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2.5 Excision implies Simplicial = Singular homology

Recall that simplicial homology was defined in terms of a ∆-complex decomposition of X, via a collection
of maps σα : ∆n −→ X. We then define the chains to be the free abelian group on the n-simplices, i.e.
∆n(X). We would like to show that if a ∆-complex structure is chosen, then its simplicial homology coincides
with the singular homology of the space X. It will be useful to do this by induction on the k-skeleton Xk

consisting of all simplices of dimension k or less, and so we would like to use a relative version of simplicial
homology:

Define relative simplicial homology for any sub-∆-complex A ⊂ X as usual, using relative chains

∆n(X,A) =
∆n(X)
∆n(A)

,

and denote it by H∆
n (X,A).

Theorem 2.23. Any n-simplex in a ∆-complex decomposition of X may be viewed as a singular n-simplex,
hence we have a chain map

∆n(X,A) −→ Cn(X,A).

The induced homomorphism H∆
n (X,A) −→ Hn(X,A) is an isomorphism. Taking A = ∅, we obtain the

equivalence of absolute singular and simplicial homology.

Lemma 2.24. The identity map in : ∆n −→ ∆n is a cycle generating Hn(∆n, ∂∆n).

Proof. Certainly in defines a cycle, and it clearly generates for n = 0. We do an induction by relating in
to in−1 by killing Λ ⊂ ∆n, the union of all but one n− 1-dimensional face of ∆n and considering the triple
(∆n, ∂∆n,Λ). Since Hi(∆n,Λ) = 0 by deformation retraction, we get isomorphism

Hn(∆n, ∂∆n) ∼= Hn−1(∂∆n,Λ).

But (∂∆n,Λ) and (∆n−1, ∂∆n−1) are good pairs and hence the relative homologies equal the reduced ho-
mology of the quotients, which are homeomorphic. Hence we have

Hn−1(∂∆n,Λ) ∼= Hn−1(∆n−1, ∂∆n−1).

Under the first iso, in is sent to ∂in which in the relative complex is ±in−1, so we see that in generates iff
in−1 generates.

proof of theorem. First suppose that X is finite dimensional, and A = ∅. Then the map of simplicial to
singular gives a morphism of relative homology long exact sequences:

H∆
n+1(Xk, Xk−1) //

��

H∆
n (Xk−1) //

��

H∆
n (Xk)

��

// H∆
n (Xk, Xk−1)

��

// H∆
n−1(Xk−1)

��
Hn+1(Xk, Xk−1) // Hn(Xk−1) // Hn(Xk) // Hn(Xk, Xk−1) // Hn−1(Xk−1)

We will show that most of the vertical maps are isos and then deduce the center map is an iso.
First the maps on relative homology: the group ∆n(Xk, Xk−1) is free abelian on the k-simplices, and

hence it vanishes for n 6= k. Therefore the only nonvanishing homology group is H∆
k (Xk, Xk−1), which is

free abelian on the k-simplices. To compute the singular group Hn(Xk, Xk−1), consider all the simplices
together as a map

Φ : tα(∆k
α, ∂∆k

α) −→ (Xk, Xk−1)
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and note that it gives a homeomorphism of quotient spaces. Hence we have

H•(∆k
α, ∂∆k

α) // H•(Xk, Xk−1)

��
H̃•(∆k

α/∂∆k
α) H̃•(Xk/Xk−1)

which shows that the top is an iso. Using the previous lemma which tells us that the generators of
H•(∆k, ∂∆k) are the same as the simplicial generators, we get that the maps

H∆
k (Xk, Xk−1) −→ Hk(Xk, Xk−1)

are isomorphisms. The second and fifth vertical maps are isomorphisms by induction, and then by the
Five-Lemma, we get the central map is an iso.

