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Representation ring

For a finite-dimensional complex G -representation
π : G → Aut(V ), let χV ∈ C∞(G ) be its character

χV (g) = tr(π(g)).

Properties

χV⊕W = χV + χW ,

χV ∗ = χ∗V ,

χV⊗W = χVχW .

Definition

The representation ring R(G ) ⊂ C∞(G ) is the subring generated
by characters χV .

Additively, R(G ) has basis the irreducible characters.
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Representation ring

Let T ⊂ G be a maximal torus, with Lie algebra t ⊂ g.

Definition

The weight lattice P ⊂ t∗ consists of µ ∈ t∗ such that
2π
√
−1µ : t→ 2π

√
−1R exponentiates to eµ : T → U(1).

For any G -representation π : G → Aut(V ), one can consider its
weights

P(V ) = {µ ∈ P| ∃v ∈ V \{0}, π(t)v = eµ(t)v}.
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Representation ring

Definition

P+ = t∗+ ∩ P are the dominant weights of G .

0

Weyl’s theorem: P+ labels irreducible G -representations, by taking
V to its unique highest weight µ ∈ P(V ). Thus

R(G ) = Z[P+]

additively.
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Quantization of Hamiltonian G -spaces

Let (M, ω,Φ) be a Hamiltonian G -space, Φ: M → g∗.

Definition

A pre-quantum line bundle L→ M is a G -equivariant Hermitian
line bundle with connection ∇, such that

1 curv(∇) = ω,

2 The g-action on L is given by Kostant’s formula

ξL = Lift∇(ξM) + 〈Φ, ξ〉∂θ

where ∂θ ∈ X(L) generates the S1-action on L.

If G is simply connected, the existence of the lift is automatic.
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Quantization of Hamiltonian G -spaces

Choose a G -invariant compatible almost complex structure
J : TM → TM, i.e. g(v ,w) = ω(Jv ,w) is a Riemannian metric.
Then

S = ∧T 0,1M ⊗ L

is a spinor module; let /∂ be its Spinc -Dirac operator. Write

/∂± : Γ(S±)→ Γ(S∓).

Definition

The quantization Q(M) ∈ R(G ) of the pre-quantized Hamiltonian
G -space (M, ω,Φ) is the G -index

Q(M) = indexG (/∂) = χker(/∂+) − χker(/∂−).
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Quantization of Hamiltonian G -spaces

Q(M) ∈ R(G ) is independent of the choices made.

Basic Properties:

Q(M1 ∪M2) = Q(M1) +Q(M2),

Q(M1 ×M2) = Q(M1)Q(M2),

Q(M∗) = Q(M)∗,

Borel-Weil-Bott (weak version): G .µ, µ ∈ t∗+ is pre-quantized
if and only if µ ∈ P+. In this case,

Q(G .µ) = χµ.
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Quantization of Hamiltonian G -spaces

Let R(G )→ Z, χ 7→ χG be the map defined by χG
µ = δµ,0.

Theorem (Quantization commutes with reduction)

Q(M)G = Q(M//G ).

This was conjectured (and
proved in many cases) by

Guillemin-Sternberg.

One has to take care of the singularities of M//G (M-Sjamaar).
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Quantization of Hamiltonian G -spaces

On the other hand, Q(M) = indexG (/∂) is given by

Theorem (Atiyah-Segal-Singer)

Q(M)(g) =
∑

F⊂Mg

∫
F

Â(F ) Ch(L|F , g)1/2

DR(νF , g)

a sum over fixed point manifolds F ⊂ Mg .

Here L is the ‘Spinc -line bundle’ L = L2 ⊗ K−1, and νF is the
normal bundle to F .
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Quantization of Hamiltonian G -spaces

Remark

One can also write this in ‘Riemann-Roch form’,

Q(M) =
∑

F⊂Mg

∫
F

Td(F ) Ch(L|F , g)

DC(νF , g)

But the ‘Spinc -form’ will be more convenient for our discussion.
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Quantization of q-Hamiltonian G -spaces ?

Recall axioms of q-Hamiltonian G -spaces, Φ: M → G :

1 ι(ξM)ω = −1
2Φ∗(θL + θR) · ξ,

2 dω = −Φ∗η,

3 ker(ω) ∩ ker(dΦ) = 0.

Questions / Problems

Where should Q(M) take values in ??

ω is not closed, hence ‘pre-quantum line bundle’ does not
make sense.

ω could be degenerate, so ‘compatible almost complex
structure’ does not make sense.

No suitable ‘Dirac operator’ in sight.
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Answer to first question:

For q-Hamiltonian spaces, Q(M) should take values in the fusion
ring (Verlinde algebra).
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The level k fusion ring (Verlinde algebra)

Assume G compact, simple and simply connected, P+ ⊂ P ⊂ t∗+
its dominant weights.

