MAT 157Y – Term exam #1 Solutions

(1) We first observe that

$$\begin{pmatrix} \alpha \\ k \end{pmatrix} + \begin{pmatrix} \alpha \\ k-1 \end{pmatrix} = \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} + \frac{\alpha(\alpha-1)\cdots(\alpha-k+2)}{(k-1)!}$$

$$= \frac{\alpha(\alpha-1)\cdots(\alpha-k+1) + \alpha(\alpha-1)\cdots(\alpha-k+2)k}{k!}$$

$$= \frac{(\alpha+1)\alpha(\alpha-1)\cdots(\alpha-k+2)}{k!}$$

$$= \begin{pmatrix} \alpha+1 \\ k \end{pmatrix}.$$

We now proceed by induction. Let $\mathcal{P}(n)$ denote the statement,

$$\sum_{k=0}^{n-1} \binom{\alpha+k}{k} = \binom{\alpha+n}{n-1}.$$

Then $\mathcal{P}(1)$ is true since

$$\sum_{k=0}^{0} {\alpha+k \choose k} = {\alpha \choose 0} = 1 = {\alpha+1 \choose 0}.$$

Suppose $\mathcal{P}(n)$ is true. Then

$$\sum_{k=0}^{n} {\alpha + k \choose k} = \sum_{k=0}^{n-1} {\alpha + k \choose k} + {\alpha + n \choose n}$$
$$= {\alpha + n \choose n - 1} + {\alpha + n \choose n}$$
$$= {\alpha + n + 1 \choose n}.$$

which shows that $\mathcal{P}(n+1)$ is true. Hence by induction, $\mathcal{P}(n)$ is true for all n.

(2) a) We proceed by induction. Let $\mathcal{P}(n)$ be the statement that there are polynomials f_n, g_n such that

$$cos(nx) = f_n(cos(x)), \quad sin(nx) = sin(x) g_n(cos(x))$$

for all x. Then $\mathcal{P}(1)$ is trivially true, with $f_1(x) = x$ and $g_1(x) = 1$. Suppose $\mathcal{P}(n)$ is true. Then

$$\cos((n+1)x) = \cos(nx)\cos(x) - \sin(nx)\sin(x)$$

$$= f_n(\cos(x))\cos(x) - g_n(\cos(x))\sin^2(x)$$

$$= f_n(\cos(x))\cos(x) - g_n(\cos(x)) + g_n(\cos(x))\cos^2(x)$$

$$= f_{n+1}(\cos(x))$$

with

$$f_{n+1}(x) = xf_n(x) + (x^2 - 1)g_n(x)$$

a polynomial of degree n+1, and similarly

$$\sin((n+1)x) = \sin(nx)\cos(x) + \cos(nx)\sin(x)$$

$$= \sin(x)g_n(\cos(x))\cos(x) + f_n(\cos(x))\sin(x)$$

$$= \sin(x)g_{n+1}(\cos(x))$$

with

$$g_{n+1}(x) = xg_n(x) + f_n(x),$$

a polynomial of degree n.

b) Using the recursion formulas from part a, we obtain

$$f_1(x) = x, \quad g_1(x) = 1,$$
 $f_2(x) = 2x^2 - 1, \quad g_2(x) = 2x,$
 $f_3(x) = 4x^3 - 3x, \quad g_3(x) = 4x^2 - 1,$
 $f_4(x) = 8x^4 - 8x^2 + 1, \quad g_4(x) = 8x^3 - 4x.$

(3) We begin by determining the zeroes of this function: $\sin(\frac{\pi}{\sqrt{|x|}})$ vanishes if and only if $\frac{1}{\sqrt{|x|}}$ $k \in \mathbb{N}$, i.e. for $|x| = \frac{1}{k^2}$. Thus, the zeroes are at x with

$$|x|=1, \ \frac{1}{4}, \ \frac{1}{9}, \dots$$

Next, $\sin(\frac{\pi}{\sqrt{|x|}})$ equals +1 if $\frac{1}{\sqrt{|x|}} = \frac{1}{2}, \frac{5}{2}, \dots$, i.e.

$$|x|=4, \ \frac{4}{25}, \ \frac{4}{81}, \cdots$$

while it is equal to -1 at $\frac{1}{\sqrt{|x|}} = \frac{3}{2}, \frac{7}{2}, \cdots$, i.e.

$$|x| = \frac{4}{9}, \ \frac{4}{49}, \dots$$

Now one can draw the picture, keeping in mind also that the function f(x) is odd. Your picture should indicate the following features:

- the graph is trapped between the lines y = x and y = -x,
- f is an odd function,
- f(x) > 0 for x > 1,
- f has zeroes at $x = \pm 1, \pm \frac{1}{4}, \pm \frac{1}{9}$
- f(x) = -x for $x = \pm \frac{4}{9}$, and f(x) = x for $x = \pm \frac{4}{25}$,
 the function oscillates infinitely often as $x \to 0$.

- (4) a) Let $A = \{n \in \mathbb{N} | n \ge 1\}$. This is an inductive subset, because $1 \in A$, and since $n \ge 1$ implies $n + 1 \ge 2 \ge 1$. Thus $A = \mathbb{N}$.
- b) Let A be as suggested. Note $A \subset \mathbb{N}$, since $1 \in \mathbb{N}$, and since $x 1 \in \mathbb{N}$ implies $x = (x 1) + 1 \in \mathbb{N}$ (since \mathbb{N} is inductive).

We want to show A is inductive. Since $1 \in A$, it suffices to show that $n \in A$ implies $n+1 \in A$. By definition of A, the condition $n \in A$ means that n=1 or $n-1 \in \mathbb{N}$. Case 1: n=1. Then $(n+1)-1=1 \in \mathbb{N}$, thus $n+1 \in A$. Case 2: $n-1 \in \mathbb{N}$. Then also $(n+1)-1=(n-1)+1 \in \mathbb{N}$, and it follows that $n+1 \in A$.

This proves $A = \mathbb{N}$. But if $x \in \mathbb{N} - \{1\} = A - \{1\}$, then $x - 1 \in \mathbb{N}$, thus $x - 1 \ge 1$ (by part (a)) or equivalently $x \ge 2$. Q.E.D.

(5) a) We say that the limit $\lim_{x\to a} f(x)$ exists and write $\lim_{x\to a} f(x) = l$ if

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x : |x - a| < \delta \Rightarrow |f(x) - l| < \epsilon.$$

It is equally fine if you work with the condition

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x : \ 0 < |x - a| < \delta \Rightarrow |f(x) - l| < \epsilon.$$

b) The expected limit is $f(0) = -\frac{1}{4}$. We verify:

$$\left| \frac{x^2 - 1}{x^2 + 4} - \frac{1}{4} \right| = \left| \frac{4(x^2 - 1) - (x^2 + 4)}{4(x^2 + 4)} \right|$$
$$= \left| \frac{3x^2}{4(x^2 + 4)} \right|$$
$$< 3x^2.$$

Given $\epsilon > 0$ take $\delta = \min(\frac{\epsilon}{3}, 1)$. Then for $|x| < \delta$, we have

$$3x^2 = 3|x||x| < 3\frac{\epsilon}{3} \cdot 1 = \epsilon,$$

and hence

$$\left| \frac{x^2 - 1}{x^2 + 4} - \frac{1}{4} \right| < \epsilon.$$