What about if X is not finite-dimensional? Use the fact that a compact set in X may only meet finitely
many open simplices (i.e. simplices with proper faces deleted) of X (otherwise we would have an infinite
sequence (xi) such that Ui = X − ∪j 6=i{xj} give an open cover of the compact set with no finite subcover.

To prove H∆
n (X) −→ Hn(X) is surjective, let [z] ∈ Hn(X) for z a singular n-cycle. It meets only

finitely many simplices hence it must be in Xk for some k. But we showed that H∆
n (Xk) −→ Hn(Xk) is an

isomorphism, so this shows that z must be homologous in Xk to a simplicial cycle. For injectivity: if z is a
boundary of some chain, this chain must have compact image and lie in some Xk, so that [z] is in the kernel
H∆
n (Xk) −→ Hn(X). But this is an injection, so that z is a simplicial boundary in Xk (and hence in X).

All that remains is the case where A 6= ∅, which follows by applying the Five-Lemma to both long exact
sequences of relative homology, for each of the simplicial and singular homology theories.

Lemma 2.25 (Five-Lemma). If α, β, δ, ε are isos in the diagram

A
i //

α

��

B
j //

β

��

C
k //

γ

��

D
l //

δ

��

E

ε

��
A′

i′ // B′
j′ // C ′

k′ // D′
l′ // E′

and the rows are exact sequences, then γ is an iso.

Proof. γ surjective: take c′ ∈ C ′. Then k′(c′) = δ(d) = δk(c) = k′γ(c) for some c. Therefore k′(c′−γ(c)) = 0,
which implies c′ − γ(c) = j′(b′) = j′(β(b)) = γj(b) for some b, showing that c′ = γ(c+ j(b)).

γ injective: γ(c) = 0 implies c = j(b) for some b with β(b) = i′(a′) = i′α(a) = βi(a) for some a, so that
b = i(a), showing that c = 0.

The previous theorem allows us to conclude that for X a ∆-complex with finitely many n-simplices,
Hn(X) is finitely generated, and hence it is given by the direct sum of Zbn and some finite cyclic groups. bn
is called the nth Betti number, and the finite part of the homology is called the torsion.
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2.6 Axioms for homology

Eilenberg, Steenrod, and Milnor obtained a system of axioms which characterize homology theories without
bothering with simplices and singular chains. Be warned: not all “homology theories” satisfy these axioms
precisely: Čech homology fails exactness and Bordism and K-theory fail dimension (without dimension, the
homology theory is called extraordinary).

If we restrict our attention to Cell complexes (i.e. CW complexes), then singular homology is the unique
functor up to isomorphism which satisfies these axioms (we won’t have time to prove this).

Definition 18. A homology theory is a functor H from topological pairs (X,A) to graded abelian groups
H•(X,A) together with a natural transformation ∂∗ : Hp(X,A) −→ Hp−1(A) called the connecting homo-
morphism9 (note that Hp(A) := Hp(A, ∅)) such that

i) (Homotopy) f ' g ⇒ H(f) = H(g)

ii) (Exactness) For i : A ↪→ X and j : (X, ∅) ↪→ (X,A), the following is an exact sequence of groups:

H•(A)
i∗=H(i) // H•(X)

j∗=H(j)yyssssssssss

H•(X,A)
∂∗

eeKKKKKKKKKK

iii) (Excision) Given Z ⊂ A ⊂ X with Z ⊂ Aint, the inclusion k : (X − Z,A − Z) ↪→ (X,A) induces an
isomorphism

H(k) : H•(X − Z,A− Z)
∼=−→ H•(X,A).

iv) (Dimension) For the one-point space ∗, Hi(∗) = 0 for all i 6= 0.

v) (Additivity) H preserves coproducts, i.e. takes arbitrary disjoint unions to direct sums10.

Finally, the coefficient group of the theory is defined to be G = H0(∗).

Note: There are natural shift functors S, s acting on topological pairs and graded abelian groups, respec-
tively, given by S : (X,A) 7→ (A, ∅) and (s(G•))n = Gn+1. The claim that ∂∗ is natural is properly phrased
as

∂∗ : H ⇒ s−1 ◦H ◦ S.

