, which is an analog of the Mayer-
Vietoris sequence which we learned about for de Rham cohomology. Before we get to it, we will cover some
more elementary facts about computing π1.

Proposition 1.17. Let X,Y be path-connected. Then π1(X × Y ) is isomorphic to π1(X)× π1(Y ).

Proof. Recall that a map f : Z −→ X × Y is continuous iff the projections g : Z −→ X, h : Z −→ Y are
separately continuous. Therefore if f is a loop based at (x0, y0), it is nothing more than a pair of loops in
X and Y based at x0 and y0. Similarly homotopies of loops are nothing but pairs of homotopies of pairs of
loops, and so [f ] 7→ ([g], [h]) defines the obvious isomorphism.

A natural example to consider, given that π1(S1) ∼= Z, is the torus T = S1 × S1. Then π1(T ) ∼= Z× Z.

Proposition 1.18. π1(Sn) = {0} for n > 2.

Proof. Any continuous map of smooth manifolds is homotopic to a smooth map: given f : S1 −→ Sn, we
may find a smooth approximation f̃ : S1 −→ Rn+1 which lies in a small tubular neighbourhood U of Sn.
Then form H(p, t) = r((1− t)f(p) + tf̃(p)), for r : U −→ Sn the retraction.

By Sard’s theorem, f̃ is not surjective for n ≥ 2, failing to take q ∈ Sn as a value. Sn\{q} is contractible,
hence f̃ is homotopic to the trivial path.

Corollary 1.19. R2 is not homeomorphic to Rn for n 6= 2.
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