
1. Notes on the construction of C

Consider the second order polynomial with coefficients A,B,C ∈ R with A 6= 0,

p(x) = Ax2 + Bx + C.

If B2 > 4AC, this equation has two solutions

x =
1

2A
(−B ±

√
B2 − 4AC)

(one solution with the plus sign, the other with the minus sign). If B2 − 4AC = 0 these two
solutions become one solution x = −B

2A , while for B2 − 4AC < 0 there is no solution at all,
because the square root of a negative number is not defined in R.

Of course, it would be nice if one could avoid this distinction into cases. An idea, which
turns out to be very successful, is to introduce a formal symbol i with property i2 = −1, so
that −1 will have two square roots ±i. Then the equation p(x) will two solutions even for
B2 − 4AC < 0, namely

x =
1

2A
(−B ± i

√
4AC −B2).

To make this rigorous, we pass from R to a larger field C. As a set, we have

C = R× R

(the cartesian product), but we will find it convenient to write its elements as

a + ib := (a, b), a, b ∈ R.

One calls such a pair a complex number, with a its real part and b its imaginary part.
Note that at his point, the imaginary unit i doesn’t have any particular ‘meaning’; it is just

a formal symbol – the complex number a + ib is just the same thing as the element (a, b) in
the plane.

We introduce addition and multiplication of complex numbers as follows:

(a + ib) + (c + id) = (a + b) + i(c + d),

(a + ib) · (c + id) = (ac− bd) + i(ad + bc).

Loosely speaking, we add and multiply ‘as if’ i was an unknown number with i2 = −1. We
could have written teh complex numbers as pairs (a, b); the only reason for introducing i was
to make the multiplication more intuitive.

These operations extend the addition and multiplication of R, when the latter is identified
with the subset of C consisting of elements of the form a + i0 = (a, 0).

Elements of the form 0 + ia = (0, a) ∈ C are called ‘imaginary numbers’, and one such
element is the imaginary unit i = 0 + i1 = (0, 1). This element satisfies

i2 = −1

by construction. Of course, what makes the whole construction worthwhile is that C with
these operations of addition and multiplication is a field, with neutral elements 0 = 0 + i0 and
1 = 1 + i0. The key fact is:

Lemma 1.1. Every non-zero element of C has a multiplicative inverse.
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Proof. Consider a + ib ∈ C with a, b 6= 0. We have that

(a + ib)(a− ib) = a2 + b2 6= 0.

Using this, it follows that
a

a2 + b2
+ i

−b
a2 + b2

is a multiplicative inverse to a + ib. �

Using this Lemma, one obtains,

Theorem 1.2. C = R× R is a field.

The proof of the remaining field properties amounts to a direct calculation, which we leave
as an exercise – you’ll find it ‘straightforward’, but probably not very inspiring.

2. Pensive

Question: Which properties of the field R did we use in the construction of C? Can we
repeat this construction with any field F?

Answer: If we were to repeat the construction with R replaced by a more general field F , we
will need to check the existence of multiplicative inverses. The formula for (a+ ib)−1, provided
a+ ib 6= 0, given in the Lemma does not work if there exists (a, b) 6= (0, 0) with a2 + b2 = 0. If
a 6= 0 (resp. b 6= 0), this can be written as (a/b)2 + 1 = 0, resp. (b/a)2 + 1 = 0.

So, the construction can be applied to F provided that the equation x2 + 1 = 0 has no
solution in F . In particular, we can not apply it to C (since i2 + 1 = 0 in C), to Z2 (since
12 + 1 = 0 in Z2) or Z5 (since 22 + 1 = 0 in Z5). But it works fine for F = Z3, Z7, Z11 and
many other examples. So, we now have many new examples of finite fields (with 9, 49, 121, . . .
elements).

And what’s so special about x2 + 1? Nothing, really. While x2 + 1 = 0 has solutions in
Z2 and Z5, the equation x2 + x + 1 = 0 does not. You can repeat the construction above by
introducing a formal element j with j2 + j + 1 = 0, and in this way get structures of fields on
Z2 × Z2, Z5 × Z5 and some other examples.
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