Note:If the coefficient group G is not Z, then the theorem mentioned above for CW complexes says that
the homology functor must be isomorphic to H•(X,A;G), singular homology with coefficients in G, meaning
that chains consist of linear combinations of simplices with coefficients in G instead of Z.

There is a sense in which homology with coefficients in Z is more fundamental than homology with
coefficients in some other abelian group G. The result which explains this assertion is called the “universal
coefficient theorem for homology”. Let’s describe this briefly, because it is the first example we encounter of
a derived functor.

The chains Cn(X,A;G) with coefficients inG is naturally isomorphic to the tensor product Cn(X,A)⊗ZG,
and the boundary map is nothing but

∂ ⊗ Id : Cn(X,A)⊗G −→ Cn−1(X,A)⊗G.

So, instead of computing the homology of the chain complex Cn, we are computing the homology of Cn⊗G.
9This natural transformation ∂∗ is the only remnant of chains, boundary operators, etc. All that is gone, but we retain the

categorical notion defined by ∂∗.
10recall that coproduct of Xi is the universal object with maps from Xi, whereas the product is the universal object with

projections to Xi
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2.7 Mayer-Vietoris sequence 1300Y Geometry and Topology

Theorem 2.26. If C is a chain complex of abelian groups, then there are natural short exact sequences

0 // Hn(C)⊗G // Hn(C;G) // Tor(Hn−1(C), G) // 0

and these sequences split but not naturally.

Here, Tor(A,G) is an abelian group (always torsion, it turns out) which depends on the abelian groups
A,G, and is known as the first derived functor of the functor A 7→ A⊗G. In particular, the following rules
will help us compute the Tor group: Tor(A,G) = 0 if A is free. Tor(A1⊕A2, G) ∼= Tor(A1, G)⊕Tor(A2, G),
and most importantly Tor(Z/nZ, G) ∼= ker(G n·−→ G). Clearly under many circumstances Tor(Hn−1(C), G)
will vanish and in this case Hn(C;G) = Hn(C)⊗G. For example, although H1(RP 2) = Z/2Z, multiplication
by 2 has trivial kernel on Z/3Z, hence Hn(RP 2,Z/3Z) = Hn(RP 2)⊗ Z/3Z. On the other hand, with Z/2Z
coefficients, Tor(Z/2Z,Z/2Z) = Z/2Z, hence H2(RP 2,Z/2Z) = Z/2Z.

If we triangulate RP 2 with two 2-simplices, we can check that the sum of the two 2-simplices can’t have
zero boundary with Z coefficients. Certainly it is zero with Z/2Z coefficients. We can interpret this to mean
that when coefficients Z/2Z are chosen, orientation ceases to be meaningful and a compact manifold then
has a cycle in top dimension, even though it may have no oriented cycle in top dimension.

2.7 Mayer-Vietoris sequence

The Mayer-Vietoris sequence is often more convenient to use than the relative homology exact sequence and
excision. As in the case for de Rham cohomology, it is particularly useful for deducing a property of a union
of sets, given the property holds for each component and each intersection.

Theorem 2.27. Let X be covered by the interiors of subsets A,B ⊂ X. Then we have a canonial long exact
sequence of homology groups

H•(A ∩B) Φ // H•(A)⊕H•(B)

Ψwwooooooooooo

H•(X)
∂−1

ffLLLLLLLLLL

Proof. The usual inclusions induce the following short exact sequence of chain complexes

0 // Cn(A ∩B)
ϕ // Cn(A)⊕ Cn(B)

ψ// Cn(A) + Cn(B) ⊂ Cn(X) // 0

where ϕ(x) = (x,−x) and ψ(x, y) = x + y. Why is it exact? kerϕ = 0 since any chain in A ∩ B which is
zero as a chain in A or B must be zero. Then ψϕ = 0, proving that imϕ ⊂ kerψ. Also, kerψ ⊂ imϕ, since if
(x, y) ∈ Cn(A)⊕Cn(B) satisfies x+ y = 0, then x = −y must be a chain in A and in B, i.e. x ∈ Cn(A∩B)
and (x, y) = (x,−x) is in imϕ. Exactness at the final step is by definition of Cn(A) + Cn(B).