Notation

θ ∈ P+ adjoint representation (i.e. χθ = tr(Adg )),

ρ ∈ P+ shortest weight in P ∩ int(t∗+).

The basic inner product · on g ∼= g∗ is the unique invariant
inner product with θ · θ = 2.

The dual Coxeter number is defined by

h∨ = 1 + ρ · θ ∈ N.

For G = SU(n), one has h∨ = n.

Eckhard Meinrenken Quantization of group-valued moment maps II



The level k fusion ring (Verlinde algebra)

Assume G compact, simple and simply connected, P+ ⊂ P ⊂ t∗+
its dominant weights.

Notation

θ ∈ P+ adjoint representation (i.e. χθ = tr(Adg )),

ρ ∈ P+ shortest weight in P ∩ int(t∗+).

The basic inner product · on g ∼= g∗ is the unique invariant
inner product with θ · θ = 2.

The dual Coxeter number is defined by

h∨ = 1 + ρ · θ ∈ N.

For G = SU(n), one has h∨ = n.

Eckhard Meinrenken Quantization of group-valued moment maps II



The level k fusion ring (Verlinde algebra)

A = {ξ ∈ t+| θ · ξ ≤ 1} is the fundamental alcove.

Definition

The level k weights are elements of Pk = P ∩ kA.

ρ = θ ρ
θ

G = SU(3)
k = 3

G = Spin(5)
k = 4

Eckhard Meinrenken Quantization of group-valued moment maps II



The level k fusion ring (Verlinde algebra)

For λ ∈ Pk define the
special element

tλ = exp( λ+ρ
k+h∨ ) ∈ T .

Definition

The level k fusion ring (Verlinde algebra) is the quotient

Rk(G ) = R(G )/Ik(G )

where
Ik(G ) = {χ ∈ R(G )| χ(tλ) = 0 ∀ λ ∈ Pk}.
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The level k fusion ring (Verlinde algebra)

Remark

Rk(G ) is the fusion ring of level k projective representations of the
loop group LG . (But we don’t need that here.)
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The level k fusion ring (Verlinde algebra)

Some properties of Rk(G ) = R(G )/Ik(G ):

Rk(G ) is unital ring with involution.

Rk(G ) has finite Z-basis the images τµ of χµ, µ ∈ Pk . Thus

Rk(G ) = Z[Pk ].

Rk(G ) has a trace,

Rk(G )→ Z, τ 7→ τG

where τGµ = δµ,0.
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The level k fusion ring (Verlinde algebra)

Notation

Tensor coefficents

Nµ1µ2µ3 = (χµ1χµ2χµ3)G , µi ∈ P+

Level k fusion coefficents

N(k)
µ1µ2µ3 = (τµ1τµ2τµ3)G , µi ∈ Pk .

Then
N(k)
µ1µ2µ3 = Nµ1µ2µ3 , k >> 0.
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Example: SU(2)

For G = SU(2), identify P+ = {0, 1, . . .}, Pk = {0, 1, . . . , k}.

Ring structure of R(SU(2))

χlχm = χl+m + χl+m−2 + . . .+ χ|l−m|.

One finds Ik(SU(2)) = 〈χk+1〉.

Quotient map R(G )→ Rk(G ) is ‘signed reflection’ across indices
k + 1, 2k + 3, 3k + 5, . . ..

Example

Calculation of τ3τ4 in R5(SU(2)):

χ3χ4 = χ7 + χ5 + χ3 + χ1 ⇒ τ3τ4 = τ3 + τ1

since χ7 7→ −τ5, χ5 7→ τ5.
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The level k fusion ring (Verlinde algebra)

For general G the quotient map is ‘signed reflection’ for a shifted
Stiefel diagram.

3A

Shifted affine Weyl action at level k = 3, G = SU(3)
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S-matrix

Evaluation of characters at tλ = exp( λ+ρ
k+h∨ ) descends to the fusion

ring:
Rk(G )→ C, τ 7→ τ(tλ).

Rk(G )⊗ C has another basis τ̃µ s.t. τ̃µ(tλ) = δλ,µ. In the new
basis,

τ̃µτ̃ν = δµ,ν τ̃ν .

The bases are related by the S-matrix:

τµ =
∑
ν∈Pk

S−10,ν S∗µ,ν τ̃ν ;

here S is a symmetric, unitary matrix with S0,ν > 0.
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S-matrix

⇒ Verlinde formula for fusion coefficients:

N(k)
µ1µ2µ3 =

∑
ν∈Pk

Sµ1,νSµ2,νSµ3,ν
S0,ν

.

This is one of several formulas called ‘Verlinde formulas’.

Tomorrow, we’ll take Rk(G ) as the target for quantization of
q-Hamiltonian spaces.
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