The long exact sequence in homology which obtains from this short exact sequence of chain complexes
almost gives the result, except it involves the homology groups of the chain complex Cn(A) + Cn(B). We
showed in the proof of excision that the inclusion ι : C•(A) +C•(B) −→ C•(X) is a deformation retract i.e.
we found a subdivision operator ρ such that ρ ◦ ι = Id and Id− ι ◦ ρ = ∂D + D∂ for a chain homotopy D.
So ι is an isomorphism on homology, and we obtain the result.

The connecting homomorphism Hn(X) −→ Hn−1(A ∩ B) can be described as follows: take a cycle
z ∈ Zn(X), produce the homologous subdivided cycle ρ(z) = x+ y for x, y chains in A,B – these need not
be cycles but ∂x = −∂y. ∂[z] is defined to be the class [∂x].

Often we would like to use Mayer-Vietoris when the interiors of A and B don’t cover, but A and B
are deformation retracts of neighbourhoods U, V with U ∩ V deformation retracting onto A ∩ B. Then the
Five-Lemma implies that the maps Cn(A) +Cn(B) −→ Cn(U) +Cn(V ) are isomorphisms on homology and
therefore so are the maps Cn(A) + Cn(B) −→ Cn(X), giving the Mayer-Vietoris sequence.
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Figure 2: Braid diagram for A ∩B (Bredon)

Example 2.28. write Sn = A∪B with A,B the northern and southern closed hemispheres, so that A∩B =
Sn−1. Then Hk(A)⊕Hk(B) vanish for k 6= 0, and we obtain isos Hn(Sn) = Hn−1(Sn−1).

Example 2.29. Write the Klein bottle as the union of two Möbius bands A,B glued by a homeomorphism
of their boundary circles. A, B, and A ∩B are homotopy equivalent to circles, and so we obtain by Mayer-
Vietoris

0 // H2(K) // H1(A ∩B) Φ // H1(A)⊕H1(B) // H1(K) // 0

(The sequence ends in zero since the next map H0(A ∩ B) −→ H0(A) ⊕ H0(B) is injective.) The map
Φ : Z −→ Z⊕ Z is 1 7→ (2,−2) since the boundary circle wraps twice around the core circle. Φ is injective,
so H2(K) = 0 (c.f. orientable surface!) Then we obtain H1(K) ∼= Z ⊕ Z2 since we can choose Z ⊕ Z =
Z(1, 0) + Z(1,−1).

Example 2.30. Compute homology for RP 2.

The Mayer-Vietoris sequence can also be deduced from the axioms for homology (the way we did it above
used a short exact sequence of chain complexes). Let X be covered by the interiors of A,B. Then by the
exactness axiom applied to (A,A ∩ B) and (B,A ∩ B), we obtain two long exact sequences. Applying the
excision axiom to the inclusion (A,A∩B) ↪→ (A∪B,B) and similarly for (B,A∩B) ↪→ (A∪B,A), we can
modify the relative homology groups in the previous sequences to involve A ∪ B. Then observe that these
two sequences combine to form the braid diagram of 4 commuting exact sequences in Figure 2.

By a diagram chase, we then obtain the Mayer-Vietoris sequence

· · · // Hi(A ∩B)
Φ=iA∗ ⊕−i

B
∗// Hi(A)⊕Hi(B)

Ψ=jA∗ +jB∗ // Hi(A ∪B) ∂ // Hi−1(A ∩B) // · · ·

Define ∂ by either composition in the braid (they coincide). Check that it’s a complex at Hi(A ∪ B) and
that it is exact. Similar arguments prove exactness at each step.
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2.8 Degree

While we will only use the degree of a map f : Sn −→ Sn, the degree of a continuous map of orientable,
compact n-manifolds f : M −→ N is an integer defined as follows: one can show that Hn(M) = Z for any
compact orientable n-manifold and that this is generated by the “fundamental class” which we denote [M ].
This class would be represented by, for example, the sum of simplices in an oriented triangulation of M . See
Chapter 3 of Hatcher for the details.

Definition 19. Let M,N be compact, oriented n-manifolds and f : M −→ N a continuous map. Then the
map f∗ : Hn(M) −→ Hn(N) sends [M ] to d[N ], for some integer d = deg(f), which we call the degree of f .

Degree is easiest for maps f : Sn −→ Sn, where we showed Hn(Sn) = Z, so that f∗(α) = dα, and we
then put deg(f) = d. As listed in Hatcher, here are some properties of deg f for spheres:

• deg Id = 1

• if f is not surjective, then deg f = 0, since f can be written as a composition Sn −→ Sn−{x0} −→ Sn

for some point x0, and Hn(Sn − {x0}) = 0.

• If f ' g, then deg f = deg g, since f∗ = g∗. The converse statement follows from πn(Sn) = Z.

• deg fg = deg f deg g, since (fg)∗ = f∗g∗, and hence deg f = ±1 if it is a homotopy equivalence.

• a reflection of Sn has deg = −1. A simple way of seeing this is to write Sn as the union of two
n-simplices ∆1,∆2 so that [Sn] = ∆1 −∆2 and the reflection then exchanges ∆i, acting by −1.

• The antipodal map on Sn, denoted by −Id, has degree (−1)n+1, since it is the reflection in all n + 1
coordinate axes.

• If f has no fixed points, then the line segment from f(x) to −x avoids the origin, so that if we define
gt(x) = (1− t)f(x)− tx, then gt(x)/|gt(x)| is a homotopy of maps from f to the antipodal map. Hence
deg(f) = n+ 1.

The degree was historically used to study zeros of vector fields, since for example a sphere around an
isolated zero is mapped via the vector field to another sphere of the same dimension (after normalizing the
vector field). Hence the degree may be used to assign an integer to any vector field. A related result is the
theorem which says you can’t comb the hair on a ball flat.

Theorem 2.31. A nonvanishing continuous vector field may only exist on Sn if n is odd.

Proof. View the vector field as a map from Sn to itself. If the vector field is nonvanishing, we may normalize
it to unit length. Call the resulting map x 7→ v(x). Then ft(x) = cos(t)x + sin(t)v(x) for t ∈ [0, π] defines
a homotopy from Id to the antipodal map −Id. Hence by homotopy invariance of degree, (−1)n+1 = 1, as
required.

To see that odd spheres do have nonvanishing vector fields, view S2n−1 ⊂ Cn, and if ∂r is the unit radial
vector field, then i∂r is a vector field of unit length everywhere tangent to S2n−1.

Recall that when we studied differentiable maps, we defined the degree of a map f : Mn −→ Nn of
n-manifolds where M is compact and N connected; it was defined as I2(f, p) for a point p ∈ N . Note that
this is simply the cardinality mod 2 of the inverse image f−1(p), for p a regular value of f . A similar formula
may be used to compute the integer degree of a map (See Bredon for a detailed, but elementary, proof)

Let f : Sn −→ Sn be a smooth map and p ∈ Sn a regular value, so that f−1(p) = {q1, . . . , qk}. Then for
each qi, the derivative gives a map

Dqif : TqiS
n −→ TpS

n,

with determinant
det(Dqif) : ∧nTqiSn −→ ∧nTpSn.

Since Sn is orientable, we can choose an identification ∧nTSn = R, and the sign of det(Dqif) is independent
of this identification.
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Figure 3: Diagram defining cellular homology (Hatcher)

Theorem 2.32. With the above hypotheses,

deg f =
k∑
i=1

sgn det(Dqif)

2.9 Cellular homology

Cellular homology is tailor made for computing homology of cell complexes, based on simple counting of cells
and computing degrees of attaching maps. Recall that a cell complex is defined by starting with a discrete
set X0 and inductively attaching n-cells {enα} to the n-skeleton Xn−1. The weak topology says A ⊂ X is
open if it is open in each of the Xn.

The nice thing about cell complexes is that the boundary map is nicely compatible with the relative
homology sequences of the inclusions Xn ⊂ Xn+1, and that these are all good pairs.

The relative homology sequence for Xn−1 ⊂ Xn is simplified by the fact that Hk(Xn, Xn+1) vanishes
for k 6= n, and for k = n, Xn/Xn−1 is a wedge of n-spheres indexed by the n-cells. Since the pair is good,
we see

Hn(Xn, Xn−1) = free abelian group on n-cells

Then by the long exact sequence in relative homology for this pair (n fixed!), namely

Hk+1(Xn, Xn−1) // Hk(Xn−1) // Hk(Xn) // Hk(Xn, Xn−1)

we see that Hk(Xn−1) is isomorphic to Hk(Xn) for all k > n. Hence we can let n drop down to zero, and
we obtain Hk(Xn) ∼= Hk(Xn−1) ∼= · · · ∼= Hk(X0) = 0. Hence

Hk(Xn) = 0 ∀k > n.

Finally we observe using the same sequence but letting n increase, that if n > k then

Hk(Xn)
∼=−→ Hk(Xn+1) ∀n > k.

In particular, if X is finite dimensional then we see Hk(Xn) computes Hk(X) for any n > k. See Hatcher
for a proof of this fact for X infinite dimensional.

Now we combine the long exact sequences for (Xn−1, Xn−2), (Xn, Xn−1), and (Xn+1, Xn) to form the
diagram in Figure 3, where di are defined by the composition of the boundary and inclusion maps. clearly
d2 = 0. This chain complex, i.e.

CCWn (X) := Hn(Xn, Xn−1),

fashioned from the relative homologies (which are free abelian groups, recall) of the successive skeleta, is the
cellular chain complex and its homology is HCW

• (X), the cellular homology.
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Proof.

Figure 4: Diagram computing differential dn in terms of degree(Hatcher)

Theorem 2.33. HCW
n (X) ∼= Hn(X).

Proof. From the diagram, we see that Hn(X) = Hn(Xn)
im∂n+1

= imjn=ker dn
imj∂n+1=imdn+1

= HCW
n (X)

We can immediately conclude, for example, that if we have no k-cells, then Hk(X) = 0. Or, similarly, if
no two cells are adjacent in dimension, then H•(X) is free on the cells.

Example 2.34. Recall that CPn is a cell complex

CPn = e0 t e2 t · · · t e2n,

so that H•(CPn) = Z 0 Z 0 Z · · ·Z.

For more sophisticated calculations, we need an explicit description of the differential dn in the cell
complex. Essentially it just measures how many times the attaching map wraps around its target cycle.

Proposition 2.35 (Cellular differential). Let enα and en−1
β be cells in adjacent dimension, and let φα be the

attaching map Sn−1
α −→ Xn−1 for enα. Also we have the canonical collapsing π : Xn−1 −→ Xn−1/(Xn−1 −

en−1
β ) ∼= Sn−1

β . Let dαβ be the degree of the composition

∆αβ : Sn−1
α

φα−→ Xn−1 π−→ Sn−1
β .

Then
dn(enα) =

∑
β

dαβe
n−1
β .

In Figure 4, we see the lower left triangle defines dn. To determine dn(enα), take [enα] ∈ Hn(Dn
α, ∂D

n
α) on the

top left, which is sent to the basis element corresponding to enα by Φα (the characteristic inclusion map, with
associated attaching map ϕα), and we use excision/good pairs to identify its image in Hn−1(Xn−1, Xn−2)
with the image by the quotient projection q to H̃n−1(Xn−1/Xn−2). Then the further quotient map qβ :
Xn−1/Xn−2 −→ Sn−1

β collapses the complement of en−1
β to a point, so it picks out the coefficient we need,

which then by the commutativity of the diagram is the degree of ∆αβ , as required.

Example 2.36 (orientable genus g 2-manifold). If Mg is a compact orientable surface of genus g, with
usual CW complex with 1 0-cell, 2g 1-cells and 1 2-cell whose attaching map sends the boundary circle to
the concatenated path [a1, b1] · · · [ag, bg], we have the chain complex

0 // Z
d2 // Z2g

d1 //// Z // 0

where d2(e2) = 0, since for example the coefficient for a1 would be +1 − 1 = 0 sincea1 appears twice with
opposite signs in the boundary, hence we would be measuring the degree of a map which goes once around
the circle and then once in the opposite direction around the same circle - such a map is homotopic to the
constant map, and has degree 0. Hence d2 = 0. The differential d1 is also zero. Hence the chain complex is
exactly the same as the homology itself: H•(Mg) = [Z,Z2g,Z].
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Example 2.37 (nonorientable surface, genus g). Similarly, for a nonorientable surface Ng, we may choose
a cell structure with one 0-cell, g 1-cells and one 2-cells attached via a2

1 · · · a2
g Hence d2 : Z −→ Zg is given

by 1 7→ (2, · · · , 2). Hence d2 is injective and H2(Ng) = 0. Choosing (1, · · · , 1) as a basis element, we see
immediately that H1(Ng) ∼= Zg−1 ⊕ Z/2Z.

Example 2.38 (Real projective space). Recall that the cell complex structure on RPn may be viewed as
attaching Rn ∼= Dn to the RPn−1 at infinity via the attaching map Sn−1 −→ RPn−1 given by the canonical
projection (view Sn−1 ⊂ Rn, whereas RPn−1 is the lines through 0 in Rn).

The chain complex is Z in each degree from 0 to n. The differential is given by computing the degree of the
map Sn−1 −→ RPn−1 −→ RPn−1/RPn−2. This map may be factored via Sn−1 −→ Sn−1

+ ∧Sn−1
−

ν−→ Sn−1,
where Sn−1

± = Sn−1/D±, with D± the closed north/south hemisphere and ν given by the identity map on
one factor and the antipodal map on the other (which is which depends on the choice of identification of
RPn−1/RPn−2 with Sn−1. Hence ν∗ : (1, 1) 7→ 1 + (−1)n, and we have dk = 1 + (−1)k, alternating between
0, 2. It follows that

Hk(RPn) = [Z,Z2, 0,Z2, 0, · · · ,Z2, 0] for n even
Hk(RPn) = [Z,Z2, 0,Z2, 0, · · · ,Z2,Z] for n odd

Note that with Z2 coefficients we have Hk(RPn) = Z2 for all n, 0 ≤ k ≤ n.

As a final comment, we can easily show that the Euler characteristic of a finite cell complex, usually
defined as an alternating sum χ(X) =

∑
n(−1)ncn where cn is the number of n-cells, can be defined purely

homologically, and is hence independent of the CW decomposition:

Theorem 2.39.
χ(X) =

∑
n

(−1)nrank Hn(X),

where rank is the number of Z summands.

Proof. The CW homology gives us short exact sequences 0→ Zn → Cn → Bn−1 → 0 and 0→ Bn → Zn →
Hn → 0, where Cn = Hn(Xn, Xn−1), etc. For such sequences, the alternating sum of ranks is always zero.
Summing over n, we obtain the result.
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